Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.797
Filter
1.
Mol Biol Rep ; 51(1): 970, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249121

ABSTRACT

BACKGROUND: Fibrinogen-related protein 1 (frep1) is a member of the pattern-recognizing receptor family (PRR) which generates an innate immune response after recognizing the pattern associated molecular pattern (PAMP) that occurs on the surface of microorganisms. The main objective of this study is to characterize frep1 and its in-silico analysis in Anopheles stephensi. METHODS AND RESULT: The DNA was extracted from female Anopheles stephensi. PCR was performed for complete analysis of frep1 using specific primers. The gene sequence of frep1 was identified by Sanger sequencing. The bioinformatics structure analysis approach revealed the presence of 3 exons and 4 introns in the frep1. The sequence of frep1 was submitted to NCBI GeneBank with accession number ON817187.1. Quantitative real-time PCR was performed to analyze frep1 expression. At the developmental stage, frep1 is highly expressed in the L1 stage, egg, and adult female mosquito. In addition, frep1 is highly expressed in the tissue fat body, midgut, and salivary gland. After blood-fed, an upregulation of frep1 at 48 h in the midgut, and downregulation in fat body were observed at different time intervals. CONCLUSION: The genomic data of frep1 is encoded by 12,443 bp. The frep1 has a significant role in the early metamorphosis. Its expression in fat body and midgut suggests it could be important for fat metabolism and post-blood digestion. The conserved domain could be targeted for vector control. Further study is required to elucidate its function against malaria parasites to confirm its agonist role in malaria transmission.


Subject(s)
Anopheles , Insect Proteins , Malaria , Mosquito Vectors , Anopheles/genetics , Anopheles/metabolism , Animals , Mosquito Vectors/genetics , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Malaria/parasitology , Computer Simulation , Fibrinogen/metabolism , Fibrinogen/genetics , Phylogeny , Immunity, Innate/genetics , Amino Acid Sequence
2.
Clin Appl Thromb Hemost ; 30: 10760296241271369, 2024.
Article in English | MEDLINE | ID: mdl-39150410

ABSTRACT

INTRODUCTION: Chronic thromboembolic pulmonary hypertension (CTEPH) and venous thromboembolism (VTE) are thought to share many common risk factors. Our study aimed to determine the frequencies of 5 thrombosis-related gene single nucleotide polymorphisms (SNPs) associated with VTE in patients with CTEPH (n 129) compared with a control group of healthy individuals without a history of VTE (n 2637). METHODS: The SNPs of the following genes were investigated: F5 (F V Leiden, rs6025), F2 prothrombin (rs1799963), fibrinogen gamma (FGG, rs2066865), F11 (rs2289252) and ABO (non-O, rs8176719) in both groups. RESULTS: The study found that the rs1799963 variant was more common in patients with chronic thromboembolic pulmonary hypertension (CTEPH) compared to the control group (p < .0001). The GA heterozygous variant showed a significant increase with an odds ratio (OR) of 4.480 (95% CI: 2.344-8.562) or a finding by maximum likelihood analysis (MLA) with p < .0001. Additionally, there was a notable increase in the rs8176719 variant with p < .0001 in CTEPH patients. Both the homozygous G/G variant and the heterozygous -/G variant also showed an increase, with OR of 4.2317 (95% CI: 2.45571-7.2919) and 2.4324 (95% CI: 1.46435-4.0403) respectively, or MLA (p < .0001 and p .0006). The study also revealed a higher prevalence of the heterozygous C/T variant of rs2289252 in CTEPH patients, with an OR of 1.5543 (95% CI: 1.02503-2.3568) or MLA (p .0379). CONCLUSION: The study suggests that the observed gene polymorphisms F2 (rs1799963), ABO (rs8176719), and F11 (rs2289252) may play a role as independent heritable risk factors in the development of CTEPH.


