ABSTRACT
DNA transposons are diverse in fish genomes and have been described to generate genomic evolutionary novelties. hAT transposable element data are scarce in Teleostei genomes, making it challenging to conduct comparative genomic studies to understand their neutrality or function. This study aimed to perform a genomic and molecular characterization of hAT copies to assess the diversity of these elements and associate changes in these sequences to genomic and karyotypic novelties in Apareiodon sp. The data revealed that hAT TEs are highly abundant in the Apareiodon sp. genome, with few possibly autonomous copies. Highly conserved sequences with likely functional transposases were observed in nine hAT elements. A great diversity of hAT subgroups was observed, especially from Ac, Charlie, Blackjack, Tip100, hAT6, and hAT5, and a similar wave of hAT genomic invasion was identified in the genome for these six groups of hAT sequences. The data also revealed a distinct number of microsatellites within degenerated hAT copies. hAT sites were demonstrated to be dispersed in the Apareiodon sp. chromosomes and not involved in W chromosome-specific region differentiation. In conclusion, the genomic analysis revealed a great diversity of hAT elements, possible autonomous copies, and differentiation of degenerated transposable elements into tandem sequences.
Subject(s)
DNA Transposable Elements , Genome , Phylogeny , DNA Transposable Elements/genetics , Animals , Genome/genetics , Evolution, Molecular , Microsatellite Repeats/genetics , Genomics/methods , Fishes/genetics , Fishes/classificationABSTRACT
The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.
Subject(s)
Evolution, Molecular , Fishes , Genome , Animals , Humans , Africa , Animal Fins/anatomy & histology , Australia , DNA Transposable Elements/genetics , DNA, Intergenic/genetics , Enhancer Elements, Genetic/genetics , Extinction, Biological , Fishes/anatomy & histology , Fishes/classification , Fishes/genetics , Gene Rearrangement/genetics , Genome/genetics , Genome Size , Hedgehog Proteins/genetics , Introns , Karyotype , Phylogeny , Piwi-Interacting RNA/genetics , South America , Time Factors , Zinc Fingers/geneticsABSTRACT
Sciadonus alphacrucis Melo, Gomes, Møller & Nielsen, 2022 is a rare deep-sea species, previously known from only two specimens collected off São Paulo State, southeastern Brazil, in the western South Atlantic. Herein, we report a new specimen of S. alphacrucis collected on the continental slope off Santa Catarina State, southern Brazil, thereby extending its known distribution by 420 km. Additionally, we provide the new meristic and morphometric data, the molecular identification using sequences of the cytochrome c oxidase subunit I (COI), an updated distribution map, and a discussion of troglomorphic traits.
Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Animals , Brazil , Electron Transport Complex IV/genetics , Atlantic Ocean , Phylogeny , Animal Distribution , Female , Male , Fishes/genetics , Fishes/classificationABSTRACT
Knowledge on species composition is the first step necessary for the proper conservation and management of biological resources and ecologically relevant species. High species diversity and a lack of diagnostic characters for some groups can impose difficulties for taxonomic identification through traditional methodologies, and ichthyoplankton (fish larvae and eggs) are a good example of such a scenario. With more than 35.000 valid species of fishes worldwide and overall similar anatomies in early developmental stages in closely related groups, fish larvae are often hard to be identified at the species or even more encompassing taxonomic levels. To overcome this situation, molecular techniques have been applied, with different markers tested over the years. Cytochrome c oxidase I (COI) is the most commonly used marker and now has the broadest public reference libraries, providing consistent results for species identification in different metazoan studies. Here we sequenced the mitochondrial COI-5P fragment of 89 fish larvae collected in the Campos Basin, coastal southeastern Brazil, and compared these sequences with references deposited in public databases to obtain taxonomic identifications. Most specimens identified are species of the Blenniiformes, with Parablennius and Labrisomus the most frequently identified genera. Parablennius included two species (P. marmoreus and P. pilicornis), while Labrisomus included three species (L. cricota, L. conditus and L. nuchipinnis). Anatomy of these molecularly identified specimens were then analyzed with the intention of finding anatomical characters that might be diagnostically informative amongst the early development stage (pre-flexion) larvae. Ventral pigmentation patterns are proposed as useful markers to identify Labrisomus species. However, additional specimens are needed to confirm if the character holds stability through the geographic distribution of the species.
Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Fishes , Larva , Animals , DNA Barcoding, Taxonomic/methods , Larva/anatomy & histology , Larva/genetics , Larva/growth & development , Fishes/anatomy & histology , Fishes/genetics , Brazil , Electron Transport Complex IV/genetics , Phylogeny , Atlantic Ocean , Species SpecificityABSTRACT
The Maipo River catchment is one of Chile's most polluted basins. In recent decades, discharges of untreated sewage and organic matter have caused eutrophication and water quality degradation. We employed the indigenous silverfish species Basilichthys microlepidotus as a model organism to investigate the process of adaptation and selection on genes influenced by pollution. Using variation at single nucleotide polymorphisms (SNPs), we determined the temporal stability of the population structure patterns previously identified in this species by varying SNPs. We also examined local adaptation to pollution-selected genes. Using the genotypes of 7684 loci in 180 individuals, we identified 429 and 700 loci that may be undergoing selection. We detected these loci using the FSTHET and ARLEQUIN outlier detection software, respectively. Both software packages simultaneously identified a total of 250 loci. B. microlepidotus' population structure did not change over time at contaminated or unpolluted sites. In addition, our analysis found: (i) selection of genes associated with pollution, consistent with observations in other organisms; (ii) identification of candidate genes that are functionally linked to the same biological processes, molecular functions and/or cellular components that previously showed differential expression in the same populations; and (iii) a candidate gene with differential expression and a non-synonymous substitution.
Subject(s)
Polymorphism, Single Nucleotide , Animals , Chile , Selection, Genetic , Genome , Genetics, Population , Fishes/geneticsABSTRACT
Transposable elements (TEs) are widespread genomic components with substantial roles in genome evolution and sex chromosome differentiation. In this study, we compared the TE composition of three closely related fish with different sex chromosome systems: Megaleporinus elongatus (Z1Z1Z2Z2/Z1W1Z2W2), Megaleporinus macrocephalus (ZZ/ZW) (both with highly differentiated W sex chromosomes), and Leporinus friderici (without heteromorphic sex chromosomes). We created custom TE libraries for each species using clustering methods and manual annotation and prediction, and we predicted TE temporal dynamics through divergence-based analysis. The TE abundance ranged from 16% to 21% in the three mobilomes, with L. friderici having the lowest overall. Despite the recent amplification of TEs in all three species, we observed differing expansion activities, particularly between the two genera. Both Megaleporinus recently experienced high retrotransposon activity, with a reduction in DNA TEs, which could have implications in sex chromosome composition. In contrast, L. friderici showed the opposite pattern. Therefore, despite having similar TE compositions, Megaleporinus and Leporinus exhibit distinct TE histories that likely evolved after their separation, highlighting a rapid TE expansion over short evolutionary periods.
Subject(s)
DNA Transposable Elements , Evolution, Molecular , Sex Chromosomes , Animals , Sex Chromosomes/genetics , Male , Female , Fishes/geneticsABSTRACT
Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available. This study investigated an intelectin transcript identified in RNA-seq data obtained from the South American lungfish (Lepidosiren paradoxa), namely LpITLN2-B. The structural analyses predicted LpITLN2-B to be a homo-trimeric globular protein with the fibrinogen-like functional domain (FReD), exhibiting a molecular mass of 57 kDa. The quaternary structure is subdivided into three monomers, A, B, and C, and each domain comprises 11 ß-sheets: an anti-parallel ß-sheet, a ß-hairpin, and a disordered ß-sheet structure. Molecular docking demonstrates a significant interaction with disaccharides rather than monosaccharides. The preferential interaction with disaccharides highlights the potential interaction with pathogen molecules, such as LPS and Poly(I:C). The hemagglutination assay inhibited lectins activity, especially maltose and sucrose, highlighting lectin activity in L. paradoxa samples. Overall, our results show the potential relevance of LpITLN2-B in L. paradoxa immune defense against pathogens.
