Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 422
Filter
1.
Sci Rep ; 14(1): 19719, 2024 08 24.
Article in English | MEDLINE | ID: mdl-39181942

ABSTRACT

Fluoroquinolone resistance is a major challenge in treating Multidrug-Resistant Tuberculosis globally. The GenoType MTBDRsl Ver 2.0, endorsed by the WHO, was used to characterize fluoroquinolone resistance. The fluoroquinolone resistance rates in the MDR-TB, Rifampicin-Resistant TB, and non-MDR-TB were 33%, 16.5%, and 5.4%, respectively. The most common mutation found in fluoroquinolone-resistant isolates was D94G (49.5%) in the gyrA gene. Of the 150 MDR-TB isolates, the prevalence of Extensively Drug-Resistant Tuberculosis and pre-XDR-TB was 1.33% and 30%, respectively. Among the 139 RR-TB isolates, pre-XDR-TB prevalence was 15.8%. The fluoroquinolone resistance rates were 5.12% among the 1230 isoniazid-monoresistant isolates. The study found that MDR-TB and RR-TB have higher risk of fluoroquinolone resistance than non-MDR tuberculosis. Rifampicin-resistant isolates with a mutation at codon S450L have a higher risk (RR = 12.96; 95%CI: 8.34-20.13) of developing fluoroquinolone resistance than isolates with mutations at other codons in the rpoB gene. Isoniazid-resistant isolates with a mutation at codon S315T have a higher risk (RR = 2.09; 95%CI: 1.25-3.50) of developing fluoroquinolone resistance. The study concludes that rapid diagnosis of fluoroquinolone resistance before starting treatment is urgently needed to prevent the spread and increase of resistance and to achieve better treatment outcomes in areas where it is higher.


Subject(s)
Antitubercular Agents , Fluoroquinolones , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Retrospective Studies , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Male , Female , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Adult , Mutation , Risk Assessment , Middle Aged , Microbial Sensitivity Tests , Rifampin/pharmacology , Rifampin/therapeutic use , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Isoniazid/pharmacology , Isoniazid/therapeutic use , Aged
2.
Sci Rep ; 14(1): 19602, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179783

ABSTRACT

The Philippines is a high-incidence country for tuberculosis, with the increasing prevalence of multi- (MDR-TB) and extensively-drug (XDR-TB) resistant Mycobacterium tuberculosis strains posing difficulties to disease control. Understanding the genetic diversity of circulating strains can provide insights into underlying drug resistance mutations and transmission dynamics, thereby assisting the design of diagnostic tools, including those using next generation sequencing (NGS) platforms. By analysing genome sequencing data of 732 isolates from Philippines drug-resistance survey collections spanning from 2011 to 2019, we found that the majority belonged to lineages L1 (531/732; 72.5%) and L4 (European-American; n = 174; 23.8%), with the Manila strain (L1.2.1.2.1) being the most prominent (475/531). Approximately two-thirds of isolates were found to be at least MDR-TB (483/732; 66.0%), and potential XDR-TB genotypic resistance was observed (3/732; 0.4%), highlighting an emerging problem in the country. Genotypic resistance was highly concordant with laboratory drug susceptibility testing. By finding isolates with (near-)identical genomic variation, five major clusters containing a total of 114 isolates were identified: all containing either L1 or L4 isolates with at least MDR-TB resistance and spanning multiple years of collection. Closer inspection of clusters revealed transmission in prisons, some involving isolates with XDR-TB, and mutations linked to third-line drug bedaquiline. We have also identified previously unreported mutations linked to resistance for isoniazid, rifampicin, ethambutol, and fluoroquinolones. Overall, this study provides important insights into the genetic diversity, transmission and circulating drug resistance mutations of M. tuberculosis in the Philippines, thereby informing clinical and surveillance decision-making, which is increasingly using NGS platforms.


Subject(s)
Antitubercular Agents , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Philippines/epidemiology , Humans , Whole Genome Sequencing/methods , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Antitubercular Agents/pharmacology , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/epidemiology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genotype , Phylogeny , Microbial Sensitivity Tests
3.
Ann Clin Microbiol Antimicrob ; 23(1): 76, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175078

ABSTRACT

BACKGROUND: Whole-genome sequencing (WGS)-based prediction of drug resistance in Mycobacterium tuberculosis has the potential to guide clinical decisions in the design of optimal treatment regimens. METHODS: We utilized WGS to investigate drug resistance mutations in a 32-year-old Tanzanian male admitted to Kibong'oto Infectious Diseases Hospital with a history of interrupted multidrug-resistant tuberculosis treatment for more than three years. Before admission, he received various all-oral bedaquiline-based multidrug-resistant tuberculosis treatment regimens with unfavourable outcomes. RESULTS: Drug susceptibility testing of serial M. tuberculosis isolates using Mycobacterium Growth Incubator Tubes culture and WGS revealed resistance to first-line anti-TB drugs, bedaquiline, and fluoroquinolones but susceptibility to linezolid, clofazimine, and delamanid. WGS of serial cultured isolates revealed that the Beijing (Lineage 2.2.2) strain was resistant to bedaquiline, with mutations in the mmpR5 gene (Rv0678. This study also revealed the emergence of two distinct subpopulations of bedaquiline-resistant tuberculosis strains with Asp47f and Glu49fs frameshift mutations in the mmpR5 gene, which might be the underlying cause of prolonged resistance. An individualized regimen comprising bedaquiline, delamanid, pyrazinamide, ethionamide, and para-aminosalicylic acid was designed. The patient was discharged home at month 8 and is currently in the ninth month of treatment. He reported no cough, chest pain, fever, or chest tightness but still experienced numbness in his lower limbs. CONCLUSION: We propose the incorporation of WGS in the diagnostic framework for the optimal management of patients with drug-resistant and extensively drug-resistant tuberculosis.


Subject(s)
Antitubercular Agents , Extensively Drug-Resistant Tuberculosis , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Whole Genome Sequencing , Humans , Male , Adult , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Tanzania , Mutation , Diarylquinolines/therapeutic use , Diarylquinolines/pharmacology , Genome, Bacterial , Linezolid/therapeutic use , Linezolid/pharmacology
4.
Indian J Tuberc ; 71 Suppl 1: S37-S43, 2024.
Article in English | MEDLINE | ID: mdl-39067953

ABSTRACT

BACKGROUND & OBJECTIVES: The purpose of present study is to analyse the distribution and pattern of genetic mutations in PRE-XDR-TB and extensive drug resistant Mycobacterium tuberculosis (XDR-TB) using second-line line probe assay and to compare them with different parameters. METHOD: Sputum, Lymph node aspirate and cold accesses from patients with rifampicin resistant Tuberculosis were subjected to first line and second line Probe Assay (Genotype MTBDRsl by Hain Life Science, Germany) to assess additional drug resistance to fluroquinolones (Levofloxacin & Moxifloxacin) and Aminoglycosides (Amikacin, Ofloxacin and Kanamycin). The genetic mutation pattern was analysed and compared with demographic, clinical and other parameters. RESULTS: The final study population included 123 fluoroquinolone resistant isolates including 14 isolates with additional second line aminoglycosides drug resistance. The most frequent mutation observed among Gyr A drug resistance mutation was D94G (Gyr A MUT3C, 50/123,40%) corresponding to high level resistance to levofloxacin and moxifloxacin. The most frequent wild type mutant among Gyr A gene locus was WT 3 (85/123,69%). The most common mutation among second line aminoglycoside resistant isolates was at eis WT2 (7/14,50%) followed by rrs MUT 2 (4/14,29%). CONCLUSIONS: GyrA MUT3C (Asp94Gly) was the most common mutation in Gyr A gene locus in M. tuberculosis causing high level levofloxacin and moxifloxacin resistance. Patients with Asp94Gly mutation was significantly associated with underweight body mass index (p = 0.026). This study also observed that history of anti-tuberculosis therapy is a risk factor for FQ drug resistance mutations (p < 0.001).


Subject(s)
Antitubercular Agents , Mutation , Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Male , Female , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Middle Aged , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Microbial Sensitivity Tests , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Levofloxacin/pharmacology , Levofloxacin/therapeutic use , Moxifloxacin/therapeutic use , Moxifloxacin/pharmacology , Young Adult
5.
Euro Surveill ; 29(28)2024 Jul.
Article in English | MEDLINE | ID: mdl-38994601

ABSTRACT

This report documents the case of a Ukrainian patient infected with an extensively drug-resistant (XDR) lineage 2 Mycobacterium tuberculosis strain harbouring the rifampicin resistance mutation RpoB I491F. This mutation is not detected by routine molecular WHO-recommended rapid diagnostics, complicating the detection and treatment of these strains. The occurrence of such mutations underscores the need for enhanced diagnostic techniques and tailored treatment regimens, especially in eastern Europe where lineage 2 strains and XDR-tuberculosis are prevalent.


Subject(s)
Antitubercular Agents , Bacterial Proteins , DNA-Directed RNA Polymerases , Extensively Drug-Resistant Tuberculosis , Mutation , Mycobacterium tuberculosis , Rifampin , Adult , Humans , Antitubercular Agents/therapeutic use , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Germany , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/drug effects , Rifampin/therapeutic use , Ukraine , Female
6.
J Clin Microbiol ; 62(8): e0022924, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39058018

ABSTRACT

Drug-resistant tuberculosis (TB) poses a significant public health concern in South Africa due to its complexity in diagnosis, treatment, and management. This study assessed the diagnostic performance of the Xpert MTB/XDR test for detecting drug resistance in patients with TB by using archived sputum sediments. This study analyzed 322 samples collected from patients diagnosed with TB between 2016 and 2019 across South Africa, previously characterized by phenotypic and genotypic methods. The Xpert MTB/XDR test was evaluated for its ability to detect resistance to isoniazid (INH), ethionamide (ETH), fluoroquinolones (FLQ), and second-line injectable drugs (SLIDs) compared with phenotypic drug susceptibility testing (pDST) and whole-genome sequencing (WGS). Culture, Xpert MTB/RIF Ultra, and Xpert MTB/RIF (G4) tests were performed to determine sensitivity and agreement with this test for TB detection. The sensitivities using a composite reference standard, pDST, and sequencing were >90% for INH, FLQ, amikacin (AMK), kanamycin (KAN), and capreomycin (CAP) resistance, meeting the WHO target product profile criteria for this class. A lower sensitivity of 65.9% (95% CI: 57.1-73.6) for ETH resistance was observed. The Xpert MTB/XDR showed a sensitivity of 98.3% (95% CI: 96.1-99.3) and specificity of 100% (95% CI: 86.7-100) compared with culture, a positive percent agreement (PPA) of 98.8% (95% CI: 93.7-99.8) and negative percent agreement (NPA) of 100.0% (95% CI: 78.5-100.0) compared with G4, and a PPA of 99.5% (95% CI: 97.3-99.9) and NPA of 100.0% (95% CI: 78.5-100.0) compared with Xpert MTB/RIF Ultra for detecting Mycobacterium tuberculosis. The test offers a promising solution for the rapid detection of drug-resistant TB and could significantly enhance control efforts in this setting.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Sensitivity and Specificity , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , South Africa , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Sputum/microbiology , Whole Genome Sequencing , Molecular Diagnostic Techniques/methods , Drug Resistance, Multiple, Bacterial
7.
PLoS One ; 19(5): e0301210, 2024.
Article in English | MEDLINE | ID: mdl-38709710

ABSTRACT

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB), characterized by isoniazid and rifampicin resistance, is caused by chromosomal mutations that restrict treatment options and complicate tuberculosis management. This study sought to investigate the prevalence of pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) tuberculosis, as well as mutation pattern, in Nepalese patients with MDR/rifampicin-resistant (RR)-TB strains. METHODS: A cross-sectional study was conducted on MDR/RR-TB patients at the German Nepal Tuberculosis Project from June 2017 to June 2018. The MTBDRsl line probe assay identified pre-XDR-TB and XDR-TB. Pre-XDR-TB included MDR/RR-TB with resistance to any fluoroquinolone (FLQ), while XDR-TB included MDR/RR-TB with resistance to any FLQ and at least one additional group A drug. Mutation status was determined by comparing bands on reaction zones [gyrA and gyrB for FLQ resistance, rrs for SILD resistance, and eis for low-level kanamycin resistance, according to the GenoType MTBDRsl VER 2.0, Hain Lifescience GmbH, Nehren, Germany definition of pre-XDR and XDR] to the evaluation sheet. SPSS version 17.0 was used for data analysis. RESULTS: Out of a total of 171 patients with MDR/RR-TB, 160 had (93.57%) had MTBC, of whom 57 (35.63%) had pre-XDR-TB and 10 (6.25%) had XDR-TB. Among the pre-XDR-TB strains, 56 (98.25%) were FLQ resistant, while 1 (1.75%) was SLID resistant. The most frequent mutations were found at codons MUT3C (57.14%, 32/56) and MUT1 (23.21%, 13/56) of the gyrA gene. One patient had SLID resistant genotype at the MUT1 codon of the rrs gene (100%, 1/1). XDR-TB mutation bands were mostly detected on MUT1 (30%, 3/10) of the gyrA and rrs, MUT3C (30%, 3/10) of the gyrA, and MUT1 (30%, 3/10) of the rrs. CONCLUSIONS: Pre-XDR-TB had a significantly higher likelihood than XDR-TB, with different specific mutation bands present in gyrA and rrs genes.


Subject(s)
Antitubercular Agents , Extensively Drug-Resistant Tuberculosis , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Nepal/epidemiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Male , Female , Adult , Cross-Sectional Studies , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Middle Aged , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Rifampin/therapeutic use , Rifampin/pharmacology , Isoniazid/therapeutic use , Isoniazid/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Young Adult , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Adolescent , Aged
8.
Microbiol Spectr ; 12(5): e0277023, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38597637

ABSTRACT

Treatment decisions for tuberculosis (TB) in the absence of full drug-susceptibility data can result in amplifying resistance and may compromise treatment outcomes. Genomics of Mycobacterium tuberculosis (M.tb) from clinical samples enables detection of drug resistance to multiple drugs. We performed whole-genome sequencing (WGS) for 600 clinical samples from patients with tuberculosis to identify the drug-resistance profile and mutation spectrum. We documented the reasons reported by clinicians for referral. WGS identified a high proportion (51%) of pre-extensively drug-resistant (pre-XDR) cases followed by multidrug-resistant tuberculosis (MDR-TB) (15.5%). This correlates with the primary reason for referral, as non-response to the first-line treatment (67%) and treatment failure or rifampicin resistance (14%). Multivariate analysis indicated that all young age groups (P < 0.05), male gender (P < 0.05), and Beijing strain (P < 0.01) were significant independent predictors of MDR-TB or MDR-TB+ [pre-extensively drug-resistant tuberculosis (XDR-TB) and XDR-TB]. Ser315Thr (72.5%) in the inhA gene and Ser450Leu in the rpoB gene (65.5%) were the most prevalent mutations, as were resistance-conferring mutations to pyrazinamide (41%) and streptomycin (61.33%). Mutations outside the rifampicin resistance-determining region (RRDR), Ile491Phe and Val170Phe, were seen in 1.3% of cases; disputed mutations in rpoB (Asp435Tyr, His445Asn, His445Leu, and Leu430Pro) were seen in 6% of cases, and mutations to newer drugs such as bedaquiline and linezolid in 1.0% and 7.5% of cases, respectively. This study on clinical samples highlights that there is a high proportion of pre-XDR cases and emerging resistance to newer drugs; ongoing transmission of these strains can cause serious threat to public health; and whole-genome sequencing can effectively identify and support precision medicine for TB. IMPORTANCE: The current study is based on real-world data on the TB drug-resistance profile by whole-genome sequencing of 600 clinical samples from patients with TB in India. This study indicates the clinicians' reasons for sending samples for WGS, which is for difficult-to-treat cases and/or relapse and treatment failure. The study reports a significant proportion of cases with pre-XDR-TB strains that warrant policy makers' attention. It reflects the current iterative nature of the diagnostic tests under programmatic conditions that leads to delays in appropriate diagnosis and empirical treatment. India had an estimated burden of 2.95 million TB cases in 2020 and 135,000 multidrug-resistant cases. However, WGS profiles of M.tb from India remains disproportionately poorly represented. This study adds a significant body of data on the mutation profiles seen in M.tb isolated from patients with TB in India, mutations outside the RRDR, disputed mutations, and resistance-conferring mutations to newer drugs such as bedaquiline and linezolid.


Subject(s)
Antitubercular Agents , DNA-Directed RNA Polymerases , Drug Resistance, Multiple, Bacterial , Extensively Drug-Resistant Tuberculosis , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis , Oxidoreductases , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , India/epidemiology , Male , Female , Adult , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Middle Aged , Drug Resistance, Multiple, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Bacterial Proteins/genetics , Young Adult , Adolescent , Aged , Rifampin/pharmacology , Rifampin/therapeutic use
9.
Tuberculosis (Edinb) ; 147: 102513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547569

ABSTRACT

SETTING AND OBJECTIVE: To develop and evaluate newer molecular tests that identify drug resistance according to contemporary definitions in Tuberculous meningitis (TBM), the most severe form of EPTB. DESIGN: 93 cerebrospinal fluid (CSF) specimens [41 culture-positive and 52 culture-negative], were subjected to Truenat MTB Plus assay along with chips for rifampicin, isoniazid, fluoroquinolones and bedaquiline resistance. The performance was compared against phenotypic drug susceptibility testing (pDST), Line probe assay (LPA) and gene sequencing. RESULTS: Against pDST, Truenat chips had a sensitivity and specificity of 100%; 94.47%, 100%; 94.47%, 100%; 97.14% and 100%; 100%, respectively for rifampicin, isoniazid, fluoroquinolones and bedaquiline. Against LPA, all Truenat chips detected resistant isolates with 100% sensitivity; but 2 cases each of false-rifampicin and false-isoniazid resistance and 1 case of false-fluoroquinolone resistance was reported. Truenat drug chips gave indeterminate results in ∼25% cases, which were excluded. All cases reported indeterminate were found to be susceptible by pDST/LPA. CONCLUSION: The strategic drug resistance chips of Truenat Plus assay can contribute greatly to TB elimination by providing rapid and reliable detection of drug resistance pattern in TBM. Cases reported indeterminate require confirmation by other phenotypic and genotypic methods.


Subject(s)
Antitubercular Agents , Drug Resistance, Multiple, Bacterial , Extensively Drug-Resistant Tuberculosis , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/microbiology , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/cerebrospinal fluid , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/diagnosis , Phenotype , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Predictive Value of Tests , Rifampin/pharmacology , Molecular Diagnostic Techniques/methods , Diarylquinolines/therapeutic use , Diarylquinolines/pharmacology , Isoniazid/pharmacology
10.
Indian J Med Microbiol ; 48: 100537, 2024.
Article in English | MEDLINE | ID: mdl-38350525

ABSTRACT

PURPOSE: Tuberculosis is an important public health problem among infectious diseases. The problem becomes more concerning with the emergence of MDR-TB and pre-XDR-TB. Whole genome sequencing (WGS) detection of resistance has recently gained popularity as it has advantages over other commercial techniques. METHODS: We performed in-house WGS followed by detailed analysis by an in-house pipeline to identify the resistance markers. This was accompanied by Phenotypic DST, and Sanger sequencing on all the 12 XDR, 06 pre-XDR, and 06 susceptible M. tb isolates. These results were collated with online M. tb WGS pipelines (TB profiler, PhyResSE, Mykrobe predictor) for comparative analysis. RESULTS: Following our in-house analysis, we observed 64 non-synonymous SNPs, fifteen synonymous SNPs, and five INDELs in 25 drug resistance-associated genes/intergenic regions (IGRs) in M. tb isolates. Sensitivity for detecting XDR is 33%, 58%, 83%, and 83%, respectively, using Mykrobe predictor, PhyResSE, TB-profiler, and in-house pipeline for WGS analysis, respectively. TB-profiler detected a rare mutation H70R in the gyrA gene in one pre-XDR isolate. Lineage 2.2.1 East-Asian (Beijing sublineage type) predominated (60%) in WGS data analysis of the XDR isolates. CONCLUSIONS: Our findings suggest that in-house analysis of WGS data and TB-profiler sensitivity was better for the detection of second-line resistance as compared to other automated tested tools. Frequent upgradation of newer mutations associated with resistance needs to be updated, as it potentiates tailored treatment for patients.


Subject(s)
Mycobacterium tuberculosis , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/classification , India , Humans , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Antitubercular Agents/pharmacology , Genome, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/microbiology
11.
Int Immunopharmacol ; 127: 111383, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38118315

ABSTRACT

Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Defensins/therapeutic use , Defensins/pharmacology
12.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(11): 1110-1117, 2023 Nov 12.
Article in Chinese | MEDLINE | ID: mdl-37914422

ABSTRACT

Objective: To summarize the resistance of rifampicin-resistant Mycobacterium tuberculosis to anti-tuberculosis drugs in group A. Methods: In the retrospective study, a total of 1 226 clinical isolates from suspected multidrug-resistant pulmonary tuberculosis patients in Beijing TB control system from 2016 to 2021 were identified as Mycobacterium tuberculosis (MTB) strains by MPB64 antigen detection test. Rifampicin-resistant tuberculosis (RR-TB) strains were screened by the phenotypic drug susceptibility using the proportion method. The drug susceptibilities of Levofloxacin(LFX), Moxifloxacin(MFX), Bedaquiline(BDQ) and Linezolid(LZD)were detected by the phenotypic drug susceptibility with microplate method. The drug resistance rate, drug resistance level and minimum inhibitory concentration (MIC) distribution of four anti-tuberculosis drugs in group A were analyzed. We calculated the demographic distribution of RR-TB, multidrug-resistant tuberculosis(MDR-TB), pre-extensively drug resistant tuberculosis (pre-XDR-TB), extensively drug resistant tuberculosis (XDR-TB) patients and the cross resistance of LFX and MFX, then summarized the drug-resistance spectrum of BDQ-resistant and LZD-resistant strains and the treatment outcome of RR-TB patients. Measurement data were expressed as rate or composition ratio,χ2 test was used between and within groups, and P<0.05 was considered statistically significant. Results: Among the 1 226 suspected multidrug-resistant pulmonary tuberculosis patients, the detection rates of RR/MDR/pre-XDR/XDR-TB patients were 20.8%(255/1 226), 15.2%(186/1 226), 5.7%(70/1 226), 0.5%(6/1 226), respectively. There were statistically significant differences in the distribution of patients with the four types of drug resistance in terms of age and treatment history (χ2=14.95, P=0.020;χ2=15.91, P=0.001). The drug resistance rates of LFX, MFX, BDQ and LZD in RR-TB patients were 27.5% (70/255), 27.5% (70/255), 0.4% (1/255) and 2.4% (6/255), respectively. The MICs of LFX, MFX and LZD-susceptible MTB were mainly at 0.25 mg/L, and the MIC of BDQ-susceptible MTB was mainly concentrated at 0.03 mg/L. 25.1% (64/255) of the RR MTB were resistant to both LFX and MFX, and 6 strains were resistant to LFX or MFX, showing incomplete two-way cross resistance. One BDQ-resistant strain and six LZD-resistant strains were detected. The treatment success rate of RR-TB patients was 74.4% (151/203), and there were statistically significant differences in treatment outcomes between resistant and sensitive patients on the LFX-containing treatment regimen (Fisher's exact test, P=0.012). Conclusions: The prevalence of fluoroquinolones (LFX and MFX) resistance in rifampicin-resistant MTB is very serious. LFX and MFX show incomplete bidirectional cross-resistance. BDQ and LZD have the most promising future in the treatment of MDR-TB. Improve drug-resistance testing will help to further improve the success rate of treatment.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Rifampin/pharmacology , Rifampin/therapeutic use , Retrospective Studies , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Tuberculosis, Pulmonary/drug therapy
13.
Sci Rep ; 13(1): 8655, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244948

ABSTRACT

The detection of pre-extensively (pre-XDR) and extensively drug-resistant tuberculosis (XDR-TB) is challenging. Drug-susceptibility tests for some anti-TB drugs, especially ethambutol (ETH) and ethionamide (ETO), are problematic due to overlapping thresholds to differentiate between susceptible and resistant phenotypes. We aimed to identify possible metabolomic markers to detect Mycobacterium tuberculosis (Mtb) strains causing pre-XDR and XDR-TB. The metabolic patterns of ETH- and ETO-resistant Mtb isolates were also investigated. Metabolomics of 150 Mtb isolates (54 pre-XDR, 63 XDR-TB and 33 pan-susceptible; pan-S) were investigated. Metabolomics of ETH and ETO phenotypically resistant subgroups were analyzed using UHPLC-ESI-QTOF-MS/MS. Orthogonal partial least-squares discriminant analysis revealed distinct separation in all pairwise comparisons among groups. Two metabolites (meso-hydroxyheme and itaconic anhydride) were able to differentiate the pre-XDR and XDR-TB groups from the pan-S group with 100% sensitivity and 100% specificity. In comparisons of the ETH and ETO phenotypically resistant subsets, sets of increased (ETH = 15, ETO = 7) and decreased (ETH = 1, ETO = 6) metabolites specific for the resistance phenotype of each drug were found. We demonstrated the potential for metabolomics of Mtb to differentiate among types of DR-TB as well as between isolates that were phenotypically resistant to ETO and ETH. Thus, metabolomics might be further applied for DR-TB diagnosis and patient management.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/microbiology , Tandem Mass Spectrometry , Drug Resistance, Multiple, Bacterial/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Ethionamide , Ethambutol/pharmacology , Metabolome , Microbial Sensitivity Tests
14.
Tuberculosis (Edinb) ; 140: 102336, 2023 05.
Article in English | MEDLINE | ID: mdl-36963294

ABSTRACT

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB) has become a big threaten to global health. The current strategy for treatment of MDR-TB and extensive drug resistant tuberculosis (XDR-TB) is with low efficacy and high side effect. While new drug is fundamental for cure MDR-TB, repurposing the Food and Drug Administration (FDA)-approved drugs represents an alternative soluation with less cost. METHODS: The activity of 8 tetracycline-class antibiotics against mycobacterium tuberculosis (M.tb) were determined by Minimum Inhibitory Concentration (MIC) in vitro. A transposon M.smeg libraries was generated by using the Harm phage and then used to isolate the conditional growth mutants in doxycycline containing plate. Eleven mutants were isolated and genomic DNAs were extracted using the cetyltrimethyl ammonium bromide (CTAB) method and analyzed by whole genome sequencing. RESULTS: We found that three of eight drugs efficiently inhibited mycobacteria growth under the peak plasma concentration in the human body. Further tests showed these three tetracycline analogs (demeclocycline, doxycycline and methacycline) had antimicrobial activity against seven clinical isolates, including MDR and XDR strains. Among them, Doxycycline had the lowest MICs in all mycobacteria strains tested in this study. By using a transposon library, we identify the insertion of transposon in two genes, porin and MshA, associatewith the resistant to doxycycline. CONCLUSIONS: Our findings show that tetracycline analogs such as doxycycline, has bactericidal activity against not only drug sensitive M.tb, but also clinical MDR and XDR strains, provided proof of concept to repurpose doxycycline to fight MDR-TB and XDR-TB. Further investigations are warranted to clarify the underlying mechanism and optimize the strategy in combination with other anti-TB drugs.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/microbiology , Doxycycline/pharmacology , Doxycycline/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tetracycline/pharmacology , Tetracycline/therapeutic use , Drug Resistance , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
15.
Clin Lab ; 69(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36649505

ABSTRACT

BACKGROUND: The emergence of multidrug resistance and extensively drug-resistant tuberculosis is a serious public health crisis. Using rapid and inexpensive molecular methods such as HRM assay in the detection of second-line drugs resistance in M. tuberculosis would be helpful in the treatment and control of XDR tuberculosis cases. METHODS: MDR-TB isolates were collected from Iranian tuberculosis laboratories. Drug susceptibility test performed via the indirect proportion method utilizing LJ Medium. Susceptibility to ciprofloxacin, ofloxacin, amikacin, kanamycin, and capreomycin, as second-line anti-tuberculosis agents were assessed. Single point mutations in gyrA, rrs and eis genes were detected via HRM assay and DNA sequencing. RESULTS: A DST test was performed for 56 MDR isolates and at least 27 (48.2%) isolates were resistant to CIP or OFL. Also, 14 (25%), 12 (21.4%), and 15 (26.7%) isolates were resistant to capreomycin, amikacin, and kanamycin, respectively. D94G, A90V, and G88C mutations were the most frequent mutations in gyrA gene. Also, A1401G mutation was detected more than the other mutations in rrs gene. CONCLUSIONS: The frequency of CIP/OFL and AMK/CAP/KAN-resistant TB is considerable among Iranian tuberculosis cases. HRM assay is a rapid and inexpensive test and can detect important mutation-based drug resistance in MDR-TB and XDR-TB isolates.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Amikacin/pharmacology , Capreomycin/pharmacology , Capreomycin/therapeutic use , Iran , Drug Resistance, Multiple, Bacterial/genetics , Antitubercular Agents/pharmacology , Kanamycin/pharmacology , Kanamycin/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Mutation , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
16.
Clin Microbiol Infect ; 29(1): 77-84, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35961488

ABSTRACT

OBJECTIVES: To evaluate the access to comprehensive diagnostics and novel antituberculosis medicines in European countries. METHODS: We investigated the access to genotypic and phenotypic Mycobacterium tuberculosis drug susceptibility testing and the availability of antituberculosis drugs and calculated the cost of drugs and treatment regimens at major tuberculosis treatment centres in countries of the WHO European region where rates of drug-resistant tuberculosis are the highest among all WHO regions. Results were stratified by middle-income and high-income countries. RESULTS: Overall, 43 treatment centres from 43 countries participated in the study. For WHO group A drugs, the frequency of countries with the availability of phenotypic drug susceptibility testing was as follows: (a) 75% (30/40) for levofloxacin, (b) 82% (33/40) for moxifloxacin, (c) 48% (19/40) for bedaquiline, and (d) 72% (29/40) for linezolid. Overall, of the 43 countries, 36 (84%) and 24 (56%) countries had access to bedaquiline and delamanid, respectively, whereas only 6 (14%) countries had access to rifapentine. The treatment of patients with extensively drug-resistant tuberculosis with a regimen including a carbapenem was available only in 17 (40%) of the 43 countries. The median cost of regimens for drug-susceptible tuberculosis, multidrug-resistant/rifampicin-resistant tuberculosis (shorter regimen, including bedaquiline for 6 months), and extensively drug-resistant tuberculosis (including bedaquiline, delamanid, and a carbapenem) were €44 (minimum-maximum, €15-152), €764 (minimum-maximum, €542-15152), and €8709 (minimum-maximum, €7965-11759) in middle-income countries (n = 12) and €280 (minimum-maximum, €78-1084), €29765 (minimum-maximum, €11116-40584), and €217591 (minimum-maximum, €82827-320146) in high-income countries (n = 29), respectively. DISCUSSION: In countries of the WHO European region, there is a widespread lack of drug susceptibility testing capacity to new and repurposed antituberculosis drugs, lack of access to essential medications in several countries, and a high cost for the treatment of drug-resistant tuberculosis.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Extensively Drug-Resistant Tuberculosis/microbiology , Microbial Sensitivity Tests , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Europe
17.
Int J Mycobacteriol ; 11(4): 343-348, 2022.
Article in English | MEDLINE | ID: mdl-36510916

ABSTRACT

Mycobacterium tuberculosis is the leading cause of mortality worldwide due to a single bacterial pathogen. Of concern is the negative impact that the COVID-19 pandemic has had on the control of tuberculosis (TB) including drug-resistant forms of the disease. Antimicrobial resistance increases the likelihood of worsened outcomes in TB patients including treatment failure and death. Multidrug-resistant (MDR) strains, resistant to first-line drugs isoniazid and rifampin, and extensively drug-resistant (XDR) strains with further resistance to second-line drugs (SLD), threaten control programs designed to lower TB incidence and end the disease as a public health challenge by 2030, in accordance with UN Sustainable Development Goals. Tackling TB requires an understanding of the pathways through which drug resistance emerges. Here, the roles of acquired resistance mutation, and primary transmission, are examined with regard to XDR-TB. It is apparent that XDR-TB can emerge from MDR-TB through a small number of additional resistance mutations that occur in patients undergoing drug treatment. Rapid detection of resistance, to first-line drugs and SLD, at the initiation of and during treatment, and prompt adjustment of regimens are required to ensure treatment success in these patients. Primary transmission is predicted to make an increasing contribution to the XDR-TB caseload in the future. Much work is required to improve the implementation of the World Health Organization-recommended infection control practices and block onward transmission of XDR-TB patients to contacts including health-care workers. Finally, limiting background resistance to fluoroquinolones in pre-XDR strains of M. tuberculosis will necessitate better antimicrobial stewardship in the broader use of this drug class.


Subject(s)
COVID-19 , Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Pandemics , COVID-19/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Drug Resistance, Microbial , Drug Resistance, Multiple, Bacterial
18.
J Glob Antimicrob Resist ; 31: 328-336, 2022 12.
Article in English | MEDLINE | ID: mdl-36210030

ABSTRACT

OBJECTIVES: This study investigated the prevalence and significant clinical outcomes of pre-extensively drug-resistant plus additional drug-resistant tuberculosis (pre-XDR-plus) in Henan Provincial Chest Hospital between 2017 and 2021. METHODS: We analysed and summarized the drug sensitivity test (DST) results of clinical Mycobacterium tuberculosis (MTB) strains in TB patients seeking care in the Tuberculosis Clinical Medical Research Centre of Henan Province between 2017 and 2021. Medical records of pre-extensively drug-resistant plus additional drug-resistant TB patients were statistically analysed, including demographic characteristics, regimens, and outcomes. RESULTS: Of the 3689 Mycobacterium tuberculosis strains, 639 (17.32%), 353 (9.56%), and 109 (2.95%), multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (pre-XDR), and pre-XDR-plus, respectively. The proportion of MDR decreased from 19.1% in 2017 to 17.5% in 2021 (χ2 = 0.686, P = 0.407), the proportion of pre-XDR from 11.4% in 2017 to 9.0% in 2021 (χ2 = 2.39, P = 0.122), and pre-XDR-plus from 4.7% in 2017 to 1.8% in 2020, with the declining trend was significant (χ2 = 9.348, P = 0.002). The most commonly used anti-TB drugs were pyrazinamide (PZA, 37/46, 80.43%) and cycloserine (CS, 32/46, 69.57%), followed by linezolid (LZD, 25/46, 54.35%), protionamide (TH, 25/46, 54.35%), and para-aminosalicylic acid (PAS, 23/46, 50.00%). Patients receiving the LZD regimen were 5 times more likely to have a favourable outcome than those not receiving LZD (OR = 6.421, 95% CI 2.101-19.625, P = 0.001). Patients receiving a regimen containing CS were 4 times more likely to have a favourable outcome compared to those not taking CS (OR = 5.444, 95% CI 1.650-17.926, P = 0.005). CONCLUSIONS: Our data suggest that the population of pre-XDR-plus had significantly decreased over the past five years in the Henan Provincial Chest Hospital. The COVID-19 and flood disaster affect TB patients' selection of medical services. In addition, the pre-XDR-plus patients whose regimens contain LZD or CS were more likely to have favourable outcomes.


Subject(s)
Aminosalicylic Acid , COVID-19 , Clinical Medicine , Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Prevalence , Microbial Sensitivity Tests , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Treatment Outcome
19.
BMC Microbiol ; 22(1): 236, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192704

ABSTRACT

BACKGROUND: The emergence of multidrug-resistant tuberculosis (MDR-TB) has complicated the situation due to the decline in potency of second-line anti-tubercular drugs. This limits the treatment option for extensively drug-resistant tuberculosis (XDR-TB). The aim of this study was to determine and compare the minimum inhibitory concentration (MIC) by agar dilution and resazurin microtiter assay (REMA) along with the detection of mutations against linezolid and clofazimine in confirmed XDR-TB clinical isolates. RESULTS: A total of 169 isolates were found positive for Mycobacterium tuberculosis complex (MTBC). The MIC was determined by agar dilution and REMA methods. The isolates which showed non-susceptibility were further subjected to mutation detection by targeting rplC gene (linezolid) and Rv0678 gene (clofazimine). The MIC for linezolid ranged from 0.125 µg/ml to > 2 µg/ml and for clofazimine from 0.25 µg/ml to > 4 µg/ml. The MIC50 and MIC90 for linezolid were 0.5 µg/ml and 1 µg/ml respectively while for clofazimine both were 1 µg/ml. The essential and categorical agreement for linezolid was 97.63% and 95.26% and for clofazimine, both were 100%. The sequencing result of the rplC gene revealed a point mutation at position 460 bp, where thymine (T) was substituted for cytosine (C) while seven mutations were noted between 46 to 220 bp in Rv0678 gene. CONCLUSION: REMA method has been found to be more suitable in comparison to the agar dilution method due to lesser turnaround time. Mutations in rplC and Rv0678 genes were reasons for drug resistance against linezolid and clofazimine respectively.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Agar , Antitubercular Agents/pharmacology , Clofazimine/pharmacology , Clofazimine/therapeutic use , Cytosine/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Microbial Sensitivity Tests , Mutation , Thymine/therapeutic use , Tuberculosis, Multidrug-Resistant/microbiology
20.
Trop Med Int Health ; 27(10): 891-901, 2022 10.
Article in English | MEDLINE | ID: mdl-36089572

ABSTRACT

OBJECTIVE: To determine the levels and patterns of resistance to first- and second-line anti-tuberculosis (TB) drugs among new and previously treated sputum smear positive pulmonary TB (PTB) patients. METHODS: We conducted a nationally representative cross-sectional facility-based survey in June 2017-July 2018 involving 45 clusters selected based on probability proportional to size. The survey aimed to determine the prevalence of anti-TB drug resistance and associated risk factors among smear positive PTB patients in Tanzania. Sputum samples were examined using smear microscopy, Xpert MTB/RIF, culture and drug susceptibility testing (DST). Logistic regression was used to account for missing data and sampling design effects on the estimates and their standard errors. RESULTS: We enrolled 1557 TB patients, including 1408 (90.4%) newly diagnosed and 149 (9.6%) previously treated patients. The prevalence of multidrug-resistant TB (MDR-TB) was 0.85% [95% confidence interval (CI): 0.4-1.3] among new cases and 4.6% (95% CI: 1.1-8.2) among previously treated cases. The prevalence of Mycobacterium tuberculosis strains resistant to any of the four first-line anti-TB drugs (isoniazid, rifampicin, streptomycin and ethambutol) was 1.7% among new TB patients and 6.5% among those previously treated. Drug resistance to all first-line drugs was similar (0.1%) in new and previously treated patients. None of the isolates displayed poly-resistance or extensively drug-resistant TB (XDR-TB). The only risk factor for MDR-TB was history of previous TB treatment (odds ratio = 5.7, 95% CI: 1.9-17.2). CONCLUSION: The burden of MDR-TB in the country was relatively low with no evidence of XDR-TB. Given the overall small number of MDR-TB cases in this survey, it will be beneficial focusing efforts on intensified case detection including universal DST.


Subject(s)
Extensively Drug-Resistant Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Cross-Sectional Studies , Ethambutol , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , Isoniazid/therapeutic use , Microbial Sensitivity Tests , Rifampin/therapeutic use , Streptomycin/therapeutic use , Tanzania/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL