Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 717
Filter
1.
Water Res ; 261: 122043, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981351

ABSTRACT

The bioaccumulation and trophic transfer of organophosphate flame retardants (OPFRs) in marine ecosystems have attracted great attention in recent research, but our understanding of the trophic transfer mechanisms involved is limited. In this study, we investigated the trophodynamics of OPFRs and their metabolites in a subtropical coastal food web collected from the northern Beibu Gulf, China, and characterized their trophodynamics using fugacity- and biotransformation-based approaches. Eleven OPFRs and all seven metabolites were simultaneously quantified in the shellfish, crustacean, pelagic fish, and benthic fish samples, with total concentrations ranging from 164 to 4.11 × 104 and 4.56-4.28 × 103 ng/g lipid weight, respectively. Significant biomagnification was observed only for tris (phenyl) phosphate (TPHP) and tris (2-ethylhexyl) phosphate (TEHP), while other compounds except for tris(2-chloroethyl) phosphate (TCEP) displayed biomagnification trends based on Monte Carlo simulations. Using a fugacity-based approach to normalize the accumulation of OPFRs in biota to their relative biological phase composition, storage lipid is the predominant biological phase for the mass distribution of 2-ethylhexyl diphenyl phosphate (EHDPHP) and TPHP. The water content and structure protein are equally important for TCEP, whereas lipid and structure protein are the two most important phases for other OPFRs. The mass distribution of these OPFRs along with TLs can explain their trophodynamics in the food web. The organophosphate diesters (as OPFR metabolites) also displayed biomagnification trends based on bootstrapped estimation. The correlation analysis and Korganism-water results jointly suggested the metabolites accumulation in high-TL organisms was related to biotransformation processes. The metabolite-backtracked trophic magnification factors for tri-n­butyl phosphate (TNBP) and TPHP were both greater than the values that accounted for only the parent compounds. This study highlights the incorporation of fugacity and biotransformation analysis to characterize the trophodynamic processes of OPFRs and other emerging pollutants in food webs.


Subject(s)
Biotransformation , Flame Retardants , Food Chain , Organophosphates , Water Pollutants, Chemical , Flame Retardants/metabolism , Organophosphates/metabolism , Animals , China , Water Pollutants, Chemical/metabolism , Fishes/metabolism , Environmental Monitoring
2.
Chem Biol Interact ; 400: 111144, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39002877

ABSTRACT

Organophosphate flame retardants (OPFRs) pose the significant risks to the environment and human health and have become a serious public health issue. Tricresyl phosphates (TCPs), a group of aryl OPFRs, exhibit neurotoxicity and endocrine disrupting toxicity. However, the binding mechanisms between TCPs and human serum albumin (HSA) remain unknown. In this study, through fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy, molecular docking and molecular dynamics (MD), tri-para-cresyl phosphate (TpCP) was selected to explore potential interactions between HSA and TCPs. The results of the fluorescence spectroscopy demonstrated that a decrease in the fluorescence intensity of HSA and a blue shift were observed with the increasing concentrations of TpCP. The binding constant (Ka) was 2.575 × 104 L/mol, 4.701 × 104 L/mol, 5.684 × 104 L/mol and 9.482 × 104 L/mol at 293 K, 298 K, 303 K, and 310 K, respectively. The fluorescence process between HSA and TpCP involved a mix of static and dynamic quenching mechanism. The gibbs free energy (ΔG0) of HSA-TpCP system was -24.452 kJ/mol, -25.907 kJ/mol, -27.363 kJ/mol, and - 29.401 kJ/mol at 293 K, 298 K, 303 K, and 310 K, respectively, suggesting that the HSA-TpCP reaction was spontaneous. The enthalpy change (ΔH0) and thermodynamic entropy change (ΔS0) of the HSA-TpCP system were 60.83 kJ/mol and 291.08 J/(mol·>k), respectively, indicating that hydrophobic force was the major driving force in the HSA-TpCP complex. Furthermore, multispectral analysis also revealed that TpCP could alter the microenvironment of tryptophan residue and the secondary structure of HSA and bind with the active site I of HSA. Molecular docking and MD simulations confirmed that TpCP could spontaneously form a stable complex with HSA, which was consistent with the fluorescence experimental results. This study provides novel insights into the mechanisms of underlying the transportation and distribution of OPFRs in humans.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Spectrometry, Fluorescence , Thermodynamics , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Flame Retardants/metabolism , Spectrophotometry, Ultraviolet , Binding Sites , Tritolyl Phosphates/chemistry , Tritolyl Phosphates/metabolism , Serum Albumin/chemistry , Serum Albumin/metabolism , Hydrogen Bonding
3.
Molecules ; 29(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893541

