Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.425
Filter
1.
J Am Chem Soc ; 146(38): 26102-26112, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39255453

ABSTRACT

Cells contain intricate protein nanostructures, but replicating them outside of cells presents challenges. One such example is the vertical fibronectin pillars observed in embryos. Here, we demonstrate the creation of cell-free vertical fibronectin pillar mimics using nonequilibrium self-assembly. Our approach utilizes enzyme-responsive phosphopeptides that assemble into nanotubes. Enzyme action triggers shape changes in peptide assemblies, driving the vertical growth of protein nanopillars into bundles. These bundles, with peptide nanotubes serving as a template to remodel fibronectin, can then recruit collagen, which forms aggregates or bundles depending on their types. Nanopillar formation relies on enzyme-catalyzed nonequilibrium self-assembly and is governed by the concentrations of enzyme, protein, peptide, the structure of the peptide, and peptide assembly morphologies. Cryo-EM reveals unexpected nanotube thinning and packing after dephosphorylation, indicating a complex sculpting process during assembly. Our study demonstrates a cell-free method for constructing intricate, multiprotein nanostructures with directionality and composition.


Subject(s)
Peptides , Peptides/chemistry , Peptides/metabolism , Fibronectins/chemistry , Fibronectins/metabolism , Nanostructures/chemistry , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Nanotubes/chemistry
2.
Matrix Biol ; 133: 57-63, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39151809

ABSTRACT

This article recounts my journey as a scientist in the early days of extracellular matrix research through the discovery of fibronectin, the RGD sequence as a key recognition motif in fibronectin and other adhesion proteins, and isolation and cloning of integrins. I also discuss more recent work on identification of molecular "zip codes" by in vivo screening of peptide libraries expressed on phage, which led us right back to RGD and integrins. Many disease-specific zip codes have turned out to be based on altered expression of extracellular matrix molecules and integrins. Homing peptides and antibodies recognizing zip code molecules are being used in drug delivery applications, some of which have advanced into clinical trials.


Subject(s)
Extracellular Matrix , Fibronectins , Integrins , Oligopeptides , Animals , Humans , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Fibronectins/metabolism , Fibronectins/genetics , Fibronectins/chemistry , Integrins/metabolism , Integrins/genetics , Oligopeptides/metabolism , Oligopeptides/genetics , Oligopeptides/chemistry , Peptide Library
3.
Mol Pharm ; 21(9): 4664-4672, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39133897

ABSTRACT

The blood-brain barrier (BBB) poses a significant challenge for drug delivery and is linked to various neurovascular disorders. In vitro BBB models provide a tool to investigate drug permeation across the BBB and the barrier's response to external injury events. Yet, existing models lack fidelity in replicating the BBB's complexity, hindering a comprehensive understanding of its functions. This study introduces a three-dimensional (3D) model using polyethylene glycol (PEG) hydrogels modified with biomimetic peptides that represent recognition sequences of key proteins in the brain. Hydrogels were functionalized with recognition sequences for laminin (IKVAV) and fibronectin peptides (RGD) and chemically cross-linked with matrix metalloprotease-sensitive peptides (MMPs) to mimic the extracellular matrix of the BBB. Astrocytes and endothelial cells were seeded within and on the surface of the hydrogels, respectively. The barrier integrity was assessed through different tests including transendothelial electrical resistance (TEER), the permeability of sodium fluorescence (Na-F), the permeability of Evan's blue bound to albumin (EBA), and the expression of zonula occluden-1 (ZO-1) in seeded endothelial cells. Hydrogels with a combination of RGD and IKVAV peptides displayed superior performance, exhibiting significantly higher TEER values (55.33 ± 1.47 Ω·cm2) at day 5 compared to other 2D controls including HAECs-monoculture and HAECs-cocultured with NHAs seeded on well inserts and 3D controls including RGD hydrogel and RGD-IKVAV monoculture with HAECs and RGD hydrogel cocultured with HAECs and NHAs. The designed 3D system resulted in the lowest Evan's blue permeability at 120 min (0.215 ± 0.055 µg/mL) compared to controls. ZO-1 expression was significantly higher and formed a relatively larger network in the functionalized hydrogel cocultured with astrocytes and endothelial cells compared to the controls. Thus, the designed 3D model effectively recapitulates the main BBB structure and function in vitro and is expected to contribute to a deeper understanding of pathological CNS angiogenesis and the development of effective CNS medications.