Subject(s)
Fish Proteins , Fishes , Immunity, Innate , Lectins , Animals , Lectins/chemistry , Lectins/metabolism , Lectins/immunology , Lectins/genetics , Fishes/immunology , Fishes/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Fish Proteins/immunology , Fish Proteins/metabolism , Molecular Docking Simulation , Amino Acid Sequence , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunologyABSTRACT
Connectivity is a fundamental process of population dynamics in marine ecosystems. In the last decade, with the emergence of new methods, combining different approaches to understand the patterns of connectivity among populations and their regulation has become increasingly feasible. The Western Antarctic Peninsula (WAP) is characterized by complex oceanographic dynamics, where local conditions could act as barriers to population connectivity. Here, the notothenioid fish Harpagifer antarcticus, a demersal species with a complex life cycle (adults with poor swim capabilities and pelagic larvae), was used to assess connectivity along the WAP by combining biophysical modelling and population genomics methods. Both approaches showed congruent patterns. Areas of larvae retention and low potential connectivity, observed in the biophysical model output, coincide with four genetic groups within the WAP: (1) South Shetland Islands, (2) Bransfield Strait, (3) the central and (4) the southern area of WAP (Marguerite Bay). These genetic groups exhibited limited gene flow between them, consistent with local oceanographic conditions, which would represent barriers to larval dispersal. The joint effect of geographic distance and larval dispersal by ocean currents had a greater influence on the observed population structure than each variable evaluated separately. The combined effect of geographic distance and a complex oceanographic dynamic would be generating limited levels of population connectivity in the fish H. antarcticus along the WAP. Based on this, population connectivity estimations and priority areas for conservation were discussed, considering the marine protected area proposed for this threatened region of the Southern Ocean.
Subject(s)
Gene Flow , Genetics, Population , Animals , Antarctic Regions , Population Dynamics , Perciformes/genetics , Genomics , Ecosystem , Larva/genetics , Fishes/geneticsABSTRACT
Understanding the factors that sculpt fish gut microbiome is challenging, especially in natural populations characterized by high environmental and host genomic complexity. However, closely related hosts are valuable models for deciphering the contribution of host evolutionary history to microbiome assembly, through the underscoring of phylosymbiosis and co-phylogeny patterns. Here, we propose that the recent diversification of several Harpagifer species across the Southern Ocean would allow the detection of robust phylogenetic congruence between the host and its microbiome. We characterized the gut mucosa microbiome of 77 individuals from four field-collected species of the plunderfish Harpagifer (Teleostei, Notothenioidei), distributed across three biogeographic regions of the Southern Ocean. We found that seawater physicochemical properties, host phylogeny, and geography collectively explained 35% of the variation in bacterial community composition in Harpagifer gut mucosa. The core microbiome of Harpagifer spp. gut mucosa was characterized by a low diversity, mostly driven by selective processes, and dominated by a single Aliivibrio Operational Taxonomic Unit (OTU) detected in more than 80% of the individuals. Nearly half of the core microbiome taxa, including Aliivibrio, harbored co-phylogeny signal at microdiversity resolution with host phylogeny, indicating an intimate symbiotic relationship and a shared evolutionary history with Harpagifer. The clear phylosymbiosis and co-phylogeny signals underscore the relevance of the Harpagifer model in understanding the role of fish evolutionary history in shaping the gut microbiome assembly. We propose that the recent diversification of Harpagifer may have led to the diversification of Aliivibrio, exhibiting patterns that mirror the host phylogeny. IMPORTANCE: Although challenging to detect in wild populations, phylogenetic congruence between marine fish and its microbiome is critical, as it highlights intimate associations between hosts and ecologically relevant microbial symbionts. Our study leverages a natural system of closely related fish species in the Southern Ocean to unveil new insights into the contribution of host evolutionary trajectory on gut microbiome assembly, an underappreciated driver of the global marine fish holobiont. Notably, we unveiled striking evidence of co-diversification between Harpagifer and its microbiome, demonstrating both phylosymbiosis of gut bacterial communities and co-phylogeny of some specific bacterial symbionts, mirroring the host diversification patterns. Given Harpagifer's significance as a trophic resource in coastal areas and its vulnerability to climatic and anthropic pressures, understanding the potential evolutionary interdependence between the hosts and its microbiome provides valuable microbial candidates for future monitoring, as they may play a pivotal role in host species acclimatization to a rapidly changing environment.
Subject(s)
Gastrointestinal Microbiome , Microbiota , Perciformes , Animals , Phylogeny , Gastrointestinal Microbiome/genetics , Biological Evolution , Fishes/genetics , Bacteria/genetics , Oceans and Seas , RNA, Ribosomal, 16S/geneticsABSTRACT
The fish fauna of the Tocantins River possesses many endemic species; however, it is little studied in molecular terms and is quite threatened by the construction of several hydroelectric dams. Therefore, the objective of this study was to identify the ichthyofauna of the Tocantins River using DNA barcoding. For this, collections were carried out in five points of this river, which resulted in the capture of 725 individuals from which partial sequences of the cytochrome oxidase subunit I (COI) gene were obtained for genetic analysis. A total of 443 haplotypes were recovered with the mean intraspecific K2P genetic distance of 1.82%. Altogether, 138 species were identified based on morphological criteria, which was a quantity that was much lower than that indicated by the four molecular methods (assemble species by automatic partitioning [ASAP], barcode index number [BIN], generalized mixed Yule coalescent (GMYC), and Bayesian Poisson tree processes [bPTP]) through which 152-157 molecular entities were identified. In all, 41 unique BINs were obtained based on the data generated in the BOLDSystems platform. According to the result indicated by ASAP (species delimitation approach considered the most appropriate in the present study), there was an increase of 17 molecular entities (12.32%), when compared to the number of species identified through their morphological criteria, as it can show cryptic diversity, candidates for new species, and misidentifications. There were 21 incongruities indicated between the different identification approaches for species. Therefore, it is suggested that these taxonomic problems be cautiously evaluated by experts to solve such taxonomic issues.
Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Fishes , Rivers , Animals , Brazil , Fishes/genetics , Fishes/classification , Electron Transport Complex IV/genetics , Haplotypes , PhylogenyABSTRACT
A new labrid fish species, Halichoeres sanchezi n. sp., is described from eight specimens collected in the Revillagigedo Archipelago in the tropical eastern Pacific Ocean, off the coast of Mexico. The new species belongs to the Halichoeres melanotis species complex that is found throughout the region, differing by 2.4% in the mtDNA cytochrome c oxidase I sequence from its nearest relative, H. melanotis from Panama, and 2.9% from Halichoeres salmofasciatus from Cocos Island, off Costa Rica. The complex is distinguished from others in the region by having a black spot on the opercular flap and a prominent black area on the caudal fin of males. The juveniles and initial phase of the new species closely resemble those of H. salmofasciatus and Halichoeres malpelo from Malpelo Island of Colombia, differing in having an oblong black spot with a yellow dorsal margin on the mid-dorsal fin of initial-phase adults as well as on juveniles. In contrast, the terminal-phase male color pattern is distinct from other relatives, being vermilion to orangish brown with dark scale outlines, a white patch on the upper abdomen, and a prominent black band covering the posterior caudal peduncle and base of the caudal fin. The new species adds to the list of endemic fish species for the isolated archipelago and is an interesting case of island endemism in the region. The discovery was made during the joint 2022 collecting expedition to the archipelago, which featured a pioneering collaborative approach to an inventory of an island ichthyofauna, specifically including expert underwater photographers systematically documenting specimens in situ, before hand-collection, and then photographed fresh, tissue-sampled, and subsequently vouchered in museum collections.
Subject(s)
Abdominal Cavity , Perciformes , Male , Animals , Mexico , Pacific Ocean , Fishes/geneticsABSTRACT
BACKGROUND: Phylogenetic gaps of public databases of reference sequences are a major obstacle for comparative genomics and management of marine resources, particularly in the Global South, where economically important fisheries and conservation flagship species often lack closely-related references. We applied target-enrichment to obtain complete mitochondrial genomes of marine ichthyofauna from the Brazilian coast selected based on economic significance, conservation status and lack of phylogenetically-close references. These included sardines (Dorosomatidae, Alosidae), mackerels (Scombridae) croakers (Sciaenidae), groupers (Epinephelidae) and snappers (Lutjanidae). RESULTS: Custom baits were designed to enrich mitochondrial DNA across a broad phylogenetic range of fishes. Sequencing generated approximately 100k reads per sample, which were assembled in a total of 70 complete mitochondrial genomes and include fifty-two new additions to GenBank, including five species with no previous mitochondrial data. Departures from the typical gene content and order occurred in only three taxa and mostly involved tRNA gene duplications. Start-codons for all genes, except Cytochrome C Oxidase subunit I (COI), were consistently ATG, whilst a wide range of stop-codons deviated from the prevailing TAA. Phylogenetic analysis confirmed assembly accuracy and revealed signs of cryptic diversification within the Mullus genus. Lineage delimitation methods using Sardinella aurita and S. brasiliensis mitochondrial genomes support a single Operational Taxonomic Unit. CONCLUSIONS: Target enrichment was highly efficient, providing complete novel mitochondrial genomes with little sequencing effort. These sequences are deposited in public databases to enable subsequent studies in population genetics and adaptation of Latin American fish species and serve as a vital resource for conservation and management programs that rely on molecular data for species and genus-level identification.
Subject(s)
Genome, Mitochondrial , Perciformes , Animals , Phylogeny , Fisheries , Fishes/genetics , Perciformes/genetics , DNA, Mitochondrial/genetics , CodonABSTRACT
Pollution and its effects have been of major concern in recent decades. Many strategies and markers have been developed to assess their effects on biota. Cytochrome P450 (CYP) genes have received significant attention in this context because of their relationship with detoxification and activation of exogenous compounds. While their expression has been identified as a pollution exposure biomarker, in most cases, it has been tested only after acute exposures and for CYP genes associated with exogenous compounds. To elucidate CYP gene expression patterns under chronic pollution exposure, we have used the silverside Basilichthys microlepidotus as a model, which inhabits the Maipo River Basin, a freshwater system with different pollution levels. We performed next-generation RNA sequencing of liver and gill tissues from polluted and non-polluted populations. We found most CYP genes were not dysregulated by pollution, and the seven genes that were present and differentially expressed in liver and gill were mainly downregulated. Three CYP genes associated with exogenous compounds showed differential expression in the gill, while four CYP genes associated with endogenous compounds showed differential expression in the liver. The findings presented here highlight the importance of CYP genes, his family, tissues and his interaction in the context of pollution biomarkers use.
Subject(s)
Cytochrome P-450 Enzyme System , Fishes , Animals , Fishes/genetics , Cytochrome P-450 Enzyme System/genetics , Environmental Pollution , Biomarkers , Fresh WaterABSTRACT
The ichthyological provinces of Mozambique are understudied hotspots of global fish diversity. In this study, we applied DNA barcoding to identify the composition of the fish fauna from the coast of Mozambique. A total of 143 species belonging to 104 genera, 59 families, and 30 orders were identified. The overall K2P distance of the COI sequences within species ranged from 0.00% to 1.51%, while interspecific distances ranged from 3.64% to 24.49%. Moreover, the study revealed 15 threatened species according to the IUCN Red List of Threatened Species, with elasmobranchs being the most represented group. Additionally, the study also uncovered four new species that were not previously recorded in this geographic area, including Boleophthalmus dussumieri, Maculabatis gerrardi, Hippocampus kelloggi, and Lethrinus miniatus. This study represents the first instance of utilizing molecular references to explore the fish fauna along the Mozambican coast. Our results indicate that DNA barcoding is a dependable technique for the identification and delineation of fish species in the waters of Mozambique. The DNA barcoding library established in this research will be an invaluable asset for advancing the understanding of fish diversity and guiding future conservation initiatives.
Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Humans , Animals , DNA Barcoding, Taxonomic/methods , Mozambique , Phylogeny , Fishes/genetics , DNA/genetics , Endangered SpeciesABSTRACT
Mackerel fish (Scomberomorus spp.) represents a significant marine fisheries commodity in Indonesia, characterized by its high commercial value and nutritional content. To understand the intraspecific interactions and genetic variability of Scomberomorus spp., a more extensive research of Scomberomorus spp. populations, including both cultivated and wild specimens, is required. This study aimed to explore the genetic diversity of mackerel fish in Indonesian waters, focusing on the mitochondrial DNA (mtDNA) cytochrome oxidase subunit II (COII) gene, which encodes the second subunit of cytochrome c oxidase (complex IV), is essential for aerobic respiration and energy transformation. Muscle tissue samples from 18 individual mackerel fish collected from various regions in Indonesia, including Palembang, Cilacap, Rembang, Banjarmasin, Ambon, and Fak-Fak Regencies, were utilized. The genomic DNA was isolated and amplified using specific primers: CO2TF (5'-ACCGCTCTGTCACTTTCTTC-3') and CO2TR (5'-ATGTCACTAAGGGTGGTTGG-3'). Subsequently, the obtained amplicons were subjected to sequencing. The sequence data were then analyzed using the MEGA11 and DnaSP 6 software. Our findings revealed 120 variable sites within the 691 base pairs of mtDNA COII sequences, resulting in a nucleotide diversity (Pi) of 0.07169. Furthermore, we identified eight haplotypes, demonstrating a haplotype diversity (Hd) of 0.8889. Remarkably, all mackerel samples from Palembang and Cilacap clustered into discrete haplotypes, specifically haplotype 1 and haplotype 2, respectively. Our phylogenetic analysis delineated three distinct clades. Clade I, closely related to Scomberomorus cavalla, encompassed all individuals from Ambon, Palembang, Rembang, and one from Banjarmasin. Clade II, associated with Scomberomorus niphonius, included individuals from Cilacap and two from Banjarmasin. Clade III, linked to Scomberomorus semifasciatus, exclusively consisted of individuals from Fak-Fak (Papua). In conclusion, Indonesian waters harbor diverse genetic variations within Scomberomorus spp., and population relationships based on the mtDNA COII gene exhibit notable complexities. Future research endeavors should focus on further elucidating the diversity and relationships among Scomberomorus spp. in diverse Indonesian populations.
Subject(s)
Electron Transport Complex IV , Perciformes , Animals , Phylogeny , Electron Transport Complex IV/genetics , Indonesia , Disclosure , Perciformes/genetics , Fishes/genetics , DNA, Mitochondrial/genetics , Genetic Variation/geneticsABSTRACT
In biogeography, vicariance and long-distance dispersal are often characterised as competing scenarios. However, they are related concepts, both relying on collective geological, ecological, and phylogenetic evidence. This is illustrated by freshwater fishes, which may immigrate to islands either when freshwater connections are temporarily present and later severed (vicariance), or by unusual means when ocean gaps are crossed (long-distance dispersal). Marine barriers have a strong filtering effect on freshwater fishes, limiting immigrants to those most capable of oceanic dispersal. The roles of vicariance and dispersal are debated for freshwater fishes of the Greater Antilles. We review three active hypotheses [Cretaceous vicariance, Greater Antilles-Aves Ridge (GAARlandia), long-distance dispersal] and propose long-distance dispersal to be an appropriate model due to limited support for freshwater fish use of landspans. Greater Antillean freshwater fishes have six potential source bioregions (defined from faunal similarity): Northern Gulf of México, Western Gulf of México, Maya Terrane, Chortís Block, Eastern Panamá, and Northern South America. Faunas of the Greater Antilles are composed of taxa immigrating from many of these bioregions, but there is strong compositional disharmony between island and mainland fish faunas (>90% of Antillean species are cyprinodontiforms, compared to <10% in Northern Gulf of México and Northern South America, and ≤50% elsewhere), consistent with a hypothesis of long-distance dispersal. Ancestral-area reconstruction analysis indicates there were 16 or 17 immigration events over the last 51 million years, 14 or 15 of these by cyprinodontiforms. Published divergence estimates and evidence available for each immigration event suggests they occurred at different times and by different pathways, possibly with rafts of vegetation discharged from rivers or washed to sea during storms. If so, ocean currents likely provide critical pathways for immigration when flowing from one landmass to another. On the other hand, currents create dispersal barriers when flowing perpendicularly between landmasses. In addition to high salinity tolerance, cyprinodontiforms collectively display a variety of adaptations that could enhance their ability to live with rafts (small body size, viviparity, low metabolism, amphibiousness, diapause, self-fertilisation). These adaptations likely also helped immigrants establish island populations after arrival and to persist long term thereafter. Cichlids may have used a pseudo bridge (Nicaragua Rise) to reach the Greater Antilles. Gars (Lepisosteidae) may have crossed the Straits of Florida to Cuba, a relatively short crossing that is not a barrier to gene flow for several cyprinodontiform immigrants. Indeed, widespread distributions of Quaternary migrants (Cyprinodon, Gambusia, Kryptolebias), within the Greater Antilles and among neighbouring bioregions, imply that long-distance dispersal is not necessarily inhibitory for well-adapted species, even though it appears to be virtually impossible for all other freshwater fishes.
Subject(s)
Animal Distribution , Fishes , Fresh Water , Animals , Fishes/physiology , Fishes/genetics , Fishes/classification , PhylogeographyABSTRACT
This is the first work using gonads from undifferentiated, genetically-sexed Siberian sturgeon describing expression changes in genes related to steroid synthesis and female and male sex differentiation. One factor identified as relevant for ovarian differentiation was the gene coding for the enzyme Hsd17b1, which converts estrone into estradiol-17ß. hsd17b1 was highly activated in female gonads at 2.5 months of age, around the onset of sex differentiation, preceding activation of two other genes involved in estrogen production (cyp19a1 and foxl2). hsd17b1 was also strongly repressed in males. Two known foxl2 paralogs are found in Siberian sturgeon-foxl2 and foxl2l-but only foxl2 appeared to be associated with ovarian differentiation. With regard to the male pathway, neither 11-oxygenated androgens nor classic male genes (amh, dmrt1, sox9, and dhh) were found to be involved in male sex differentiation, leaving open the question of which genes participate in early male gonad development in this ancient fish. Taken together, these results indicate an estrogen-dependence of female sex differentiation and 11-oxygenated androgen-independence of male sex differentiation.
Subject(s)
Fishes , Ovary , Animals , Male , Female , Fishes/genetics , Fishes/metabolism , Gonads , Sex Differentiation/genetics , Androgens/metabolism , Estrogens/metabolismABSTRACT
Lower Central America (LCA) has a complex biogeographic history shaped by the rise of the Isthmus of Panama and the global climatic oscillations of the Pleistocene. These events have been crucial in structuring biodiversity in LCA, but their consequences for the distribution and partitions of genetic diversity across the region remain to be elucidated. We combined complete mitochondrial genomes and nuclear ultraconserved elements (UCEs) to study the phylogeographic history and population genetic structure of the electric fish Brachyhypopomus occidentalis in LCA. Our results are consistent with the known phylogeographic history of B. occidentalis in LCA, but we update this history in several important ways that help illuminate the phylogeographic history of freshwater fishes in the region. We provide: i) support for three waves of colonization, two of which occurred prior to the final closure of the Panama Isthmus; ii) a more precise understanding of each colonization event, with evidence for a larger footprint of the first event, as well as genetic exchange across the continental divide in subsequent events; and iii) evidence for high levels of previously unrecognized population genetic structure across LCA. This updated model of colonization and diversification of B. occidentalis consists of three waves of dispersal and colonization, which triggered the evolution of geographic breaks in both nuclear and mitochondrial genomes across LCA. These processes are tightly linked to the dynamic uplift of the Isthmus, recent volcanic activity in the region, and the sea-level oscillations of the Pleistocene. These results improve previous phylogeographic inferences regarding the distribution and diversification of freshwater fishes in LCA, and generate testable hypotheses to guide future research exploring the factors shaping biodiversity in the region.
Subject(s)
Electric Fish , Gymnotiformes , Animals , Phylogeny , Phylogeography , Central America , Fishes/genetics , Fresh WaterABSTRACT
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Subject(s)
Eukaryota , Microbiota , Animals , Eukaryota/genetics , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Metagenome , Fishes/genetics , Aquatic Organisms/genetics , Mammals/geneticsABSTRACT
Previous studies about the genetic diversity, connectivity and demographic history in Lutjanidae fishes have reported a common pattern of genetic homogeneity and expansion in populations from Western South Atlantic. In the present work, we inferred the population structure, the levels of genetic diversity and the demographic history of the Brazilian snapper Lutjanus alexandrei, a recently described and endemic species from Northeastern coast of Brazil. Five different fragments, including mitochondrial DNA (Control Region, Cyt b and ND4) and nuclear DNA (Myostatin and S7) regions were analyzed in 120 specimens of L. alexandrei from four localities in Northeastern Brazil, representing the first study of population genetics in this species. High levels of genetic diversity were observed following a panmictic pattern, probably related to the larval dispersal by the current tides along the Brazilian coast. In addition, both demographic history and neutrality tests indicated that L. alexandrei has undergone population expansion during Pleistocene. In this sense, the sea level variation from this period could have increased the available resources and suitable habitats for the Brazilian snapper.