ABSTRACT

Ammonium polyphosphate (APP), a pivotal constituent within environmentally friendly flame retardants, exhibits notable decomposition susceptibility and potentially engenders ecological peril. Consequently, monitoring the APP concentration to ensure product integrity and facilitate the efficacious management of wastewater from production processes is of great significance. A fluorescent assay was devised to swiftly discern APP utilizing 4',6'-diamino-2-phenylindole (DAPI). With increasing APP concentrations, DAPI undergoes intercalation within its structure, emitting pronounced fluorescence. Notably, the flame retardant JLS-PNA220-A, predominantly comprising APP, was employed as the test substrate. Establishing a linear relationship between fluorescence intensity (F-F0) and JLS-PNA220-A concentration yielded the equation y = 76.08x + 463.2 (R2 = 0.9992), with a LOD determined to be 0.853 mg/L. The method was used to assess the degradation capacity of APP-degrading bacteria. Strain D-3 was isolated, and subsequent analysis of its 16S DNA sequence classified it as belonging to the Acinetobacter genus. Acinetobacter nosocomialis D-3 demonstrated superior APP degradation capabilities under pH 7 at 37 °C, with degradation rates exceeding 85% over a four-day cultivation period. It underscores the sensitivity and efficacy of the proposed method for APP detection. Furthermore, Acinetobacter nosocomialis D-3 exhibits promising potential for remediation of residual APP through environmental biodegradation processes.


Subject(s)
Acinetobacter , Biodegradation, Environmental , Polyphosphates , Acinetobacter/metabolism , Acinetobacter/genetics , Polyphosphates/metabolism , Polyphosphates/chemistry , Indoles/metabolism , Indoles/chemistry , Ammonium Compounds/metabolism , Ammonium Compounds/chemistry , Flame Retardants/metabolism , Flame Retardants/analysis
4.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895814

ABSTRACT

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Subject(s)
Polybrominated Biphenyls , Water Pollutants, Chemical , Animals , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Anaerobiosis , Wastewater/chemistry , Biota , Flame Retardants/toxicity , Flame Retardants/metabolism , Waste Disposal, Fluid/methods , Chironomidae/drug effects , Chironomidae/metabolism , Aquatic Organisms/drug effects , Aquatic Organisms/metabolism
5.
Sci Total Environ ; 945: 173927, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901584

ABSTRACT

The ubiquity and persistence of organophosphate esters (OPEs) and heavy metal (HMs) pose global environmental risks. This study explored tris(2-chloroisopropyl)phosphate (TCPP) biomineralization coupled to lead (Pb2+) biostabilization driven by denitrifying bacteria (DNB). The domesticated DNB achieved synergistic bioremoval of TCPP and Pb2+ in the batch bioreactor (efficiency: 98 %).TCPP mineralized into PO43- and Cl-, and Pb2+ precipitated with PO43-. The TCPP-degrading/Pb2+-resistant DNB: Achromobacter, Pseudomonas, Citrobacter, and Stenotrophomonas, dominated the bacterial community, and synergized TCPP biomineralization and Pb2+ biostabilization. Metagenomics and metaproteomics revealed TCPP underwent dechlorination, hydrolysis, the TCA cycle-based dissimilation, and assimilation; Pb2+ was detoxified via bioprecipitation, bacterial membrane biosorption, EPS biocomplexation, and efflux out of cells. TCPP, as an initial donor, along with NO3-, as the terminal acceptor, formed a respiratory redox as the primary energy metabolism. Both TCPP and Pb2+ can stimulate phosphatase expression, which established the mutual enhancements between their bioconversions by catalyzing TCPP dephosphorylation and facilitating Pb2+ bioprecipitation. TCPP may alleviate the Pb2+-induced oxidative stress by aiding protein phosphorylation. 80 % of Pb2+ converted into crystalized pyromorphite. These results provide the mechanistic foundations and help develop greener strategies for synergistic bioremediation of OPEs and HMs.


Subject(s)
Biodegradation, Environmental , Environmental Pollutants , Lead , Organophosphates , Organophosphates/chemistry , Organophosphates/metabolism , Flame Retardants/metabolism , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Denitrification , Lead/chemistry , Lead/metabolism , Achromobacter/metabolism , Pseudomonas/metabolism , Citrobacter/metabolism , Stenotrophomonas/metabolism , Metagenomics , Proteomics , Oxidative Stress
6.
Anal Bioanal Chem ; 416(20): 4543-4554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877147

ABSTRACT

Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 µg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 µg/L for males and 0.53 µg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.