Subject(s)
Astrocytes , Blood-Brain Barrier , Coculture Techniques , Endothelial Cells , Hydrogels , Peptides , Polyethylene Glycols , Blood-Brain Barrier/metabolism , Astrocytes/metabolism , Polyethylene Glycols/chemistry , Endothelial Cells/metabolism , Coculture Techniques/methods , Hydrogels/chemistry , Peptides/chemistry , Humans , Oligopeptides/chemistry , Fibronectins/chemistry , Fibronectins/metabolism , Laminin/chemistry , Animals , Biomimetics/methods , Biomimetic Materials/chemistry , Cells, Cultured
4.
Commun Biol ; 7(1): 907, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068227

ABSTRACT

Affilin proteins, artificial binding proteins based on the ubiquitin scaffold, have been generated by directed protein evolution to yield de-novo variants that bind the extra-domain B (EDB) of oncofetal fibronectin, an established marker of tumor neovasculature. The crystal structures of two EDB-specific Affilin variants reveal a striking structural plasticity of the ubiquitin scaffold, characterised by ß-strand slippage, leading to different negative register shifts of the ß5 strands. This process recruits amino acid residues from ß5 towards the N-terminus to an adjacent loop region and subsequent residues into ß5, respectively, remodeling the binding interface and leading to target specificity and affinity. Protein backbone alterations resulting from ß-strand register shifts, as seen in the ubiquitin fold, can pose additional challenges to protein engineering as structural evidence of these events is still limited and they are difficult to predict. However, they can surface under the selection pressure of directed evolution and suggest that backbone plasticity allowing ß-strand slippages can increase structural diversity, enhancing the evolutionary potential of a protein scaffold.


Subject(s)
Fibronectins , Ubiquitin , Fibronectins/metabolism , Fibronectins/chemistry , Fibronectins/genetics , Ubiquitin/metabolism , Humans , Protein Binding , Protein Conformation, beta-Strand , Models, Molecular , Crystallography, X-Ray , Protein Engineering
5.
Biomed Mater ; 19(4)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38857607

ABSTRACT

Hypothyroidism is caused by insufficient stimulation or disruption of the thyroid. However, the drawbacks of thyroid transplantation have led to the search for new treatments. Decellularization allows tissue transplants to maintain their biomimetic structures while preserving cell adhesion, proliferation, and differentiation. This study aimed to decellularize human thyroid tissues using a structure-preserving optimization strategy and present preliminary data on recellularization. Nine methods were used for physical and chemical decellularization. Quantitative and immunohistochemical analyses were performed to investigate the DNA and extracellular matrix components of the tissues. Biomechanical properties were determined by compression test, and cell viability was examined after seeding MDA-T32 papillary thyroid cancer (PTC) cells onto the decellularized tissues. Decellularized tissues exhibited a notable decrease (<50 ng mg-1DNA, except for Groups 2 and 7) compared to the native thyroid tissue. Nonetheless, collagen and glycosaminoglycans were shown to be conserved in all decellularized tissues. Laminin and fibronectin were preserved at comparatively higher levels, and Young's modulus was elevated when decellularization included SDS. It was observed that the strain value in Group 1 (1.63 ± 0.14 MPa) was significantly greater than that in the decellularized tissues between Groups 2-9, ranging from 0.13 ± 0.03-0.72 ± 0.29 MPa. Finally, viability assessment demonstrated that PTC cells within the recellularized tissue groups successfully attached to the 3D scaffolds and sustained metabolic activity throughout the incubation period. We successfully established a decellularization optimization for human thyroid tissues, which has potential applications in tissue engineering and transplantation research. Our next goal is to conduct recellularization using the methods utilized in Group 1 and transplant the primary thyroid follicular cell-seeded tissues into anin vivoanimal model, particularly due to their remarkable 3D structural preservation and cell adhesion-promoting properties.


Subject(s)
Cell Survival , Extracellular Matrix , Thyroid Gland , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Humans , Thyroid Gland/cytology , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Tissue Scaffolds/chemistry , Collagen/chemistry , Cell Adhesion , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Cell Line, Tumor , DNA , Elastic Modulus , Cell Proliferation , Thyroid Neoplasms/pathology , Decellularized Extracellular Matrix/chemistry , Laminin/chemistry , Biomechanical Phenomena , Cell Differentiation , Thyroid Cancer, Papillary/pathology , Fibronectins/chemistry , Fibronectins/metabolism
6.
Protein Eng Des Sel ; 372024 Jan 29.
Article in English | MEDLINE | ID: mdl-38836499

ABSTRACT

Protein developability is requisite for use in therapeutic, diagnostic, or industrial applications. Many developability assays are low throughput, which limits their utility to the later stages of protein discovery and evolution. Recent approaches enable experimental or computational assessment of many more variants, yet the breadth of applicability across protein families and developability metrics is uncertain. Here, three library-scale assays-on-yeast protease, split green fluorescent protein (GFP), and non-specific binding-were evaluated for their ability to predict two key developability outcomes (thermal stability and recombinant expression) for the small protein scaffolds affibody and fibronectin. The assays' predictive capabilities were assessed via both linear correlation and machine learning models trained on the library-scale assay data. The on-yeast protease assay is highly predictive of thermal stability for both scaffolds, and the split-GFP assay is informative of affibody thermal stability and expression. The library-scale data was used to map sequence-developability landscapes for affibody and fibronectin binding paratopes, which guides future design of variants and libraries.


Subject(s)
Fibronectins , Recombinant Fusion Proteins , Fibronectins/chemistry , Fibronectins/genetics , Fibronectins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Protein Engineering/methods , Peptide Library , Protein Stability , Protein Binding , Humans
7.
ACS Appl Mater Interfaces ; 16(26): 32930-32944, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888932

ABSTRACT

Protein materials are versatile tools in diverse biomedical fields. Among them, artificial secretory granules (SGs), mimicking those from the endocrine system, act as mechanically stable reservoirs for the sustained release of proteins as oligomeric functional nanoparticles. Only validated in oncology, the physicochemical properties of SGs, along with their combined drug-releasing and scaffolding abilities, make them suitable as smart topographies in regenerative medicine for the prolonged delivery of growth factors (GFs). Thus, considering the need for novel, safe, and cost-effective materials to present GFs, in this study, we aimed to biofabricate a protein platform combining both endocrine-like and extracellular matrix fibronectin-derived (ECM-FN) systems. This approach is based on the sustained delivery of a nanostructured histidine-tagged version of human fibroblast growth factor 2. The GF is presented onto polymeric surfaces, interacting with FN to spontaneously generate nanonetworks that absorb and present the GF in the solid state, to modulate mesenchymal stromal cell (MSC) behavior. The results show that SGs-based topographies trigger high rates of MSCs proliferation while preventing differentiation. While this could be useful in cell therapy manufacture demanding large numbers of unspecialized MSCs, it fully validates the hybrid platform as a convenient setup for the design of biologically active hybrid surfaces and in tissue engineering for the controlled manipulation of mammalian cell growth.


Subject(s)
Extracellular Matrix , Fibronectins , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Fibronectins/chemistry , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/pharmacology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Nanostructures/chemistry
8.
Biophys J ; 123(16): 2443-2454, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38872310

ABSTRACT

Cells intricately sense mechanical forces from their surroundings, driving biophysical and biochemical activities. This mechanosensing phenomenon occurs at the cell-matrix interface, where mechanical forces resulting from cellular motion, such as migration or matrix stretching, are exchanged through surface receptors, primarily integrins, and their corresponding matrix ligands. A pivotal player in this interaction is the α5ß1 integrin and fibronectin (FN) bond, known for its role in establishing cell adhesion sites for migration. However, upregulation of the α5ß1-FN bond is associated with uncontrolled cell metastasis. This bond operates through catch bond dynamics, wherein the bond lifetime paradoxically increases with greater force. The mechanism sustaining the characteristic catch bond dynamics of α5ß1-FN remains unclear. Leveraging molecular dynamics simulations, our approach unveils a pivot-clip mechanism. Two key binding sites on FN, namely the synergy site and the RGD (Arg-Gly-Asp) motif, act as active points for structural changes in α5ß1 integrin. Conformational adaptations at these sites are induced by a series of hydrogen bond formations and breaks at the synergy site. We disrupt these adaptations through a double mutation on FN, known to reduce cell adhesion. A whole-cell finite-element model is employed to elucidate how the synergy site may promote dynamic α5ß1-FN binding, resisting cell contraction. In summary, our study integrates molecular- and cellular-level modeling to propose that FN's synergy site reinforces cell adhesion through enhanced binding dynamics and a mechanosensitive pivot-clip mechanism. This work sheds light on the interplay between mechanical forces and cell-matrix interactions, contributing to our understanding of cellular behaviors in physiological and pathological contexts.


Subject(s)
Cell Adhesion , Fibronectins , Integrin alpha5beta1 , Mechanotransduction, Cellular , Molecular Dynamics Simulation , Integrin alpha5beta1/metabolism , Fibronectins/metabolism , Fibronectins/chemistry , Binding Sites , Humans , Protein Binding , Oligopeptides
9.
Tissue Eng Part C Methods ; 30(9): 383-401, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38756094

ABSTRACT

Synthetic hydroxyapatite (HA) is a widely studied bioceramic for bone tissue engineering (BTE) due to its similarity to the mineral component of bone. As bone mineral contains various ionic substitutions that play a crucial role in bone metabolism, the bioactivity of HA can be improved by adding small amounts of physiologically relevant ions into its crystal structure, with silicate-substituted HA (Si-HA) showing particularly promising results. Nevertheless, it remains unclear how distinct material characteristics influence the bioactivity due to the intertwined nature of surface properties. A coculture methodology was optimized and applied for in vitro quantification of the biological response. Initially, HA and Si-HA samples were produced and characterized. To compare the bioactivity of the samples, a method was developed to measure interactions in an increasingly complex environment, first including fibronectin (FN) adsorption and subsequently cell adhesion in mono and coculture using primary human osteoblasts (hOBs) and human dermal microvascular endothelial cells (HDMECs), with and without FN precoating. An experimental set-up was designed to assess to what extent different surface features of the samples contribute to the induced biological response. An 8-nm gold sputter coating was applied to eradicate the electrochemical differences and polishing and abrading was used to reduce the differences in surface topographies. Overall, 1.25 wt% Si-HA exhibited most nanoscale variations in surface potential. In terms of bioactivity, 1.25 wt% Si-HA samples induced the highest osteoblast attachment and vessel formation. Additionally, in vitro vessel formation was established on Si-HA surfaces using a hOB:HDMEC cell ratio of 70:30 and a methodology was established that enabled the assessment of the relative effect of topographical and electrochemical features induced by silicon substitution in the HA lattice on their bioactivity. It was found that the difference in the amount of protein attached to HA and 1.25 wt% Si-HA after 2 h was affected by topographical differences. Conversely, electrochemical differences induced different vessel-like structure formation in coculture with a FN precoating. Without an FN precoating, both topographical and electrochemical differences dictated the differences in angiogenic response. Overall, 1.25 wt% Si-HA surface features appear to induce the most favorable protein adsorption and cell adhesion in mono and coculture with and without FN precoating.


Subject(s)
Cell Adhesion , Durapatite , Neovascularization, Physiologic , Osteoblasts , Silicon , Surface Properties , Durapatite/chemistry , Durapatite/pharmacology , Humans , Silicon/chemistry , Silicon/pharmacology , Neovascularization, Physiologic/drug effects , Cell Adhesion/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Coculture Techniques , Endothelial Cells/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Cells, Cultured , Adsorption , Fibronectins/chemistry , Fibronectins/metabolism , Fibronectins/pharmacology , Angiogenesis
10.
Biomed Mater ; 19(4)2024 May 31.
Article in English | MEDLINE | ID: mdl-38772387

ABSTRACT

Single-cell analysis is an effective method for conducting comprehensive heterogeneity studies ranging from cell phenotype to gene expression. The ability to arrange different cells in a predetermined pattern at single-cell resolution has a wide range of applications in cell-based analysis and plays an important role in facilitating interdisciplinary research by researchers in various fields. Most existing microfluidic microwell chips is a simple and straightforward method, which typically use small-sized microwells to accommodate single cells. However, this method imposes certain limitations on cells of various sizes, and the single-cell capture efficiency is relatively low without the assistance of external forces. Moreover, the microwells limit the spatiotemporal resolution of reagent replacement, as well as cell-to-cell communication. In this study, we propose a new strategy to prepare a single-cell array on a planar microchannel based on microfluidic flip microwells chip platform with large apertures (50 µm), shallow channels (50 µm), and deep microwells (50 µm). The combination of three configuration characteristics contributes to multi-cell trapping and a single-cell array within microwells, while the subsequent chip flipping accomplishes the transfer of the single-cell array to the opposite planar microchannel for cells adherence and growth. Further assisted by protein coating of bovine serum albumin and fibronectin on different layers, the single-cell capture efficiency in microwells is achieved at 92.1% ± 1%, while ultimately 85% ± 3.4% on planar microchannel. To verify the microfluidic flip microwells chip platform, the real-time and heterogeneous study of calcium release and apoptosis behaviours of single cells is carried out. To our knowledge, this is the first time that high-efficiency single-cell acquisition has been accomplished using a circular-well chip design that combines shallow channel, large aperture and deep microwell together. The chip is effective in avoiding the shearing force of high flow rates on cells, and the large apertures better allows cells to sedimentation. Therefore, this strategy owns the advantages of easy preparation and user-friendliness, which is especially valuable for researchers from different fields.


Subject(s)
Microfluidics , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Microfluidics/methods , Cell Adhesion , Animals , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Fibronectins/chemistry , Fibronectins/metabolism , Calcium/metabolism , Calcium/chemistry , Serum Albumin, Bovine/chemistry , Cell Communication
11.
Biomater Sci ; 12(12): 3086-3099, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38716803

ABSTRACT

The interaction of foreign implants with their surrounding environment is significantly influenced by the adsorption of proteins on the biomaterial surfaces, playing a role in microbial adhesion. Therefore, understanding protein adsorption on solid surfaces and its effect on microbial adhesion is essential to assess the associated risk of infection. The aim of this study is to evaluate the effect of conditioning by fibronectin (Fn) or bovine serum albumin (BSA) protein layers of silica (SiO2) surfaces on the adhesion and detachment of two pathogenic microorganisms: Pseudomonas aeruginosa PAO1-Tn7-gfp and Candida albicans CIP 48.72. Experiments are conducted under both static and hydrodynamic conditions using a shear stress flow chamber. Through the use of very low wall shear stresses, the study brings the link between the static and dynamic conditions of microbial adhesion. The results reveal that the microbial adhesion critically depends on: (i) the presence of a protein layer conditioning the SiO2 surface, (ii) the type of protein and (iii) the protein conformation and organization in the conditioning layer. In addition, a very distinct adhesion behaviour of P. aeruginosa is observed towards the two tested proteins, Fn and BSA. This effect is reinforced by the amount of proteins adsorbed on the surface and their organization in the layer. The results are discussed in the light of atomic force microscopy analysis of the organization and conformation of proteins in the layers after adsorption on the SiO2 surface, as well as the specificity in bacterial behaviour when interacting with these protein layers. The study also demonstrates the very distinctive behaviours of the prokaryote P. aeruginosa PAO1-Tn7-gfp compared to the eukaryote C. albicans CIP 48.72. This underscores the importance of considering species-specific interactions between the protein conditioning layer and different pathogenic microorganisms, which appear crucial in designing tailored anti-adhesive surfaces.


Subject(s)
Bacterial Adhesion , Candida albicans , Fibronectins , Pseudomonas aeruginosa , Serum Albumin, Bovine , Silicon Dioxide , Surface Properties , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Fibronectins/chemistry , Fibronectins/metabolism , Silicon Dioxide/chemistry , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/physiology , Candida albicans/physiology , Candida albicans/chemistry , Adsorption , Animals , Cattle , Biocompatible Materials/chemistry
12.
ACS Appl Mater Interfaces ; 16(23): 29737-29759, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805212

ABSTRACT

Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.


Subject(s)
Extracellular Vesicles , Fibronectins , Mesenchymal Stem Cells , Mice , Animals , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , NIH 3T3 Cells , RAW 264.7 Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Fibronectins/chemistry , Fibronectins/metabolism , Surface Properties , Polylysine/chemistry , Polylysine/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , HEK293 Cells , Cell Proliferation/drug effects , Cell Adhesion/drug effects , Cell Survival/drug effects , Collagen Type I/metabolism , Collagen Type I/chemistry , Collagen Type I/genetics
13.
Carbohydr Polym ; 336: 122122, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670769

ABSTRACT

Pectin interacts with fibronectin (FN), a modular protein in the extracellular matrix. This interaction is significant as FN plays a pivotal role by binding to the receptor integrin α5ß1. However, the molecular mechanism underlying the pectin-FN interaction and its impact on integrin binding remains unknown. In this study, water-soluble pectins (WSPs) were extracted from three different pectin sources and subsequently characterized. These included Citrus WSP, which primarily comprises the homogalacturonan region, and Kaki and Yuzu WSPs, both of which are rich in rhamnogalacturonan regions. We investigated the molecular interactions between these WSPs and two FN fragments, Anastellin and RetroNectin, using surface plasmon resonance analysis. Citrus WSP exhibited a notable binding affinity to FN, with a dissociation constant (KD) of approximately 10-7 M. In contrast, Kaki and Yuzu WSPs displayed comparatively weaker or negligible binding affinities. The binding reactivity of Citrus WSP with FN was notably diminished following the enzymatic removal of its methyl-ester groups. Additionally, Citrus WSP disrupted the binding of integrin ß1 to RetroNectin without altering the affinity, despite its minimal direct binding to integrin itself. This study furthers our understanding of the intricate pectin-FN interaction and sheds light on their potential physiological relevance and impact on cellular responses.


Subject(s)
Fibronectins , Integrin beta1 , Pectins , Protein Binding , Pectins/metabolism , Pectins/chemistry , Fibronectins/metabolism , Fibronectins/chemistry , Integrin beta1/metabolism , Citrus/chemistry , Citrus/metabolism , Humans , Surface Plasmon Resonance
14.
Biomaterials ; 308: 122560, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603826

ABSTRACT

Cells assemble fibronectin, the major extracellular matrix (ECM) protein, into fibrillar matrices, which serve as 3D architectural scaffolds to provide, together with other ECM proteins tissue-specific environments. Although recent approaches enable to bioengineer 3D fibrillar fibronectin matrices in vitro, it remains elusive how fibronectin can be co-assembled with other ECM proteins into complex 3D fibrillar matrices that recapitulate tissue-specific compositions and cellular responses. Here, we introduce the engineering of fibrillar fibronectin-templated 3D matrices that can be complemented with other ECM proteins, including vitronectin, collagen, and laminin to resemble ECM architectures observed in vivo. For the co-assembly of different ECM proteins, we employed their innate fibrillogenic mechanisms including shear forces, pH-dependent electrostatic interactions, or specific binding domains. Through recapitulating various tissue-specific ECM compositions and morphologies, the large scale multi-composite 3D fibrillar ECM matrices can guide fibroblast adhesion, 3D fibroblast tissue formation, or tissue morphogenesis of epithelial cells. In other examples, we customize multi-composite 3D fibrillar matrices to support the growth of signal propagating neuronal networks and of human brain organoids. We envision that these 3D fibrillar ECM matrices can be tailored in scale and composition to modulate tissue-specific responses across various biological length scales and systems, and thus to advance manyfold studies of cell biological systems.


Subject(s)
Extracellular Matrix , Fibroblasts , Fibronectins , Tissue Engineering , Fibronectins/chemistry , Fibronectins/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Humans , Tissue Engineering/methods , Fibroblasts/metabolism , Fibroblasts/cytology , Animals , Tissue Scaffolds/chemistry , Cell Adhesion , Mice , Organoids/metabolism , Organoids/cytology
15.
Nanoscale ; 16(12): 6199-6214, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38446101

ABSTRACT

While the filtering and accumulation effects of the extracellular matrix (ECM) on nanoparticles (NPs) have been experimentally observed, the detailed interactions between NPs and specific biomolecules within the ECM remain poorly understood and pose challenges for in vivo molecular-level investigations. Herein, we adopt molecular dynamics simulations to elucidate the impacts of methyl-, hydroxy-, amine-, and carboxyl-modified gold NPs on the cell-binding domains of fibronectin (Fn), an indispensable component of the ECM for cell attachment and signaling. Simulation results show that NPs can specifically bind to distinct Fn domains, and the strength of these interactions depends on the physicochemical properties of NPs. NP-NH3+ exhibits the highest affinity to domains rich in acidic residues, leading to strong electrostatic interactions that induce severe deformation, potentially disrupting the normal functioning of Fn. NP-CH3 and NP-COO- selectively occupy the RGD/PHSRN motifs, which may hinder their recognition by integrins on the cell surface. Additionally, NPs can disrupt the dimerization of Fn through competing for residues at the dimer interface or by diminishing the shape complementarity between dimerized proteins. The mechanical stretching of Fn, crucial for ECM fibrillogenesis, is suppressed by NPs due to their local rigidifying effect. These results provide valuable molecular-level insights into the impacts of various NPs on the ECM, holding significant implications for advancing nanomedicine and nanosafety evaluation.


Subject(s)
Fibronectins , Nanoparticles , Fibronectins/chemistry , Integrins/metabolism , Extracellular Matrix/metabolism , Signal Transduction
16.
J Biomed Mater Res A ; 112(7): 1004-1014, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38327244

ABSTRACT

After implantation of the Mg alloy in the human body, the adsorption of plasma protein on surface will cause a series of cell reactions and affect the degradation of Mg alloys. Herein, in vitro biological reactions of the ZK60 and AZ31 Mg alloys are analyzed in plasma protein environment. Combined with mass spectrometry analysis of the type of adsorbed proteins, it is shown that proteins such as fibrinogen, vitronectin, fibronectin, and prothrombin are prone to get adsorbed on the surface of the alloys than other proteins, leading to the promotion of MG63 cell adhesion and proliferation. The effect of selected proteins (fibrinogen, fibronectin, and prothrombin) on degradation of ZK60 and AZ31 Mg alloys is investigated using immersion tests. The degradation of AZ31 Mg alloy is significantly restrained with the presence of proteins. This is due to the protein adsorption effect on the sample surface. The molecular dynamics simulation results indicate that both fibrinogen and fibronectin tend to adsorb onto the AZ31 rather than ZK60, forming a stable protein layer on the AZ31 Mg alloy retarding the degradation of the samples. As to ZK60 alloy, the addition of protein inhibits the degradation in the short term, however, the degradation increases after a long time of immersion. This phenomenon is particularly pronounced in fibronectin solution.


Subject(s)
Alloys , Biocompatible Materials , Blood Proteins , Magnesium , Materials Testing , Alloys/chemistry , Alloys/pharmacology , Humans , Biocompatible Materials/chemistry , Magnesium/chemistry , Magnesium/pharmacology , Blood Proteins/chemistry , Blood Proteins/metabolism , Adsorption , Fibronectins/chemistry , Cell Proliferation/drug effects , Molecular Dynamics Simulation , Cell Adhesion/drug effects , Fibrinogen/chemistry
17.
Adv Mater ; 36(23): e2310789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38253339

ABSTRACT

Conventional osteogenic platforms utilize active growth factors to repair bone defects that are extensive in size, but they can adversely affect patient health. Here, an unconventional osteogenic platform is reported that functions by promoting capture of inactive osteogenic growth factor molecules to the site of cell growth for subsequent integrin-mediated activation, using a recombinant fragment of latent transforming growth factor beta-binding protein-1 (rLTBP1). It is shown that rLTBP1 binds to the growth-factor- and integrin-binding domains of fibronectin on poly(ethyl acrylate) surfaces, which immobilizes rLTBP1 and promotes the binding of latency associated peptide (LAP), within which inactive transforming growth factor beta 1 (TGF-ß1) is bound. rLTBP1 facilitates the interaction of LAP with integrin ß1 and the subsequent mechanically driven release of TGF-ß1 to stimulate canonical TGF-ß1 signaling, activating osteogenic marker expression in vitro and complete regeneration of a critical-sized bone defect in vivo.


Subject(s)
Osteogenesis , Transforming Growth Factor beta1 , Animals , Humans , Transforming Growth Factor beta1/metabolism , Fibronectins/metabolism , Fibronectins/chemistry , Latent TGF-beta Binding Proteins/metabolism , Latent TGF-beta Binding Proteins/chemistry , Bone Regeneration , Surface Properties , Integrins/metabolism , Protein Binding , Integrin beta1/metabolism , Signal Transduction
18.
Adv Healthc Mater ; 13(2): e2301808, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37602504

ABSTRACT

Implantable biomaterials are widely used in bone tissue engineering, but little is still known about how they initiate early immune recognition and the initial dynamics. Herein, the early immune recognition and subsequent osteoinduction of biphasic calcium phosphate (BCP) after implantation to the protein adsorption behavior is attributed. By liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis, the biomaterial-related molecular patterns (BAMPs) formed after BCP implantation are mapped, dominated by the highly expressed extracellular matrix protein fibronectin (Fn) and the high mobility group box 1 (HMGB1). Molecular dynamics simulations show that Fn has the ability to bind more readily to the BCP surface than HMGB1. The preferential binding of Fn provides a higher adsorption energy for HMGB1. Furthermore, multiple hydrogen bonding sites between HMGB1 and Fn are demonstrated using a molecular docking approach. Ultimately, the formation of BAMPs through HMGB1 antagonist glycyrrhizic acid (GA), resulting in impaired immune recognition of myeloid differentiation factor 88 (MYD88) mediated dendritic cells (DCs) and macrophages (Mφs), as well as failed osteoinduction processes is obstructed. This study introduces a mechanism for early immune recognition of implant materials based on protein adsorption, providing perspectives for future design and application of tissue engineering materials.


Subject(s)
Biocompatible Materials , HMGB1 Protein , Hydroxyapatites , Biocompatible Materials/chemistry , Fibronectins/chemistry , Adsorption , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry
19.
Immunol Invest ; 52(8): 985-996, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37815216

ABSTRACT

BACKGROUND: CAR-T cell immunotherapy has achieved remarkable success in malignant B-cell malignancies, but progress in solid tumors is slow, and one of the key reasons is the lack of ideal targets. Cancer-specific extra domain B of fibronectin (EDB-FN) is widely upregulated in solid tumors and expressed at low levels in normal tissues. Many imaging and targeted cancer therapies based on EDB-FN targets have been developed and tested in clinical trials, making EDB-FN an ideal target for immunotherapy. METHODS: We constructed two EDB-FN-targeted CAR-Ts based on the peptide APT0 and the single-chain antibody CGS2 in a lentiviral infection manner for the first time. Luciferase cytotoxicity assay to assess CAR-T killing of tumor cells. An enzyme-linked immunosorbent assay was used to detect the release of the cytokine IFN-γ. Fluorescence imaging to evaluate the dynamics of CAR-T cell and tumor cell coculture. Knockdown assays were used to validate the target specificity of CAR-T cells. RESULTS: In this research, two CAR-Ts targeting EDB-FN, APT0 CAR-T, and CGS2 CAR-T, were constructed. In vitro, both CAR-T cells produced broad-spectrum killing of multiple EDB-FN-positive solid tumor cell lines and were accompanied by cytokine IFN-γ release. Regarding safety, the two CAR-T cells did not affect T cells' normal growth and proliferation and were not toxic to HEK-293T human embryonic kidney epithelial cells. CONCLUSION: APT0 CAR-T and CGS2 CAR-T cells are two new CAR-Ts targeting EDB-FN. Both CAR-T cells can successfully identify and specifically kill various EDB-FN-positive solid tumor cells with potential clinical applications.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Fibronectins/chemistry , Fibronectins/metabolism , Neoplasms/therapy , Peptides , Cytokines , Cell Line, Tumor
20.
Clin Biochem ; 118: 110599, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37343745

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) remodeling, herein ECM degradation. Fibronectin (FN) is an important component of the ECM that is produced by multiple cell types, including fibroblasts. Extra domain B (EDB) is specific for a cellular FN isoform which is found in the ECM. We sought to develop a non-invasive test to investigate whether matrix metalloproteinase 8 (MMP-8) degradation of EDB in cellular FN results in a specific protein fragment that can be assessed serologically and if levels relate to pulmonary fibrosis. METHOD: Cellular FN was cleaved in vitro by MMP-8 and a protein fragment was identified by mass spectrometry. A monoclonal antibody (mAb) was generated, targeting a neo-epitope originating from EDB in cellular FN. Utilizing this mAb, a neo-epitope specific enzyme-linked immunosorbent assay (FN-EDB) was developed and technically validated. Serum FN-EDB was assessed in an IPF cohort (n = 98), registered at clinicaltrials.gov (NCT02818712), and in healthy controls (n = 35). RESULTS: The FN-EDB assay had high specificity for the MMP-8 degraded neo-epitope and was technically robust. FN-EDB serum levels were not influenced by age, sex, ethnicity, or BMI. Moreover, FN-EDB serum levels were significantly higher in IPF patients (median 31.38 [IQR 25.79-46.84] ng/mL) as compared to healthy controls (median 28.05 [IQR 21.58-33.88] ng/mL, p = 0.023). CONCLUSION: We developed the neo-epitope specific FN-EDB assay, a competitive ELISA, as a tool for serological assessment of MMP-8 mediated degradation of EDB in cellular FN. This study indicates that degradation of EDB in cellular FN is elevated in IPF and warrants further investigation.


Subject(s)
Pulmonary Fibrosis , Humans , Matrix Metalloproteinase 8 , Fibronectins/chemistry , Fibronectins/metabolism , Epitopes , Antibodies, Monoclonal , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL