Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.218
1.
Iran J Allergy Asthma Immunol ; 23(2): 211-219, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38822515

Asthma is a chronic respiratory disease that is characterized by airway inflammation, excessive mucus production, and airway remodeling. Prevention and treatment for asthma is an urgent issue in clinical studies. In recent years, N6-methyladenosine methylation (m6A) has emerged as a promising regulatory approach involved in multiple diseases. ALKBH5 (alkB homolog 5) is a demethylase widely studied in disease pathologies. This work aimed to explore the regulatory mechanisms underlying the ALKBH5-regulated asthma. We established an interleukin-13 (IL-13)-stimulated cell model to mimic the in vitro inflammatory environment of asthma. ALKBH5 knockdown in bronchial epithelial cells was performed using siRNAs, and the knockdown efficacy was analyzed by quantitative PCR (qPCR). Cell viability and proliferation were measured by cell counting kit 8 (CCK-8) and colony formation assay. The ferroptosis was assessed by measuring the total iron, Fe2+, lipid reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) levels. The enrichment of N6-methyladenosine methylation (m6A) modification was detected by the MeRIP assay. Knockdown of ALKBH5 significantly elevated the survival and colony formation ability of bronchial epithelial cells in the IL-13 induction model. The levels of total iron, Fe2+, lipid ROS, and MDA were remarkedly elevated, and the SOD level was reduced in IL-13-induced bronchial epithelial cells, and depletion of ALKBH5 reversed these effects. Knockdown of ALKBH5 elevated the enrichment of m6A modification and expression of glutathione peroxidase 4 (GPX4). Knockdown of GPX4 abolished the pro-proliferation and anti-ferroptosis effects of siALKBH5. Knockdown of ALKBH5 improved the proliferation of bronchial epithelial cells and alleviated cell ferroptosis.


Adenosine , AlkB Homolog 5, RNA Demethylase , Asthma , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Asthma/genetics , Asthma/metabolism , Asthma/pathology , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Proliferation/genetics , Methylation , Disease Progression , Cell Line , Ferroptosis/genetics , Epithelial Cells/metabolism , Down-Regulation , Bronchi/pathology , Bronchi/metabolism , Gene Knockdown Techniques , Cell Survival/genetics
2.
Int J Oral Sci ; 16(1): 43, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802345

Ferroptosis is implicated in the pathogenesis of numerous chronic-inflammatory diseases, yet its association with progressive periodontitis remains unexplored. To investigate the involvement and significance of ferroptosis in periodontitis progression, we assessed sixteen periodontitis-diagnosed patients. Disease progression was clinically monitored over twelve weeks via weekly clinical evaluations and gingival crevicular fluid (GCF) collection was performed for further analyses. Clinical metrics, proteomic data, in silico methods, and bioinformatics tools were combined to identify protein profiles linked to periodontitis progression and to explore their potential connection with ferroptosis. Subsequent western blot analyses validated key findings. Finally, a single-cell RNA sequencing (scRNA-seq) dataset (GSE164241) for gingival tissues was analyzed to elucidate cellular dynamics during periodontitis progression. Periodontitis progression was identified as occurring at a faster rate than traditionally thought. GCF samples from progressing and non-progressing periodontal sites showed quantitative and qualitatively distinct proteomic profiles. In addition, specific biological processes and molecular functions during progressive periodontitis were revealed and a set of hub proteins, including SNCA, CA1, HBB, SLC4A1, and ANK1 was strongly associated with the clinical progression status of periodontitis. Moreover, we found specific proteins - drivers or suppressors - associated with ferroptosis (SNCA, FTH1, HSPB1, CD44, and GCLC), revealing the co-occurrence of this specific type of regulated cell death during the clinical progression of periodontitis. Additionally, the integration of quantitative proteomic data with scRNA-seq analysis suggested the susceptibility of fibroblasts to ferroptosis. Our analyses reveal proteins and processes linked to ferroptosis for the first time in periodontal patients, which offer new insights into the molecular mechanisms of progressive periodontal disease. These findings may lead to novel diagnostic and therapeutic strategies.


Disease Progression , Ferroptosis , Gingival Crevicular Fluid , Periodontitis , Humans , Gingival Crevicular Fluid/chemistry , Periodontitis/metabolism , Periodontitis/pathology , Female , Male , Proteomics , Cell Death , Adult , Middle Aged , Blotting, Western
3.
Sci Rep ; 14(1): 12427, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816543

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Caffeic Acids , Cerebral Hemorrhage , Ferroptosis , Lactates , Neuroprotective Agents , Animals , Ferroptosis/drug effects , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Rats , Lactates/pharmacology , Lactates/chemistry , Lactates/therapeutic use , Male , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Disease Models, Animal , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
4.
Anticancer Res ; 44(6): 2533-2544, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821596

BACKGROUND/AIM: Chemotherapy is mainly used in the clinical treatment of prostate cancer. Different anticancer mechanisms can induce cell death in various cancers. Reactive oxygen species (ROS) play crucial roles in cell proliferation, differentiation, apoptosis, and signal transduction. It is widely accepted that ROS accumulation is closely related to chemical drug-induced cancer cell death. MATERIALS AND METHODS: We utilized the MTT assay to detect changes in cell proliferation. Additionally, colony formation and wound healing assay were conducted to investigate the effect of hispidin on cell colony formation and migration ability. Fluorescence microscopy was used to detect intracellular and mitochondrial ROS levels, while western blot was used for detection of cell apoptosis. RESULTS: Hispidin treatment significantly decreased viability of PC3 and DU145 cancer cells but exhibited no cytotoxicity in WPMY-1 cells. Furthermore, hispidin treatment inhibited cell migration and colony formation and triggered cellular and mitochondrial ROS accumulation, leading to mitochondrial dysfunction and mitochondrion-dependent apoptosis. Moreover, hispidin treatment induced ferroptosis in PC3 cells. Scavenging of ROS with N-acetyl cysteine significantly inhibited hispidin-induced apoptosis by altering the expression of apoptosis-related proteins, such as cleaved caspase-3, 9, Bax, and Bcl2. Furthermore, hispidin treatment dramatically up-regulated MAPK (involving p38, ERK, and JNK proteins) and NF-kB signaling pathways while down-regulating AKT phosphorylation. Hispidin treatment also inhibited ferroptosis signaling pathways (involving P53, Nrf-2, and HO-1 proteins) in PC3 cells. In addition, inhibiting these signaling pathways via treatment with specific inhibitors significantly reversed hispidin-induced apoptosis, cellular ROS levels, mitochondrial dysfunction, and ferroptosis. CONCLUSION: Hispidin may represent a potential candidate for treating prostate cancer.


Apoptosis , Ferroptosis , Prostatic Neoplasms , Reactive Oxygen Species , Humans , Male , Ferroptosis/drug effects , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Cell Movement/drug effects , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Pyridones/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Pyrones
5.
Int J Med Sci ; 21(7): 1257-1264, 2024.
Article En | MEDLINE | ID: mdl-38818460

Background: Ferroptosis is an iron-driven cell-death mechanism that plays a central role in various diseases. Recent studies have suggested that baicalein inhibits ferroptosis, making it a promising therapeutic candidate. Materials and Methods: Fibroblast cultures were treated with different agents to determine the effects of baicalein on ferroptosis. Ferroptosis-related gene expression, lipid peroxidation, and post-treatment cellular structural changes were measured using real-time quantitative polymerase chain reaction, C11-BODIPY dye, and transmission electron microscopy, respectively. Results: Baicalein significantly inhibited rat sarcoma virus selective lethal 3-induced ferroptosis in fibroblasts. Moreover, in baicalein-treated groups, reduced ferroptosis-related gene expression, decreased lipid peroxidation, and maintained cell structure was observed when compared with those of the controls. Discussion: The ability of baicalein to counteract RSL3-induced ferroptosis underscores its potential protective effects, especially in diseases characterized by oxidative stress and iron overload in fibroblasts. Conclusion: Baicalein may serve as a potent therapeutic agent against conditions in which ferroptosis is harmful. The compound's efficacy in halting RSL3-triggered ferroptosis in fibroblasts paves the way for further in vivo experiments and clinical trials.


Ferroptosis , Fibroblasts , Flavanones , Lipid Peroxidation , Ferroptosis/drug effects , Flavanones/pharmacology , Flavanones/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Lipid Peroxidation/drug effects , Humans , Animals , Oxidative Stress/drug effects , Rats , Iron/metabolism , Carbolines
6.
Sci Total Environ ; 934: 173118, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38750757

The brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is a ubiquitous environmental pollutant that causes neurotoxicity. However, incomplete understanding of the underlying mechanisms has hampered the development of effective intervention strategies. Oxidative stress and related cell death are the modes of action for PBDE-47 neurotoxicity, which are also the characteristics of ferroptosis. Nonetheless, the role of ferroptosis in PBDE-47-induced neurotoxicity remains unclear. In the present study, we found that PBDE-47 triggered ferroptosis in neuron-like PC12 cells, as evidenced by intracellular iron overload, lipid peroxidation, and mitochondrial damage. This was confirmed by ferroptosis inhibitors including the lipid reactive oxygen species scavenger ferrostatin-1 and iron chelator deferoxamine mesylate. Mechanistically, PBDE-47 impaired ferritinophagy by disrupting nuclear receptor coactivator 4-mediated lysosomal degradation of the iron storage protein ferritin. Moreover, PBDE-47 disturbed iron metabolism by increasing cellular iron import via upregulation of transferrin receptor 1 and decreasing cellular iron export via downregulation of ferroportin 1 (FPN1). Intriguingly, rescuing lysosomal function by overexpressing cathepsin B (CatB) mitigated PBDE-47-induced ferroptosis by partially restoring dysfunctional ferritinophagy and enhancing iron excretion via the upregulation of FPN1. However, FPN1 knockdown reversed the beneficial effects of CatB overexpression on the PBDE-47-induced iron overload. Finally, network pharmacology integrated with experimental validation revealed that Canolol, the main phenolic compound in canola oil, protected against PBDE-47-evoked iron overload, resulting in ferroptosis by restoring defective ferritinophagy and improving abnormal iron metabolism via lowering iron uptake and facilitating iron excretion. Overall, these data suggest that ferroptosis is a novel mechanism of PBDE-47-induced neuronal death and that manipulation of ferritinophagy and iron metabolism via Canolol represents a promising therapeutic strategy.


Ferroptosis , Halogenated Diphenyl Ethers , Iron , Neurons , Ferroptosis/drug effects , Halogenated Diphenyl Ethers/toxicity , Iron/metabolism , Animals , PC12 Cells , Neurons/drug effects , Neurons/metabolism , Rats , Ferritins/metabolism , Flame Retardants/toxicity , Oxidative Stress/drug effects , Environmental Pollutants/toxicity
7.
Biomed Pharmacother ; 175: 116734, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754264

Spinal cord injury (SCI) is a type of central nervous system (CNS) injury in which ferroptosis is becoming a promising target for treatment. Alpha-tocopherol (Vitamin E, Vit E) is a compound with anti-ferroptosis activity. The mechanism of alpha-tocopherol in regulating ferroptosis after SCI has not been deeply studied. In this study, rats with SCI were treated by Alpha-tocopherol based on bioinformatic analysis and molecular docking prediction. Behavioral tests and histological findings showed that Alpha-tocopherol promoted neural function recovery and tissue repairment in rats with SCI. Subsequently, regulatory effects of Alpha-tocopherol on Alox15 and ferroptosis were detected and then localized by immunofluorescence. In vitro, alpha-tocopherol improved the ROS accumulation, iron overload, lipid peroxidation and mitochondrial dysfunction. The effects of Alpha-tocopherol on the expression of Alox15, Ptgs2 and 4Hne were validated in vitro. Finally, the inhibitory effects of Alpha-tocopherol on Alox15 and ferroptosis were weakened by the mutation of 87th residue of Alox15. In summary, alpha-tocopherol could alleviate SCI-induced ferroptosis by downregulating Alox15 to promote neural function recovery in rats with SCI. Findings in this study could help further our understanding on SCI-induced ferroptosis and provide a novel insight for treating SCI.


Arachidonate 15-Lipoxygenase , Down-Regulation , Ferroptosis , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries , alpha-Tocopherol , Animals , Ferroptosis/drug effects , alpha-Tocopherol/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Recovery of Function/drug effects , Down-Regulation/drug effects , Rats , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Lipid Peroxidation/drug effects , Male , Reactive Oxygen Species/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 12-Lipoxygenase/genetics , Disease Models, Animal , Molecular Docking Simulation
8.
Biomed Pharmacother ; 175: 116697, 2024 Jun.
Article En | MEDLINE | ID: mdl-38759289

Vitamin K2 (VK2) is an effective compound for anti-ferroptosis and anti-osteoporosis, and Semen sojae praeparatum (Dandouchi in Chinese) is the main source of VK2. Chondrocyte ferroptosis and extracellular matrix (ECM) degradation playing a role in the pathogenesis of osteoarthritis (OA). Glutathione peroxidase 4 (GPX4) is the intersection of two mechanisms in regulating OA progression. But no studies have elucidated the therapeutic effects and mechanisms of VK2 on OA. This study utilized an in vivo rat OA model created via anterior cruciate ligament transection (ACLT) and an in vitro chondrocyte oxidative damage model induced by TBHP to investigate the protective effects and mechanisms of action of VK2 in OA. Knee joint pain in mice was evaluated using the Von Frey test. Micro-CT and Safranin O-Fast Green staining were employed to observe the extent of damage to the tibial cartilage and subchondral bone, while immunohistochemistry and PCR were used to examine GPX4 levels in joint cartilage. The effects of VK2 on rat chondrocyte viability were assessed using CCK-8 and flow cytometry assays, and chondrocyte morphology was observed with toluidine blue and alcian blue staining. The impact of VK2 on intracellular ferroptosis-related markers was observed using fluorescent staining and flow cytometry. Protein expression changes were detected by immunofluorescence and Western blot analysis. Furthermore, specific protein inhibitors were applied to confirm the dual-regulatory effects of VK2 on GPX4. VK2 can increase bone mass and cartilage thickness in the subchondral bone of the tibia, and reduce pain and the OARSI score induced by OA. Immunohistochemistry results indicate that VK2 exerts its anti-OA effects by regulating GPX4 to delay ECM degradation. VK2 can inhibit the activation of the MAPK/NFκB signaling pathway caused by reduced expression of intracellular GPX4, thereby decreasing ECM degradation. Additionally, VK2 can reverse the inhibitory effect of RSL3 on GPX4, increase intracellular GSH content and the GSH/GSSG ratio, reduce MDA content, and rescue chondrocyte ferroptosis. The protective mechanism of VK2 may involve its dual-target regulation of GPX4, reducing chondrocyte ferroptosis and inhibiting the MAPK/NFκB signaling pathway to decelerate the degradation of the chondrocyte extracellular matrix.


Chondrocytes , Extracellular Matrix , Ferroptosis , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Rats, Sprague-Dawley , Vitamin K 2 , Animals , Ferroptosis/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Mice , Vitamin K 2/pharmacology , Vitamin K 2/analogs & derivatives , Mice, Inbred C57BL , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Cells, Cultured
9.
Biomaterials ; 309: 122613, 2024 Sep.
Article En | MEDLINE | ID: mdl-38759485

Vascular restenosis following angioplasty continues to pose a significant challenge. The heterocyclic trioxirane compound [1, 3, 5-tris((oxiran-2-yl)methyl)-1, 3, 5-triazinane-2, 4, 6-trione (TGIC)], known for its anticancer activity, was utilized as the parent ring to conjugate with a non-steroidal anti-inflammatory drug, resulting in the creation of the spliced conjugated compound BY1. We found that BY1 induced ferroptosis in VSMCs as well as in neointima hyperplasia. Furthermore, ferroptosis inducers amplified BY1-induced cell death, while inhibitors mitigated it, indicating the contribution of ferroptosis to BY1-induced cell death. Additionally, we established that ferritin heavy chain1 (FTH1) played a pivotal role in BY1-induced ferroptosis, as evidenced by the fact that FTH1 overexpression abrogated BY1-induced ferroptosis, while FTH1 knockdown exacerbated it. Further study found that BY1 induced ferroptosis by enhancing the NCOA4-FTH1 interaction and increasing the amount of intracellular ferrous. We compared the effectiveness of various administration routes for BY1, including BY1-coated balloons, hydrogel-based BY1 delivery, and nanoparticles targeting OPN loaded with BY1 (TOP@MPDA@BY1) for targeting proliferated VSMCs, for prevention and treatment of the restenosis. Our results indicated that TOP@MPDA@BY1 was the most effective among the three administration routes, positioning BY1 as a highly promising candidate for the development of drug-eluting stents or treatments for restenosis.


Ferroptosis , Muscle, Smooth, Vascular , Nanoparticles , Ferroptosis/drug effects , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Humans , Nanoparticles/chemistry , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Male , Mice , Mice, Inbred C57BL , Oxidoreductases/metabolism , Ferritins
10.
Int J Med Sci ; 21(6): 1103-1116, 2024.
Article En | MEDLINE | ID: mdl-38774759

Background: Colorectal cancer (CRC) has a high morbidity and mortality. Ferroptosis is a phenomenon in which metabolism and cell death are closely related. The role of ferroptosis-related genes in the progression of CRC is still not clear. Therefore, we screened and validated the ferroptosis-related genes which could determine the prevalence, risk and prognosis of patients with CRC. Methods: We firstly screened differentially expressed ferroptosis-related genes by The Cancer Genome Atlas (TCGA) database. Then, these genes were used to construct a risk-score model using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The function and prognosis of the ferroptosis-related genes were confirmed using multi-omics analysis. The gene expression results were validated using publicly available databases and qPCR. We also used publicly available data and ferroptosis-related genes to construct a prognostic prediction nomogram. Results: A total of 24 differential expressed genes associated with ferroptosis were screened in this study. A three-gene risk score model was then established based on these 24 genes and GPX3, CDKN2A and SLC7A11 were selected. The significant prognostic value of this novel three-gene signature was also assessed. Furthermore, we conducted RT-qPCR analysis on cell lines and tissues, and validated the high expression of CDKN2A, GPX3 and low expression of SLC7A11 in CRC cells. The observed mRNA expression of GPX3, CDKN2A and SLC7A11 was consistent with the predicted outcomes. Besides, eight variables including selected ferroptosis related genes were included to establish the prognostic prediction nomogram for patients with CRC. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations. Also, the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Conclusions: The present study constructed and validated a novel ferroptosis-related three-gene risk score signature and a prognostic prediction nomogram for patients with CRC. Also, we screened and validated the ferroptosis-related genes GPX3, CDKN2A, and SLC7A11 which could serve as novel biomarkers for patients with CRC.


Amino Acid Transport System y+ , Biomarkers, Tumor , Colorectal Neoplasms , Ferroptosis , Gene Expression Regulation, Neoplastic , Nomograms , Humans , Ferroptosis/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Prognosis , Biomarkers, Tumor/genetics , Amino Acid Transport System y+/genetics , Male , Female , Cyclin-Dependent Kinase Inhibitor p16/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Middle Aged , Gene Expression Profiling , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Aged
11.
Cell Biochem Funct ; 42(4): e4036, 2024 Jun.
Article En | MEDLINE | ID: mdl-38778584

Ferroptosis is a novel nonapoptotic form of cell death characterized by iron-dependent reactive oxygen species-mediated lipid peroxidation. In several different cell systems, the tumor suppressor p53 can enhance sensitivity to ferroptotic inducers. At least half of all human cancers show loss of function of p53. Furthermore, many of those tumors express mutant forms of p53 that has lost its wild-type function. Several groups have designed small molecules that can reactivate the wild-type function of these missense p53 mutants. We reasoned that p53 reactivators may also enhance sensitivity of certain cancer cells to ferroptosis stimuli. To test this idea we combined a number of different p53 reactivators with small molecule inducers of ferroptosis. In contrast, we observed that several p53 reactivators protected cells from cell death induced by ferroptotic inducers. Surprisingly, this protection still occurred in p53-null cell lines. We observed that these reactivators were neither free radical scavengers nor ion chelators. One of these p53 reactivator molecules, NSC 59984, reduced expression of GPX4, which is unlikely to explain its ability to reduce sensitivity to ferroptosis. We suggest that these p53 reactivators function via an unknown, p53-independent manner to suppress ferroptosis.


Breast Neoplasms , Ferroptosis , Tumor Suppressor Protein p53 , Humans , Ferroptosis/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Lipid Peroxidation/drug effects , Mutation
12.
FASEB J ; 38(10): e23678, 2024 May 31.
Article En | MEDLINE | ID: mdl-38780199

Melatonin (MLT), a conserved small indole compound, exhibits anti-inflammatory and antioxidant properties, contributing to its cardioprotective effects. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with atherosclerosis disease risk, and is known as an atherosclerosis risk biomarker. This study aimed to investigate the impact of MLT on Lp-PLA2 expression in the atherosclerotic process and explore the underlying mechanisms involved. In vivo, ApoE-/- mice were fed a high-fat diet, with or without MLT administration, after which the plaque area and collagen content were assessed. Macrophages were pretreated with MLT combined with ox-LDL, and the levels of ferroptosis-related proteins, NRF2 activation, mitochondrial function, and oxidative stress were measured. MLT administration significantly attenuated atherosclerotic plaque progression, as evidenced by decreased plaque area and increased collagen. Compared with those in the high-fat diet (HD) group, the levels of glutathione peroxidase 4 (GPX4) and SLC7A11 (xCT, a cystine/glutamate transporter) in atherosclerotic root macrophages were significantly increased in the MLT group. In vitro, MLT activated the nuclear factor-E2-related Factor 2 (NRF2)/SLC7A11/GPX4 signaling pathway, enhancing antioxidant capacity while reducing lipid peroxidation and suppressing Lp-PLA2 expression in macrophages. Moreover, MLT reversed ox-LDL-induced ferroptosis, through the use of ferrostatin-1 (a ferroptosis inhibitor) and/or erastin (a ferroptosis activator). Furthermore, the protective effects of MLT on Lp-PLA2 expression, antioxidant capacity, lipid peroxidation, and ferroptosis were decreased in ML385 (a specific NRF2 inhibitor)-treated macrophages and in AAV-sh-NRF2 treated ApoE-/- mice. MLT suppresses Lp-PLA2 expression and atherosclerosis processes by inhibiting macrophage ferroptosis and partially activating the NRF2 pathway.


Atherosclerosis , Ferroptosis , Melatonin , NF-E2-Related Factor 2 , Animals , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Melatonin/pharmacology , Mice , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/pathology , Male , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Diet, High-Fat/adverse effects , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Lipoproteins, LDL/metabolism , Antioxidants/pharmacology
13.
Article En | MEDLINE | ID: mdl-38780272

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Epithelial Cells , Fatty Acid-Binding Proteins , Ferroptosis , Janus Kinase 2 , Kidney Tubules , Lipopolysaccharides , STAT3 Transcription Factor , Signal Transduction , Humans , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Janus Kinase 2/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Signal Transduction/drug effects , Cell Line , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/chemically induced
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 362-366, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710519

Ferroptosis is a novel form of cell death that is induced by excessive accumulation of ferrous ions and lipid peroxides. It triggers the release of damage-associated molecular patterns through autophagy-dependent mechanisms, serving as an adjunct to immunogenic cell death and activating both adaptive and innate immunity. In the tumor microenvironment, the regulation and influence of tumor cells and immune cells undergoing ferroptosis are regulated by various factors, which plays a crucial role in tumor development, treatment, and prognosis. This article provides an overview of the biological effects of ferroptosis on immune cells such as T cells, macrophages, neutrophils and B cells and tumor cells in the tumor microenvironment.


Ferroptosis , Neoplasms , Tumor Microenvironment , Ferroptosis/immunology , Humans , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment/immunology , Animals , Macrophages/immunology , Neutrophils/immunology , Autophagy/immunology , Immunity, Innate , T-Lymphocytes/immunology , B-Lymphocytes/immunology
15.
Anal Chim Acta ; 1309: 342673, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772656

BACKGROUND: Over-consumption of drugs can result in drug-induced liver damage (DILI), which can worsen liver failure. Numerous studies have shown the significant role ferroptosis plays in the pathophysiology of DILI, which is typified by a marked imbalance between the generation and breakdown of lipid reactive oxygen species (ROS). The content of peroxynitrite (ONOO-) rapidly increased during this process and was thought to be a significant marker of early liver injury. Therefore, the construction of fluorescence probe for the detection and imaging of ONOO- holds immense importance in the early diagnosis and treatment of ferroptosis-mediated DILI. RESULTS: We designed a probe DILI-ONOO based on the ICT mechanism for the purpose of measuring and visualizing ONOO- in ferroptosis-mediated DILI processes and associated studies. This probe exhibited significant fluorescence changes with good sensitivity, selectivity, and can image exogenous and endogenous ONOO- in cells with low cytotoxicity. Using this probe, we were able to show changes in ONOO- content in ferroptosis-mediated DILI cells and mice models induced by the intervention of acetaminophen (APAP) and isoniazid (INH). By measuring the concentration of ferroptosis-related indicators in mice liver tissue, we were able to validate the role of ferroptosis in DILI. It is worth mentioning that compared to existing alanine transaminase (ALT) and aspartate aminotransferase (AST) detection methods, this probe can achieve early identification of DILI prior to serious liver injury. SIGNIFICANCE: This work has significant reference value in researching the relationship between ferroptosis and DILI and visualizing research. The results indicate a strong correlation between the progression of DILI and ferroptosis. Additionally, the use of DILI-ONOO shows promise in investigating the DILI process and assessing the effectiveness of medications in treating DILI.


Acetaminophen , Chemical and Drug Induced Liver Injury , Ferroptosis , Fluorescent Dyes , Peroxynitrous Acid , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/diagnostic imaging , Ferroptosis/drug effects , Animals , Peroxynitrous Acid/metabolism , Mice , Fluorescent Dyes/chemistry , Humans , Acetaminophen/toxicity , Optical Imaging , Mice, Inbred C57BL , Male , Isoniazid/chemistry , Infrared Rays
16.
Gen Physiol Biophys ; 43(3): 243-253, 2024 May.
Article En | MEDLINE | ID: mdl-38774924

Cataract, a painless and progressive disorder is manifested as the opacification of the lens that represents the most significant cause of blindness worldwide. The objective of this study is to unveil the function of Kirsten rat sarcoma (KRAS) and potential action mechanisms against cataract. The ferroptosis-associated differentially expressed genes (DEGs) and pivot genes were extracted through the comprehensive bioinformatics methods. Erastin was applied for inducing ferroptosis in hydrogen peroxide (H2O2)-treated SRA01/04 cells, and validated by detecting content of intracellular iron, glutathione (GSH), malondialdehyde (MDA). Additionally, the effects of KRAS deficiency on ferroptosis were determined by functional assays. The proteins expression related to ferroptosis and Hippo pathway were determined by Western blotting. A total of 73 ferroptosis-related DEGs were discovered, and 6 critical core genes were confirmed upregulation in cataract cell model. The H2O2-treated SRA01/04 cells exhibited decrease of cell viability and proliferation, iron accumulation, MDA increase, GSH consumption, rise of COX2 and decline of GPX4, with further aggravated under erastin treatment, while the phenomena were improved by KRAS knockdown. Additionally, KRAS deficiency was involved in the Hippo signalling pathway activation. Downregulation of KRAS might restrain ferroptosis and affect Hippo pathway in cataract.


Cataract , Ferroptosis , Hippo Signaling Pathway , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Ferroptosis/drug effects , Cataract/metabolism , Cataract/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Line
17.
Int J Oncol ; 64(6)2024 06.
Article En | MEDLINE | ID: mdl-38757345

Hepatocellular carcinoma (HCC), one of the leading causes of cancer­related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi­tyrosine kinase inhibitors approved for first­line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non­apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.


Carcinoma, Hepatocellular , Ferroptosis , Immunotherapy , Liver Neoplasms , Necroptosis , Pyroptosis , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Pyroptosis/drug effects , Pyroptosis/immunology , Ferroptosis/drug effects , Necroptosis/immunology , Necroptosis/drug effects , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Signal Transduction/drug effects , Animals
18.
BMC Cancer ; 24(1): 604, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760742

BACKGROUND: Cancer is a leading global cause of death. Conventional cancer treatments like surgery, radiation, and chemotherapy have associated side effects. Ferroptosis, a nonapoptotic and iron-dependent cell death, has been identified and differs from other cell death types. Research has shown that ferroptosis can promote and inhibit tumor growth, which may have prognostic value. Given the unclear role of ferroptosis in cancer biology, this meta-analysis aims to investigate its impact on cancer prognosis. METHODS: This systematic review and meta-analysis conducted searches on PubMed, Embase, and the Cochrane Library databases. Eight retrospective studies were included to compare the impact of ferroptosis inhibition and promotion on cancer patient prognosis. The primary endpoints were overall survival (OS) and progression-free survival (PFS). Studies lacking clear descriptions of hazard ratios (HR) and 95% confidence intervals for OS and PFS were excluded. Random-effects meta-analysis and meta-regression were performed on the included study data to assess prognosis differences between the experimental and control groups. Meta-analysis results included HR and 95% confidence intervals. This study has been registered with PROSPERO, CRD 42023463720 on September 27, 2023. RESULTS: A total of 2,446 articles were screened, resulting in the inclusion of 5 articles with 938 eligible subjects. Eight studies were included in the meta-analysis after bias exclusion. The meta-analysis, after bias exclusion, demonstrated that promoting ferroptosis could increase cancer patients' overall survival (HR 0.31, 95% CI 0.21-0.44) and progression-free survival (HR 0.26, 95% CI 0.16-0.44) compared to ferroptosis inhibition. The results showed moderate heterogeneity, suggesting that biological activities promoting cancer cell ferroptosis are beneficial for cancer patient's prognosis. CONCLUSIONS: This systematic review and meta-analysis demonstrated that the promotion of ferroptosis yields substantial benefits for cancer prognosis. These findings underscore the untapped potential of ferroptosis as an innovative anti-tumor therapeutic strategy, capable of addressing challenges related to drug resistance, limited therapeutic efficacy, and unfavorable prognosis in cancer treatment. REGISTRATION: CRD42023463720.


Ferroptosis , Neoplasms , Humans , Ferroptosis/drug effects , Neoplasms/pathology , Neoplasms/mortality , Neoplasms/drug therapy , Prognosis , Protective Factors , Progression-Free Survival
19.
Nat Commun ; 15(1): 4244, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762605

Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.


Carcinoma, Non-Small-Cell Lung , Cysteine , Ferroptosis , Glutathione , Lung Neoplasms , Mitochondria , Humans , Cysteine/metabolism , Mitochondria/metabolism , Glutathione/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Iron-Sulfur Proteins/metabolism , Oxidation-Reduction , Mice
20.
J Med Chem ; 67(10): 8372-8382, 2024 May 23.
Article En | MEDLINE | ID: mdl-38745549

Using photodynamic therapy (PDT) to trigger nonconventional cell death pathways has provided a new scheme for highly efficient and non-side effects to drug-resistant cancer therapies. Nonetheless, the unclear targets of available photosensitizers leave the manner of PDT-induced tumor cell death relatively unpredictable. Herein, we developed a novel Ru(II)-based photosensitizer, Ru-Poma. Possessing the E3 ubiquitin ligase CRBN-targeting moiety and high singlet oxygen yield of 0.96, Ru-Poma was demonstrated to specifically photodegrade endogenous CRBN, increase lipid peroxide, downregulate GPX4 and GAPDH expression, and consequently induce ferroptosis in cisplatin-resistant cancerous cells. Furthermore, with the deep penetration of two-photon excitation, Ru-Poma achieved drug-resistant circumvention in a 3D tumor cell model. Thus, we describe the first sample of the CRBN-targeting Ru(II) complex active in PDT.


Antineoplastic Agents , Cisplatin , Drug Resistance, Neoplasm , Ferroptosis , Photochemotherapy , Photosensitizing Agents , Ruthenium , Ubiquitin-Protein Ligases , Humans , Ferroptosis/drug effects , Ubiquitin-Protein Ligases/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cisplatin/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Photons , Adaptor Proteins, Signal Transducing/metabolism
...