Subject(s)
Hypertension, Pulmonary , Polymorphism, Single Nucleotide , Humans , Hypertension, Pulmonary/genetics , Female , Male , Middle Aged , Pulmonary Embolism/genetics , Chronic Disease , Factor V/genetics , Aged , Adult , Venous Thromboembolism/genetics , Prothrombin/genetics , Incidence , Fibrinogen/genetics , ABO Blood-Group System/genetics , Thrombophilia/genetics
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 840-844, 2024 Aug 15.
Article in Chinese | MEDLINE | ID: mdl-39148389

ABSTRACT

OBJECTIVES: To investigate the clinical phenotypes and genotypes of children with congenital fibrinogen disorder (CFD). METHODS: A retrospective analysis was conducted on the clinical data of 16 children with CFD. Polymerase chain reaction was used to amplify all exons and flanking sequences of the FGA, FGB, and FGG genes, and sequencing was performed to analyze mutation characteristics. RESULTS: Among the 16 children, there were 9 boys (56%) and 7 girls (44%), with a median age of 4 years at the time of attending the hospital. Among these children, 9 (56%) attended the hospital due to bleeding events, and 7 (44%) were diagnosed based on preoperative examination. The children with bleeding events had a significantly lower fibrinogen activity than those without bleeding events (P<0.05). Genetic testing was conducted on 12 children and revealed a total of 12 mutations, among which there were 4 novel mutations, i.e., c.80T>C and c.1368delC in the FGA gene and c.1007T>A and C.1053C>A in the FGG gene. There were 2 cases of congenital afibrinogenemia caused by null mutations of the FGA gene, with relatively severe bleeding symptoms. There were 7 cases of congenital dysfibrinogenemia mainly caused by heterozygous missense mutations of the FGG and FGA genes, and their clinical phenotypes ranged from asymptomatic phenotype to varying degrees of bleeding. CONCLUSIONS: The clinical phenotypes of children with CFD are heterogeneous, and the severity of bleeding is associated with the level of fibrinogen activity, but there is a weak association between clinical phenotype and genotype.


Subject(s)
Afibrinogenemia , Fibrinogen , Genotype , Mutation , Phenotype , Humans , Male , Female , Afibrinogenemia/genetics , Child, Preschool , Child , Fibrinogen/genetics , Infant , Retrospective Studies , Adolescent , Hemorrhage/genetics , Hemorrhage/etiology
4.
Cardiovasc Diabetol ; 23(1): 298, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143620

ABSTRACT

BACKGROUND: Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS: This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS: We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION: This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.


Subject(s)
Adipose Tissue, Brown , Cold Temperature , Disease Models, Animal , Energy Metabolism , Gene Regulatory Networks , Liver , Mice, Knockout , Proteomics , Receptors, LDL , Signal Transduction , Animals , Adipose Tissue, Brown/metabolism , Liver/metabolism , Energy Metabolism/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Receptors, LDL/deficiency , Male , Fibrinogen/metabolism , Fibrinogen/genetics , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , Fibronectins/metabolism , Fibronectins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Mice , Gene Expression Regulation , Protein Interaction Maps
6.
Thromb Res ; 242: 109134, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39216273

ABSTRACT

The plasma protein fibrinogen is encoded by 3 structural genes (FGA, FGB, and FGG) that are transcribed to mRNA, spliced, and translated to 3 polypeptide chains (Aα, Bß, and γ, respectively). These chains are targeted for secretion, decorated with post-translational modifications, and assembled into a hexameric "dimer of trimers" (AαBßγ)2. Fully assembled fibrinogen is secreted into the blood as a 340 kDa glycoprotein. Fibrinogen is one of the most prevalent coagulation proteins in blood, and its expression is induced by inflammatory cytokines, wherein circulating fibrinogen levels may increase up to 3-fold during acute inflammatory events. Abnormal levels of circulating fibrinogen are associated with bleeding and thrombotic disorders, as well as several inflammatory diseases. Notably, therapeutic strategies to modulate fibrinogen levels have shown promise in experimental models of disease. Herein, we review pathways mediating fibrinogen synthesis, from gene expression to secretion. Knowledge of these mechanisms may lead to the identification of biomarkers and new therapeutic targets to modulate fibrinogen in health and disease.


Subject(s)
Fibrinogen , Fibrinogen/metabolism , Fibrinogen/genetics , Humans , Animals
7.
J Exp Clin Cancer Res ; 43(1): 213, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085849

ABSTRACT

Non-small cell lung cancer (NSCLC) is characterized by a high incidence rate and poor prognosis worldwide. A deeper insight into the pathogenesis of NSCLC and identification of novel therapeutic targets are essential to improve the prognosis of NSCLC. In this study, we revealed that fibrinogen-like protein 1 (FGL1) promotes proliferation, migration, and invasion of NSCLC cells. Mechanistically, we found that Stat3 acts as a transcription factor and can be recruited to the FGL1 promoter, enhancing FGL1 promoter activity. Lysine-specific demethylase 4A (KDM4A) interacts with Stat3 and facilitates the removal of methyl groups from H3K9me3, thereby enhancing Stat3-mediated transcription of FGL1. Furthermore, we observed that Stat3 and KDM4A promote NSCLC cell proliferation, migration, and invasion partly by upregulating FGL1 expression. Additionally, the expression of FGL1 was significantly higher in cancer tissues (n = 90) than in adjacent non-cancerous tissues (n = 90). Furthermore, patients with high FGL1 expression had a shorter overall survival (OS) compared to those with low FGL1 expression. We measured the expression levels of FGL1 on circulating tumor cells (CTCs) in 65 patients and found that patients with a dynamic decrease in FGL1 expression on CTCs exhibited a better therapeutic response. These findings suggest that the dynamic changes in FGL1 expression can serve as a potential biomarker for predicting treatment efficacy in NSCLC. Overall, this study revealed the significant role and regulatory mechanisms of FGL1 in the development of NSCLC, suggesting its potential as a therapeutic target for patients with NSCLC. Future studies should provide more personalized and effective treatment options for patients with NSCLC to improve clinical outcomes.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Disease Progression , Jumonji Domain-Containing Histone Demethylases , Lung Neoplasms , STAT3 Transcription Factor , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Fibrinogen/metabolism , Fibrinogen/genetics , Gene Expression Regulation, Neoplastic , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neoplasm Metastasis , Prognosis , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
8.
Int J Med Sci ; 21(8): 1447-1460, 2024.
Article in English | MEDLINE | ID: mdl-38903931

ABSTRACT

Background: Metastasis and immunosuppression result in unfavorable prognosis in bladder cancer (BLCA). FGL1 and FGL2 are two members of the fibrinogen-related proteins family, but their potential effects on BLCA remain elusive. Methods: The expression profile of FGL1 and FGL2 in BLCA was analyzed in multiple databases. Furthermore, the expression of FGL2 was validated in BLCA tissues. The predictive capability of FGL2 was evaluated by Kaplan-Meier analysis, univariate analysis, and multivariate Cox regression. A nomogram model was constructed based on FGL2 expression and clinicopathological parameters for clinical practice. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analyses (GSEA) were performed to investigate enrichment in the biological processes. In addition, the correlation between FGL2 and immunological characteristics in the BLCA tumor microenvironment (TME), including tumor-infiltrating immune cells (TICs), cancer-immunity cycles, immune checkpoint molecules (ICPs), immunophenoscores (IPS), and response to anti-PD-L1 immunotherapy was further analyzed. Results: FGL2 was found to be downregulated in BLCA due to hypermethylation of the FGL2 promoter region, which was associated with an unfavorable prognosis. Moreover, BLCA patients with high FGL2 expression exhibited better response to immunotherapy. Conclusions: Our research revealed that FGL2 was downregulated in BLCA and was negatively correlated with DNA methylation. High FGL2 expression was confirmed as an independent risk for prognosis. Moreover, FGL2 is a promising indicator for the response to immunotherapy in patients with BLCA.


Subject(s)
Biomarkers, Tumor , Fibrinogen , Gene Expression Regulation, Neoplastic , Immunotherapy , Tumor Microenvironment , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/mortality , Biomarkers, Tumor/genetics , Prognosis , Immunotherapy/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Fibrinogen/genetics , Fibrinogen/metabolism , Male , Female , Nomograms , DNA Methylation/genetics , Middle Aged , Aged , Kaplan-Meier Estimate
9.
BMC Microbiol ; 24(1): 221, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909237

ABSTRACT

BACKGROUND: Group B Streptococcus (GBS) is a commensal of healthy adults and an important pathogen in newborns, the elderly and immunocompromised individuals. GBS displays several virulence factors that promote colonisation and host infection, including the ST-17 strain-specific adhesin Srr2, previously characterised for its binding to fibrinogen. Another common target for bacterial adhesins and for host colonization is fibronectin, a multi-domain glycoprotein found ubiquitously in body fluids, in the extracellular matrix and on the surface of cells. RESULTS: In this study, fibronectin was identified as a novel ligand for the Srr2 adhesin of GBS. A derivative of the ST-17 strain BM110 overexpressing the srr2 gene showed an increased ability to bind fibrinogen and fibronectin, compared to the isogenic wild-type strain. Conversely, the deletion of srr2 impaired bacterial adhesion to both ligands. ELISA assays and surface plasmon resonance studies using the recombinant binding region (BR) form of Srr2 confirmed a direct interaction with fibronectin with an estimated Kd of 92 nM. Srr2-BR variants defective in fibrinogen binding also exhibited no interaction with fibronectin, suggesting that Srr2 binds this ligand through the dock-lock-latch mechanism, previously described for fibrinogen binding. The fibronectin site responsible for recombinant Srr2-BR binding was identified and localised in the central cell-binding domain of the protein. Finally, in the presence of fibronectin, the ability of a Δsrr2 mutant to adhere to human cervico-vaginal epithelial cells was significantly lower than that of the wild-type strain. CONCLUSION: By combining genetic and biochemical approaches, we demonstrate a new role for Srr2, namely interacting with fibronectin. We characterised the molecular mechanism of this interaction and demonstrated that it plays a role in promoting the adhesion of GBS to human cervico-vaginal epithelial cells, further substantiating the role of Srr2 as a factor responsible for the hypervirulence of GBS ST-17 strains. The discovery of the previously undescribed interaction between Srr2 and fibronectin establishes this adhesin as a key factor for GBS colonisation of host tissues.


Subject(s)
Adhesins, Bacterial , Bacterial Adhesion , Fibronectins , Protein Binding , Streptococcus agalactiae , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity , Fibronectins/metabolism , Humans , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Fibrinogen/metabolism , Fibrinogen/genetics , Epithelial Cells/microbiology , Female , Streptococcal Infections/microbiology , Virulence Factors/metabolism , Virulence Factors/genetics
10.
Neurobiol Aging ; 140: 93-101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761538

ABSTRACT

Platelet activation of protease-activated receptor 4 (PAR4) and thrombin are at the top of a chain of events leading to fibrin deposition, microinfarcts, blood-brain barrier disruption, and inflammation. We evaluated mRNA expression of the PAR4 gene F2RL3 in human brain and global cognitive performance in participants with and without cognitive impairment or dementia. Data were acquired from the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). F2RL3 mRNA was elevated in AD cases and was associated with worse retrospective longitudinal cognitive performance. Moreover, F2RL3 expression interacted with clinical AD diagnosis on longitudinal cognition whereas this relationship was attenuated in individuals without cognitive impairment. Additionally, when adjusting for the effects of AD neuropathology, F2RL3 expression remained a significant predictor of cognitive decline. F2RL3 expression correlated positively with transcript levels of proinflammatory markers including TNFα, IL-1ß, NFκB, and fibrinogen α/ß/γ. Together, these results reveal that F2RL3 mRNA expression is associated with multiple AD-relevant outcomes and its encoded product, PAR4, may play a role in disease pathogenesis.


Subject(s)
Alzheimer Disease , Gene Expression , RNA, Messenger , Receptors, Thrombin , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Receptors, Thrombin/genetics , Receptors, Thrombin/metabolism , Male , Female , Aged, 80 and over , RNA, Messenger/metabolism , Gene Expression/genetics , Aged , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Brain/metabolism , Cognition , Inflammation/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Fibrinogen/genetics , Fibrinogen/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Inflammation Mediators/metabolism
11.
Biomolecules ; 14(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38672403

ABSTRACT

Vascular contribution to cognitive impairment and dementia (VCID) is a term referring to all types of cerebrovascular and cardiovascular disease-related cognitive decline, spanning many neuroinflammatory diseases including traumatic brain injury (TBI). This becomes particularly important during mild-to-moderate TBI (m-mTBI), which is characterized by short-term memory (STM) decline. Enhanced cerebrovascular permeability for proteins is typically observed during m-mTBI. We have previously shown that an increase in the blood content of fibrinogen (Fg) during m-mTBI results in enhanced cerebrovascular permeability. Primarily extravasated via a transcellular pathway, Fg can deposit into the parenchyma and exacerbate inflammatory reactions that can lead to neurodegeneration, resulting in cognitive impairment. In the current study, we investigated the effect of a chronic reduction in Fg concentration in blood on cerebrovascular permeability and the interactions of extravasated Fg with astrocytes and neurons. Cortical contusion injury (CCI) was used to generate m-mTBI in transgenic mice with a deleted Fg γ chain (Fg γ+/-), resulting in a low blood content of Fg, and in control C57BL/6J wild-type (WT) mice. Cerebrovascular permeability was tested in vivo. Interactions of Fg with astrocytes and neurons and the expression of neuronal nuclear factor-кB (NF-кB) were assessed via immunohistochemistry. The results showed that 14 days after CCI, there was less cerebrovascular permeability, lower extravascular deposition of Fg, less activation of astrocytes, less colocalization of Fg with neurons, and lower expression of neuronal pro-inflammatory NF-кB in Fg γ+/- mice compared to that found in WT mice. Combined, our data provide strong evidence that increased Fg extravasation, and its resultant extravascular deposition, triggers astrocyte activation and leads to potential interactions of Fg with neurons, resulting in the overexpression of neuronal NF-кB. These effects suggest that reduced blood levels of Fg can be beneficial in mitigating the STM reduction seen in m-mTBI.


Subject(s)
Brain Injuries, Traumatic , Fibrinogen , Mice, Inbred C57BL , Mice, Knockout , Animals , Fibrinogen/metabolism , Fibrinogen/genetics , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/genetics , Mice , Blood-Brain Barrier/metabolism , Astrocytes/metabolism , Male , Capillary Permeability , Heterozygote , Neurons/metabolism , Disease Models, Animal
15.
J Hepatol ; 81(1): 135-148, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38460791

ABSTRACT

BACKGROUND & AIMS: NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS: Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS: POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS: Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS: Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.


Subject(s)
Endothelial Cells , Fibrinogen , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Knockout , Animals , Humans , Male , Mice , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/adverse effects , Disease Models, Animal , Endothelial Cells/metabolism , Fibrinogen/metabolism , Fibrinogen/biosynthesis , Fibrinogen/genetics , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Receptors, Notch/metabolism , Receptors, Notch/physiology , Signal Transduction
16.
Hereditas ; 161(1): 9, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374144

ABSTRACT

Congenital fibrinogen disorders are a group of coagulation deficiencies caused by fibrinogen defects and are divided into four types, including afibrinogenemia, hypofibrinogenemia, dysfibrinogenemia, and hypodysfibrinogenemia. In this study, we collected a family with hypofibrinogenemia, and genetics analysis identify a novel pathogenic variants (c.668G > C, p.Arg223Thr) in the FGG gene. And electron microscope observation revealed significant changes in the ultrastructure of fibrin of the proband. Our research expands the phenotypic and genetic spectrum associated with the FGG gene, which would facilitate in genetic counselling and prenatal genetic diagnosis.


Subject(s)
Afibrinogenemia , Asian People , Fibrinogen , Humans , Afibrinogenemia/genetics , Afibrinogenemia/congenital , Afibrinogenemia/diagnosis , Asian People/genetics , China , Fibrinogen/genetics , Fibrinogen/chemistry , Mutation
17.
Hereditas ; 161(1): 4, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38233949

ABSTRACT

BACKGROUND: Fibrinogen plays pivotal roles in multiple biological processes. Genetic mutation of the fibrinogen coding genes can result in congenital fibrinogen disorders (CFDs). We identified a novel heterozygous missense mutation, FGG c.1168G > T (NCBI NM_000509.6), and conducted expression studies and functional analyses to explore the influence on fibrinogen synthesis, secretion, and polymerization. METHODS: Coagulation tests were performed on the patients to detect the fibrinogen concentration. Whole-exome sequencing (WES) and Sanger sequencing were employed to detect the novel mutation. Recombinant fibrinogen-producing Chinese hamster ovary (CHO) cell lines were built to examine the recombinant fibrinogen synthesis and secretion by western blotting and enzyme-linked immunosorbent assay (ELISA). The functional analysis of fibrinogen was performed by thrombin-catalyzed fibrin polymerization assay. In silico molecular analyses were carried out to elucidate the potential molecular mechanisms. RESULTS: The clinical manifestations, medical history, and laboratory tests indicated the diagnosis of hypodysfibrinogenemia with bleeding phenotype in two patients. The WES and Sanger sequencing revealed that they shared the same heterozygous missense mutation, FGG c.1168G > T. In the expression studies and functional analysis, the missense mutation impaired the recombinant fibrinogen's synthesis, secretion, and polymerization. Furthermore, the in silico analyses indicated novel mutation led to the hydrogen bond substitution. CONCLUSION: The study highlighted that the novel heterozygous missense mutation, FGG c.1168G > T, would change the protein secondary structure, impair the "A: a" interaction, and consequently deteriorate the fibrinogen synthesis, secretion, and polymerization.


Subject(s)
Afibrinogenemia , Fibrinogen , Mutation, Missense , Animals , Cricetinae , Humans , CHO Cells , Cricetulus , Fibrinogen/genetics , Mutation , Phenotype
18.
Blood Coagul Fibrinolysis ; 35(2): 56-61, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38251440

ABSTRACT

Rotational thromboelastometry (ROTEM) is a global hemostasis assay. The diagnosis added value of ROTEM in congenital dysfibrinogenemia remains to be established. The aim of this study was to analyze clot formation by ROTEM in a cohort of dysfibrinogenemic patients and to establish correlations with genotype, clinical features, and coagulation parameters. The study included genetically confirmed congenital dysfibrinogenemia cases (n = 63) and healthy controls ( n  = 50). EXTEM, INTEM, FIBTEM tests were used to measure ROTEM parameters, that is, clotting time (CT), clot formation time (CFT), maximal clot firmness (MCF) and amplitude 10 min after CT (A10). The ISTH bleeding assessment tool was used to determine bleeding episodes. CT (INTEM) was statistically significantly shorter in congenital dysfibrinogenemia patients compared to controls while CFT (EXTEM) was prolonged. Patients's MCF in EXTEM, INTEM, and FIBTEM were similar to controls while A10 (FIBTEM) was statistically significantly lower. Fibrinogen activity was positively correlated with fibrinogen antigen, A10 and MCF in all three assays. Bleeding phenotypes were observed in 23 (36.5%) patients. Only CFT in EXTEM and CT in INTEM were statistically different in patients with bleeding phenotype versus controls. Carriers of the FGA mutation p.Arg35His had a CT (EXTEM) slightly prolonged and a reduced A10 (FIBTEM) compared to controls. Some ROTEM parameters were able to distinguish congenital dysfibrinogenemia patients from controls, and patients with a bleeding phenotype. Prolonged CFT in EXTEM were associated with congenital dysfibrinogenemia and bleeding phenotype. Bleeding episodes in most patients were generally mild and prevalence of thrombosis was very low.


Subject(s)
Afibrinogenemia , Benzeneacetamides , Hemorrhage , Piperidones , Thrombelastography , Humans , Prospective Studies , Blood Coagulation Tests , Hemorrhage/diagnosis , Fibrinogen/genetics
19.
Blood Adv ; 8(6): 1392-1404, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38286442

ABSTRACT

ABSTRACT: Congenital fibrinogen deficiency (CFD) is a rare bleeding disorder caused by mutations in FGA, FGB, and FGG. We sought to comprehensively characterize patients with CFD using PRO-RBDD (Prospective Rare Bleeding Disorders Database). Clinical phenotypes, laboratory, and genetic features were investigated using retrospective data from the PRO-RBDD. Patients were classified from asymptomatic to grade 3 based on their bleeding severity. In addition, FGA, FGB, and FGG were sequenced to find causative variants. A total of 166 CFD cases from 16 countries were included, of whom 123 (30 afibrinogenemia, 33 hypofibrinogenemia, 55 dysfibrinogenemia, and 5 hypodysfibrinogenemia) were well characterized. Considering the previously established factor activity and antigen level thresholds, bleeding severity was correctly identified in 58% of the cases. The rates of thrombotic events among afibrinogenemic and hypofibrinogenemic patients were relatively similar (11% and 10%, respectively) and surprisingly higher than in dysfibrinogenemic cases. The rate of spontaneous abortions among 68 pregnancies was 31%, including 86% in dysfibrinogenemic women and 14% with hypofibrinogenemia. Eighty-six patients received treatment (69 on-demand and/or 17 on prophylaxis), with fibrinogen concentrates being the most frequently used product. Genetic analysis was available for 91 cases and 41 distinct variants were identified. Hotspot variants (FGG, p.Arg301Cys/His and FGA, p.Arg35Cys/His) were present in 51% of dysfibrinogenemia. Obstetric complications were commonly observed in dysfibrinogenemia. This large multicenter study provided a comprehensive insight into the clinical, laboratory, and genetic history of patients with CFDs. We conclude that bleeding severity grades were in agreement with the established factor activity threshold in nearly half of the cases with quantitative defects.


Subject(s)
Afibrinogenemia , Hemostatics , Humans , Female , Fibrinogen/genetics , Afibrinogenemia/epidemiology , Afibrinogenemia/genetics , Afibrinogenemia/complications , Prospective Studies , Retrospective Studies , Hemorrhage/genetics
20.
J Thromb Haemost ; 22(2): 379-393, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37832789

ABSTRACT

BACKGROUND: The characterization of inherited mild factor XIII deficiency is more imprecise than its rare, inherited severe forms. It is known that heterozygosity at FXIII genetic loci results in mild FXIII deficiency, characterized by circulating FXIII activity levels ranging from 20% to 60%. There exists a gap in information on 1) how genetic heterozygosity renders clinical bleeding manifestations among these individuals and 2) the reversal of unexplained bleeding upon FXIII administration in mild FXIII-deficient individuals. OBJECTIVES: To assess the prevalence and burden of mild FXIII deficiency among the apparently healthy German-Caucasian population and correlate it with genetic heterozygosity at FXIII and fibrinogen gene loci. METHODS: Peripheral blood was collected from 752 donors selected from the general population with essentially no bleeding complications to ensure asymptomatic predisposition. These were assessed for FXIII and fibrinogen activity, and FXIII and fibrinogen genes were resequenced using next-generation sequencing. For comparison, a retrospective analysis was performed on a cohort of mild inherited FXIII deficiency patients referred to us. RESULTS: The prevalence of mild FXIII deficiency was high (∼0.8%) among the screened German-Caucasian population compared with its rare-severe forms. Although no new heterozygous missense variants were found, certain combinations were relatively dominant/prevalent among the mild FXIII-deficient individuals. CONCLUSION: This extensive, population-based quasi-experimental approach revealed that the burden of heterozygosity in FXIII and fibrinogen gene loci causes the clinical manifestation of inherited mild FXIII deficiency, resulting in ''unexplained bleeding'' upon provocation.


Subject(s)
Factor XIII Deficiency , Factor XIII , Hemostatics , Humans , Factor XIII/genetics , Factor XIII Deficiency/diagnosis , Factor XIII Deficiency/genetics , Fibrinogen/genetics , Hemorrhage/diagnosis , Hemorrhage/genetics , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL