Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.663
1.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822901

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
2.
Traffic ; 25(5): e12937, 2024 May.
Article En | MEDLINE | ID: mdl-38777335

The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.


Aging , Apolipoprotein E2 , Brain , Endosomes , Exosomes , Animals , Humans , Mice , Aging/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Apolipoprotein E2/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/genetics , Brain/metabolism , Endosomes/metabolism , Exosomes/metabolism , Mice, Inbred C57BL , Neurons/metabolism
3.
J Nanobiotechnology ; 22(1): 301, 2024 May 31.
Article En | MEDLINE | ID: mdl-38816771

Intervertebral disc degeneration (IVDD) is the primary factor contributing to low back pain (LBP). Unlike elderly patients, many young IVDD patients usually have a history of trauma or long-term abnormal stress, which may lead to local inflammatory reaction causing by immune cells, and ultimately accelerates degeneration. Research has shown the significance of M1-type macrophages in IVDD; nevertheless, the precise mechanism and the route by which it influences the function of nucleus pulposus cell (NPC) remain unknown. Utilizing a rat acupuncture IVDD model and an NPC degeneration model induced by lipopolysaccharide (LPS), we investigated the function of M1 macrophage-derived exosomes (M1-Exos) in IVDD both in vivo and in vitro in this study. We found that M1-Exos enhanced LPS-induced NPC senescence, increased the number of SA-ß-gal-positive cells, blocked the cell cycle, and promoted the activation of P21 and P53. M1-Exos derived from supernatant pretreated with the exosome inhibitor GW4869 reversed this result in vivo and in vitro. RNA-seq showed that Lipocalin2 (LCN2) was enriched in M1-Exos and targeted the NF-κB pathway. The quantity of SA-ß-gal-positive cells was significantly reduced with the inhibition of LCN2, and the expression of P21 and P53 in NPCs was decreased. The same results were obtained in the acupuncture-induced IVDD model. In addition, inhibition of LCN2 promotes the expression of type II collagen (Col-2) and inhibits the expression of matrix metalloproteinase 13 (MMP13), thereby restoring the equilibrium of metabolism inside the extracellular matrix (ECM) in vitro and in vivo. In addition, the NF-κB pathway is crucial for regulating M1-Exo-mediated NPC senescence. After the addition of M1-Exos to LPS-treated NPCs, p-p65 activity was significantly activated, while si-LCN2 treatment significantly inhibited p-p65 activity. Therefore, this paper demonstrates that M1 macrophage-derived exosomes have the ability to deliver LCN2, which activates the NF-κB signaling pathway, and exacerbates IVDD by accelerating NPC senescence. This may shed new light on the mechanism of IVDD and bring a fresh approach to IVDD therapy.


Cellular Senescence , Exosomes , Intervertebral Disc Degeneration , Lipocalin-2 , Macrophages , NF-kappa B , Nucleus Pulposus , Rats, Sprague-Dawley , Signal Transduction , Animals , Exosomes/metabolism , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Rats , NF-kappa B/metabolism , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects , Male , Lipopolysaccharides/pharmacology , Disease Models, Animal
4.
World J Gastroenterol ; 30(19): 2553-2563, 2024 May 21.
Article En | MEDLINE | ID: mdl-38817658

BACKGROUND: The role of exosomes derived from HepG2.2.15 cells, which express hepatitis B virus (HBV)-related proteins, in triggering the activation of LX2 liver stellate cells and promoting liver fibrosis and cell proliferation remains elusive. The focus was on comprehending the relationship and influence of differentially expressed microRNAs (DE-miRNAs) within these exosomes. AIM: To elucidate the effect of exosomes derived from HepG2.2.15 cells on the activation of hepatic stellate cell (HSC) LX2 and the progression of liver fibrosis. METHODS: Exosomes from HepG2.2.15 cells, which express HBV-related proteins, were isolated from parental HepG2 and WRL68 cells. Western blotting was used to confirm the presence of the exosomal marker protein CD9. The activation of HSCs was assessed using oil red staining, whereas DiI staining facilitated the observation of exosomal uptake by LX2 cells. Additionally, we evaluated LX2 cell proliferation and fibrosis marker expression using 5-ethynyl-2'-deoxyuracil staining and western blotting, respectively. DE-miRNAs were analyzed using DESeq2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to annotate the target genes of DE-miRNAs. RESULTS: Exosomes from HepG2.2.15 cells were found to induced activation and enhanced proliferation and fibrosis in LX2 cells. A total of 27 miRNAs were differentially expressed in exosomes from HepG2.2.15 cells. GO analysis indicated that these DE-miRNA target genes were associated with cell differentiation, intracellular signal transduction, negative regulation of apoptosis, extracellular exosomes, and RNA binding. KEGG pathway analysis highlighted ubiquitin-mediated proteolysis, the MAPK signaling pathway, viral carcinogenesis, and the toll-like receptor signaling pathway, among others, as enriched in these targets. CONCLUSION: These findings suggest that exosomes from HepG2.2.15 cells play a substantial role in the activation, proliferation, and fibrosis of LX2 cells and that DE-miRNAs within these exosomes contribute to the underlying mechanisms.


Cell Proliferation , Exosomes , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , Humans , Exosomes/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hep G2 Cells , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Hepatitis B virus/genetics , Signal Transduction , Liver/pathology , Liver/metabolism
5.
Biosens Bioelectron ; 259: 116380, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38754193

Exosomes, as novel biomarker for liquid biopsy, exhibit huge important potential value for cancer diagnosis. However, various proteins show different expression levels on exosomal membrane, and the absolute concentration of exosomes in clinical samples is easily influenced by a number of factors. Here, we developed a CRISPR/Cas12a and aptamer-chemiluminescence based analysis (CACBA) for the relative abundance determination of tumor-related protein positive exosomes in plasma for breast cancer diagnosis. The total concentration of exosomes was determined through captured CD63 using a CRISPR/Cas12a-based method with the LoD of 8.97 × 103 particles/µl. Meanwhile, EpCAM and MUC1 positive exosomes were quantitatively detected by aptamer-chemiluminescence (ACL) based method with the LoD of 1.45 × 102 and 3.73 × 102 particles/µl, respectively. It showed that the percentages of EpCAM and MUC1 positive exosomes offered an excellent capability to differentiate breast cancer patients and healthy donors. The high sensitivity, strong specificity, outstanding anti-interference capability, and steady recovery rate of this approach offered higher accuracy and robustness than the commercialized method in clinical trial. In addition with good stability, easy preparation and low cost, this method not only provides a new approach to rapid analysis of exosome proteins, it may be quickly extended to the diagnoses of various cancers.


Aptamers, Nucleotide , Biomarkers, Tumor , Biosensing Techniques , Breast Neoplasms , CRISPR-Cas Systems , Epithelial Cell Adhesion Molecule , Exosomes , Mucin-1 , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Breast Neoplasms/genetics , Exosomes/chemistry , Exosomes/genetics , Female , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Mucin-1/blood , Mucin-1/genetics , Mucin-1/analysis , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Epithelial Cell Adhesion Molecule/genetics , Luminescent Measurements/methods , Tetraspanin 30 , Limit of Detection
6.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Article En | MEDLINE | ID: mdl-38718108

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Endocytosis , Exosomes , Tetraspanin 30 , Exosomes/metabolism , Humans , Tetraspanin 30/metabolism , Biomarkers/metabolism , Syntenins/metabolism , Syntenins/genetics , Tetraspanin 28/metabolism , Cell Membrane/metabolism , Adaptor Protein Complex 2/metabolism , Tetraspanin 29/metabolism
7.
Front Immunol ; 15: 1357378, 2024.
Article En | MEDLINE | ID: mdl-38720885

Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.


Diabetes Mellitus , Exosomes , Immunomodulation , Exosomes/immunology , Exosomes/metabolism , Humans , Diabetes Mellitus/immunology , Diabetes Mellitus/therapy , Animals , Macrophages/immunology , Macrophages/metabolism
8.
Int J Nanomedicine ; 19: 3773-3804, 2024.
Article En | MEDLINE | ID: mdl-38708181

Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.


Exosomes , Hydrogels , Stem Cells , Exosomes/chemistry , Humans , Hydrogels/chemistry , Aged , Aging/physiology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Geriatrics
9.
Int J Nanomedicine ; 19: 3943-3956, 2024.
Article En | MEDLINE | ID: mdl-38708179

Autoimmune diseases refer to a group of conditions where the immune system produces an immune response against self-antigens, resulting in tissue damage. These diseases have profound impacts on the health of patients. In recent years, with the rapid development in the field of biomedicine, engineered exosomes have emerged as a noteworthy class of biogenic nanoparticles. By precisely manipulating the cargo and surface markers of exosomes, engineered exosomes have gained enhanced anti-inflammatory, immunomodulatory, and tissue reparative abilities, providing new prospects for the treatment of autoimmune diseases. Engineered exosomes not only facilitate the efficient delivery of bioactive molecules including nucleic acids, proteins, and cytokines, but also possess the capability to modulate immune cell functions, suppress inflammation, and restore immune homeostasis. This review mainly focuses on the applications of engineered exosomes in several typical autoimmune diseases. Additionally, this article comprehensively summarizes the current approaches for modification and engineering of exosomes and outlines their prospects in clinical applications. In conclusion, engineered exosomes, as an innovative therapeutic approach, hold promise for the management of autoimmune diseases. However, while significant progress has been made, further rigorous research is still needed to address the challenges that engineered exosomes may encounter in the therapeutic intervention process, in order to facilitate their successful translation into clinical practice and ultimately benefit a broader population of patients.


Autoimmune Diseases , Exosomes , Exosomes/immunology , Humans , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Animals , Nanoparticles/chemistry
10.
Commun Biol ; 7(1): 562, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734709

MiRNAs in mesenchymal stem cells (MSCs)-derived exosome (MSCs-exo) play an important role in the treatment of sepsis. We explored the mechanism through which MSCs-exo influences cognitive impairment in sepsis-associated encephalopathy (SAE). Here, we show that miR-140-3p targeted Hmgb1. MSCs-exo plus miR-140-3p mimic (Exo) and antibiotic imipenem/cilastatin (ABX) improve survival, weight, and cognitive impairment in cecal ligation and puncture (CLP) mice. Exo and ABX inhibit high mobility group box 1 (HMGB1), IBA-1, interleukin (IL)-1ß, IL-6, iNOS, TNF-α, p65/p-p65, NLRP3, Caspase 1, and GSDMD-N levels. In addition, Exo upregulates S-lactoylglutathione levels in the hippocampus of CLP mice. Our data further demonstrates that Exo and S-lactoylglutathione increase GSH levels in LPS-induced HMC3 cells and decrease LD and GLO2 levels, inhibiting inflammatory responses and pyroptosis. These findings suggest that MSCs-exo-mediated delivery of miR-140-3p ameliorates cognitive impairment in mice with SAE by HMGB1 and S-lactoylglutathione metabolism, providing potential therapeutic targets for the clinical treatment of SAE.


Cognitive Dysfunction , Exosomes , HMGB1 Protein , Mesenchymal Stem Cells , MicroRNAs , Sepsis-Associated Encephalopathy , MicroRNAs/genetics , MicroRNAs/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Animals , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/genetics , Mice , Exosomes/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Male , Mesenchymal Stem Cells/metabolism , Humans , Mice, Inbred C57BL , Sepsis/genetics , Sepsis/metabolism , Sepsis/complications , Disease Models, Animal
11.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Article En | MEDLINE | ID: mdl-38709874

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Exosomes , Glioblastoma , Immunotherapy , Lymph Nodes , Exosomes/chemistry , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , Animals , Mice , Gels/chemistry , Dendritic Cells/immunology , T-Lymphocytes/immunology , Cell Line, Tumor , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Mice, Inbred C57BL
12.
Front Cell Infect Microbiol ; 14: 1384420, 2024.
Article En | MEDLINE | ID: mdl-38756232

Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.


Exosomes , MicroRNAs , Stem Cells , Toll-Like Receptors , Exosomes/metabolism , Toll-Like Receptors/metabolism , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Stem Cells/metabolism , Signal Transduction , Immunity, Innate , Communicable Diseases/immunology , Communicable Diseases/metabolism , Adaptive Immunity
13.
Clin Exp Med ; 24(1): 104, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761234

Recent research highlights the significance of exosomes and long noncoding RNAs (lncRNAs) in cancer progression and drug resistance, but their role in lung adenocarcinoma (LUAD) is not fully understood. We analyzed 121 exosome-related (ER) mRNAs from the ExoBCD database, along with mRNA and lncRNA expression profiles of TCGA-LUAD using "DESeq2", "survival," "ConsensusClusterPlus," "GSVA," "estimate," "glmnet," "clusterProfiler," "rms," and "pRRophetic" R packages. This comprehensive approach included univariate cox regression, unsupervised consensus clustering, GSEA, functional enrichment analysis, and prognostic model construction. Our study identified 134 differentially expressed ER-lncRNAs, with 19 linked to LUAD prognosis. These ER-lncRNAs delineated two patient subtypes, one with poorer outcomes. Additionally, 286 differentially expressed genes were related to these ER-lncRNAs, 261 of which also correlated with LUAD prognosis. We constructed an ER-lncRNA-related prognostic model and calculated an ER-lncRNA-related risk score (ERS), revealing that a higher ERS correlates with poor overall survival in both the Meta cohort and two validation cohorts. The ERS potentially serves as an independent prognostic factor, and the prognostic model demonstrates superior predictive power. Notably, significant differences in the immune landscape were observed between the high- and low-ERS groups. Drug sensitivity analysis indicated varying responses to common chemotherapy drugs based on ERS stratification, with the high-ERS group showing greater sensitivity, except to rapamycin and erlotinib. Experimental validation confirmed that thymidine kinase 1 enhances lung cancer invasion, metastasis, and cell cycle progression. Our study pioneers an ER-lncRNA-related prognostic model for LUAD, proposing that ERS-based risk stratification could inform personalized treatment strategies to improve patient outcomes.


Adenocarcinoma of Lung , Exosomes , Lung Neoplasms , RNA, Long Noncoding , Tumor Microenvironment , Humans , Exosomes/genetics , Exosomes/metabolism , RNA, Long Noncoding/genetics , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/drug therapy , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Biomarkers, Tumor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Survival Analysis
14.
Am J Reprod Immunol ; 91(5): e13857, 2024 May.
Article En | MEDLINE | ID: mdl-38716824

Preeclampsia, poses significant risks to both maternal and fetal well-being. Exosomes released by the placenta play a crucial role in intercellular communication and are recognized as potential carriers of essential information for placental development. These exosomes transport a payload of proteins, nucleic acids, and lipids that mirror the placental microenvironment. This review delves into the functional roles of placental exosomes and its contents shedding light on their involvement in vascular regulation and immune modulation in normal pregnancy. Discernible changes are reported in the composition and quantity of placental exosome contents in pregnancies affected by preeclampsia. The exosomes from preeclamptic mothers affect vascularization and fetal kidney development. The discussion also explores the implications of utilizing placental exosomes as biomarkers and the prospects of translating these findings into clinical applications. In conclusion, placental exosomes hold promise as a valuable avenue for deciphering the complexities of preeclampsia, providing crucial diagnostic and prognostic insights. As the field progresses, a more profound comprehension of the distinct molecular signatures carried by placental exosomes may open doors to innovative strategies for managing and offering personalized care to pregnancies affected by preeclampsia.


Exosomes , Placenta , Pre-Eclampsia , Humans , Pregnancy , Pre-Eclampsia/metabolism , Exosomes/metabolism , Female , Placenta/metabolism , Placenta/immunology , Biomarkers/metabolism , Animals , Cell Communication
15.
ACS Appl Mater Interfaces ; 16(20): 25923-25937, 2024 May 22.
Article En | MEDLINE | ID: mdl-38725122

The management of severe full-thickness skin defect wounds remains a challenge due to their irregular shape, uncontrollable bleeding, high risk of infection, and prolonged healing period. Herein, an all-in-one OD/GM/QCS@Exo hydrogel was prepared with catechol-modified oxidized hyaluronic acid (OD), methylacrylylated gelatin (GM), and quaternized chitosan (QCS) and loaded with adipose mesenchymal stem cell-derived exosomes (Exos). Cross-linking of the hydrogel was achieved using visible light instead of ultraviolet light irradiation, providing injectability and good biocompatibility. Notably, the incorporation of catechol groups and multicross-linked networks in the hydrogels conferred strong adhesion properties and mechanical strength against external forces such as tensile and compressive stress. Furthermore, our hydrogel exhibited antibacterial, anti-inflammatory, and antioxidant properties along with wound-healing promotion effects. Our results demonstrated that the hydrogel-mediated release of Exos significantly promotes cellular proliferation, migration, and angiogenesis, thereby accelerating skin structure reconstruction and functional recovery during the wound-healing process. Overall, the all-in-one OD/GM/QCS@Exo hydrogel provided a promising therapeutic strategy for the treatment of full-thickness skin defect wounds through actively participating in the entire process of wound healing.


Chitosan , Exosomes , Gelatin , Hyaluronic Acid , Hydrogels , Mesenchymal Stem Cells , Skin , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Exosomes/chemistry , Exosomes/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Skin/drug effects , Skin/pathology , Skin/radiation effects , Chitosan/chemistry , Chitosan/pharmacology , Mice , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Gelatin/chemistry , Gelatin/pharmacology , Light , Humans , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Proliferation/drug effects
16.
Front Immunol ; 15: 1395332, 2024.
Article En | MEDLINE | ID: mdl-38726017

PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.


B7-H1 Antigen , Exosomes , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Exosomes/metabolism , Exosomes/immunology , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods , Signal Transduction , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Biomarkers, Tumor
17.
J Nanobiotechnology ; 22(1): 271, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769545

BACKGROUND AND AIMS: Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS: We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS: Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1ß group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1ß group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION: The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.


Chondrocytes , Exosomes , Osteoarthritis , Oxidative Stress , Superoxide Dismutase , Synovial Membrane , Animals , Osteoarthritis/therapy , Osteoarthritis/metabolism , Exosomes/metabolism , Mice , Oxidative Stress/drug effects , Chondrocytes/metabolism , Humans , Superoxide Dismutase/metabolism , Synovial Membrane/metabolism , Male , Disease Progression , Nanoparticles/chemistry , Mice, Inbred C57BL , Hydrogels/chemistry , Microspheres , Cartilage, Articular/metabolism , Extracellular Matrix/metabolism
18.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Article En | MEDLINE | ID: mdl-38724995

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Epithelial Cells , Exosomes , MicroRNAs , Prostatitis , Stromal Cells , Male , Exosomes/metabolism , Prostatitis/genetics , Prostatitis/pathology , Prostatitis/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Animals , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Prostate/pathology , Prostate/metabolism , Pelvic Pain , Inflammation/genetics , Inflammation/pathology , Mice , MAP Kinase Signaling System
19.
Cells ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38727297

Spinal fusion, a common surgery performed for degenerative lumbar conditions, often uses recombinant human bone morphogenetic protein 2 (rhBMP-2) that is associated with adverse effects. Mesenchymal stromal/stem cells (MSCs) and their extracellular vesicles (EVs), particularly exosomes, have demonstrated efficacy in bone and cartilage repair. However, the efficacy of MSC exosomes in spinal fusion remains to be ascertained. This study investigates the fusion efficacy of MSC exosomes delivered via an absorbable collagen sponge packed in a poly Ɛ-caprolactone tricalcium phosphate (PCL-TCP) scaffold in a rat posterolateral spinal fusion model. Herein, it is shown that a single implantation of exosome-supplemented collagen sponge packed in PCL-TCP scaffold enhanced spinal fusion and improved mechanical stability by inducing bone formation and bridging between the transverse processes, as evidenced by significant improvements in fusion score and rate, bone structural parameters, histology, stiffness, and range of motion. This study demonstrates for the first time that MSC exosomes promote bone formation to enhance spinal fusion and mechanical stability in a rat model, supporting its translational potential for application in spinal fusion.


Exosomes , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Spinal Fusion , Animals , Exosomes/metabolism , Exosomes/transplantation , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Spinal Fusion/methods , Rats , Osteogenesis/drug effects , Calcium Phosphates/pharmacology , Male , Humans , Tissue Scaffolds/chemistry , Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cell Transplantation/methods
20.
Mol Genet Genomics ; 299(1): 50, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734849

Intracerebral hemorrhage (ICH) is one of the major causes of death and disability, and hypertensive ICH (HICH) is the most common type of ICH. Currently, the outcomes of HICH patients remain poor after treatment, and early prognosis prediction of HICH is important. However, there are limited effective clinical treatments and biomarkers for HICH patients. Although circRNA has been widely studied in diseases, the role of plasma exosomal circRNAs in HICH remains unknown. The present study was conducted to investigate the characteristics and function of plasma exosomal circRNAs in six HICH patients using circRNA microarray and bioinformatics analysis. The results showed that there were 499 differentially expressed exosomal circRNAs between the HICH patients and control subjects. According to GO annotation and KEGG pathway analyses, the targets regulated by differentially expressed exosomal circRNAs were tightly related to the development of HICH via nerve/neuronal growth, neuroinflammation and endothelial homeostasis. And the differentially expressed exosomal circRNAs could mainly bind to four RNA-binding proteins (EIF4A3, FMRP, AGO2 and HUR). Moreover, of differentially expressed exosomal circRNAs, hsa_circ_00054843, hsa_circ_0010493 and hsa_circ_00090516 were significantly associated with bleeding volume and Glasgow Coma Scale score of the subjects. Our findings firstly revealed that the plasma exosomal circRNAs are significantly involved in the progression of HICH, and could be potent biomarkers for HICH. This provides the basis for further research to pinpoint the best biomarkers and illustrate the mechanism of exosomal circRNAs in HICH.


Exosomes , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/blood , Exosomes/genetics , Exosomes/metabolism , Male , Female , Middle Aged , Aged , Intracranial Hemorrhage, Hypertensive/genetics , Intracranial Hemorrhage, Hypertensive/blood , Biomarkers/blood , Computational Biology/methods , Gene Expression Profiling , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/blood , Gene Regulatory Networks
...