Subject(s)
Biological Monitoring , Flame Retardants , Limit of Detection , Liquid-Liquid Extraction , Organophosphorus Compounds , Oxidative Stress , Tandem Mass Spectrometry , Humans , Flame Retardants/analysis , Flame Retardants/metabolism , Tandem Mass Spectrometry/methods , Female , Male , Chromatography, High Pressure Liquid/methods , Adult , Biological Monitoring/methods , Organophosphorus Compounds/urine , Liquid-Liquid Extraction/methods , Middle Aged , Biomarkers/urine , Young Adult
7.
Chem Biol Interact ; 398: 111095, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844256

ABSTRACT

It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.


Subject(s)
Histones , Organophosphorus Compounds , Pesticides , Histones/metabolism , Histones/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/toxicity , Animals , Pesticides/chemistry , Pesticides/metabolism , Pesticides/toxicity , Cattle , Methylation , Malathion/chemistry , Malathion/metabolism , Malathion/toxicity , Proteomics , Flame Retardants/toxicity , Flame Retardants/metabolism , Amino Acid Sequence , Dichlorvos/chemistry , Dichlorvos/toxicity
8.
Chemosphere ; 362: 142611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878983

ABSTRACT

Bromophenols has been proven to synthesize hydroxylated polybrominated diphenyl ethers (OH-PBDEs), which may pose additional environmental and health risks in the process of bioremediation. In this study, the removal of 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) and the biosynthetic of OH-PBDEs by Prorocentrum donghaiense were explored. The removal efficiencies of 2,4-DBP and 2,4,6-TBP ranged from 32.71% to 76.89% and 31.15%-78.12%, respectively. Low concentrations of 2,4-DBP stimulated algal growth, while high concentrations were inhibitory. Furthermore, exposure to 10.00 mg L-1 2,4-DBP resulted in the detection of 2'-hydroxy-2,3',4,5'-tetrabromodiphenyl ether (2'-OH-BDE-68) within P. donghaiense. In contrast, increasing concentrations of 2,4,6-TBP considerably inhibited P. donghaiense growth, with 4'-hydroxy-2,3',4,5',6-pentabromodiphenyl ether (4'-OH-BDE-121) detected within P. donghaiense under 5.00 mg L-1 2,4,6-TBP. Metabolomic analysis further revealed that the synthesized OH-PBDEs exhibited higher toxicity than their precursors and identified the oxidative coupling as a key biosynthetic mechanism. These findings confirm the capacity of P. donghaiense to remove bromophenols and biosynthesize OH-PBDEs from bromophenols, offering valuable insights into formulating algal bioremediation to mitigate bromophenol contamination.


Subject(s)
Biodegradation, Environmental , Halogenated Diphenyl Ethers , Phenols , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/chemistry , Phenols/metabolism , Hydroxylation , Flame Retardants/metabolism
9.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701378

ABSTRACT

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Subject(s)
Biomarkers , Flame Retardants , Halogenated Diphenyl Ethers , Occupational Exposure , Organophosphates , Flame Retardants/metabolism , Humans , Inhalation Exposure , Adult , Male , Skin/metabolism , United States , Female
10.
Langmuir ; 40(20): 10600-10614, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38721840

ABSTRACT

Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.


Subject(s)
Flame Retardants , X-Ray Diffraction , Flame Retardants/metabolism , Halogenation , Cell Membrane/metabolism , Cell Membrane/chemistry
11.
J Hazard Mater ; 472: 134529, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723482

ABSTRACT

Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.


Subject(s)
Aquatic Organisms , Ecosystem , Estuaries , Flame Retardants , Water Pollutants, Chemical , Flame Retardants/metabolism , Flame Retardants/analysis , Animals , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Aquatic Organisms/metabolism , Oceans and Seas , Fishes/metabolism , Bioaccumulation , Species Specificity , Environmental Monitoring , China , Invertebrates/metabolism
12.
Sci Total Environ ; 933: 173230, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38750745

ABSTRACT

The pollution of various brominated flame retardants (BFRs) is concurrence, while their environmental fate and toxicology in water-sediment-submerged plant systems remain unclear. In this study, Vallisneria natans plants were co-exposed to 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ether (BDE209), and decabromodiphenyl ethane (DBDPE). The ∑BFRs concentration in the root was 2.15 times higher than that in the shoot. Vallisneria natans accumulated more BTBPE and HBB in 0.2, 1, and 5 mg/kg treatments, while they accumulated more DBDPE and BDE209 in 25 and 50 mg/kg treatments. The bioaccumulation factors in the shoot and root were 1.08-96.95 and 0.04-0.70, respectively. BFRs in sediments had a more pronounced effect on bioaccumulation levels than BFRs in water, and biotranslocation was another potential influence factor. The SOD activity, POD activity, and MDA content were significantly increased under co-exposure. The DBDPE separate exposure impacted the metabolism of substances and energy, inhibited mismatch repair, and disrupted ribosomal functions in Vallisneria natans. However, DBDPE enhanced their photosynthesis by upregulating the expression level of genes related to the light reaction. This study provides a broader understanding of the bioaccumulation and toxicity of BFRs in submerged plants, shedding light on the scientific management of products containing BFRs.


Subject(s)
Flame Retardants , Oxidative Stress , Photosynthesis , Water Pollutants, Chemical , Flame Retardants/metabolism , Water Pollutants, Chemical/metabolism , Photosynthesis/drug effects , Bioaccumulation , Geologic Sediments/chemistry , Halogenated Diphenyl Ethers/metabolism , Hydrocharitaceae/metabolism
13.
J Hazard Mater ; 473: 134731, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797078

ABSTRACT

Organophosphate flame retardants (OPFRs) are widely used in consumer products, leading to their unavoidable release into the environment, especially accumulation in anaerobic environments and posing potential risks. This study focused on Tris(2-chloroethyl) phosphate (TCEP), a representative OPFR, to investigate its effects on carbon transformation and methane production in anaerobic digestion. Increasing TCEP concentrations from control to 16 mg/L resulted in decreased cumulative methane yield (from 235.4 to 196.3 mL/g COD) and maximum daily methane yield (from 40.8 to 16.17 mL/(g COD·d)), along with an extended optimal anaerobic digestion time (from 15 to 20 days). Mechanistic analysis revealed TCEP binding to tyrosine-like proteins in extracellular polymeric substances, causing cell membrane integrity impairment. The TCEP-caused alteration of the physiological status of cells was demonstrated to be a significant contribution to the inhibited bioprocesses including acidogenesis, acetogenesis, and methanogenesis. Illumina Miseq sequencing showed TCEP decreasing the relative abundance of acidogens (58.8 % to 46.0 %) and acetogens (7.1 % to 5.0 %), partly shifting the methanogenesis pathway from acetoclastic to hydrogenotrophic methanogenesis. These findings enhance understanding of TCEP's impact on anaerobic digestion, emphasizing the environmental risk associated with its continued accumulation.


Subject(s)
Flame Retardants , Methane , Organophosphates , Methane/metabolism , Anaerobiosis , Organophosphates/metabolism , Organophosphates/toxicity , Flame Retardants/metabolism , Flame Retardants/toxicity , Bioreactors , Microbiota/drug effects , Bacteria/metabolism , Bacteria/drug effects
14.
Sci Total Environ ; 939: 173224, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763187

ABSTRACT

Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.


Subject(s)
Environmental Monitoring , Flame Retardants , Halogenated Diphenyl Ethers , Hydrocarbons, Brominated , Water Pollutants, Chemical , Flame Retardants/metabolism , Flame Retardants/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Brominated/metabolism , Hydrocarbons, Brominated/analysis , Bioaccumulation
15.
J Hazard Mater ; 472: 134594, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754233

ABSTRACT

Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.


Subject(s)
Biotransformation , Halogenated Diphenyl Ethers , Iron , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/chemistry , Iron/chemistry , Iron/metabolism , Environmental Pollutants/metabolism , Environmental Pollutants/chemistry , Flame Retardants/metabolism , Adsorption , Plants/metabolism
16.
Chemosphere ; 359: 142290, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723691

ABSTRACT

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Subject(s)
Biotransformation , Flame Retardants , Helianthus , Polybrominated Biphenyls , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Helianthus/drug effects , Helianthus/metabolism , Flame Retardants/toxicity , Flame Retardants/metabolism , Catalase/metabolism
17.
J Hazard Mater ; 470: 134217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583197

ABSTRACT

Tetrabromobisphenol A (TBBPA), a common brominated flame retardant and a notorious pollutant in anaerobic environments, resists aerobic degradation but can undergo reductive dehalogenation to produce bisphenol A (BPA), an endocrine disruptor. Conversely, BPA is resistant to anaerobic biodegradation but susceptible to aerobic degradation. Microbial degradation of TBBPA via anoxic/oxic processes is scarcely documented. We established an anaerobic microcosm for TBBPA dehalogenation to BPA facilitated by humin. Dehalobacter species increased with a growth yield of 1.5 × 108 cells per µmol Br- released, suggesting their role in TBBPA dehalogenation. We innovatively achieved complete and sustainable biodegradation of TBBPA in sand/soil columns columns, synergizing TBBPA reductive dehalogenation by anaerobic functional microbiota and BPA aerobic oxidation by Sphingomonas sp. strain TTNP3. Over 42 days, 95.11 % of the injected TBBPA in three batches was debrominated to BPA. Following injection of strain TTNP3 cells, 85.57 % of BPA was aerobically degraded. Aerobic BPA degradation column experiments also indicated that aeration and cell colonization significantly increased degradation rates. This treatment strategy provides valuable technical insights for complete TBBPA biodegradation and analogous contaminants.


Subject(s)
Biodegradation, Environmental , Flame Retardants , Oxidation-Reduction , Phenols , Polybrominated Biphenyls , Polybrominated Biphenyls/metabolism , Polybrominated Biphenyls/chemistry , Anaerobiosis , Aerobiosis , Phenols/metabolism , Flame Retardants/metabolism , Benzhydryl Compounds/metabolism , Sphingomonas/metabolism , Halogenation , Soil Pollutants/metabolism
18.
Environ Pollut ; 349: 123959, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38608855

ABSTRACT

The worldwide prevalence of obesity highlights the potential contribution of endocrine-disrupting chemicals (EDCs). However, common epidemiological measures such as body mass index and waist circumference may misrepresent the intricate obesity risks these chemicals pose across genders. This study delves deeper into abdominal fat by differentiating between subcutaneous and visceral regions by analyzing data from National Health and Nutrition Examination Surveys (NHANES). We particularly investigated the gender-specific associations between organophosphorus flame-retardant metabolites (mOPFRs), phthalates (mPAEs) and accumulated fat indexes from 2536 people. Aiding by Bayesian Kernel Machine Regression (BKMR), we found while co-exposure to mOPFRs and mPAEs was linked to general and abdominal obesity across the entire and gender-specific populations, a gender-specific fat distribution emerged. For women, urinary BDCPP and MBzP were linked to an increased subcutaneous fat index (SFI) [BDCPP OR: 1.12 (95% CI: 1.03-1.21), MBzP OR: 1.09 (95% CI: 1.01-1.18)], but not to visceral fat index (VFI). These metabolites had a combined linkage with SFI, with BDCPP (weighting 22.0%) and DPHP (weighting 31.0%) being the most influential in Quantile g-computation model (qgcomp) model. In men, BCEP exposure exclusively associated with the elevated VFI [OR: 1.14 (95% CI: 1.03-1.26)], a trend further highlighted in mixture models with BCEP as the predominant association. Intriguingly, only males displayed a marked correlation between these metabolites and insulin resistance in subpopulation. An attempted mediation analysis revealed that elevated C-reactive protein mediated 12.1% of the association between urinary BCEP and insulin resistance, suggesting a potential role of inflammation. In conclusion, the gender-specific fat distribution and insulin resistance that associated with mOPFRs represented the potential risk of these chemicals to man.


Subject(s)
Environmental Exposure , Insulin Resistance , Phthalic Acids , Humans , Female , Male , Phthalic Acids/metabolism , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Endocrine Disruptors/metabolism , Organophosphates/metabolism , Abdominal Fat/metabolism , Environmental Pollutants/metabolism , Esters/metabolism , Flame Retardants/metabolism , Young Adult , Nutrition Surveys , Sex Factors
19.
Environ Int ; 186: 108647, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38615542

ABSTRACT

The St. Lawrence Estuary (SLE) beluga (Delphinapterus leucas) population is highly exposed to an array of contaminants that were identified as one of the causes to the non-recovery of this endangered and declining population. In the last decade, an increasing number of parturition-associated complications and calf mortality has been reported in this population. It was suggested that elevated exposure to organohalogens (e.g., the halogenated flame retardants polybrominated diphenyl ethers [PBDEs]) and stress could play a role in this phenomenon by perturbing thyroid hormones. The objective of this study was to investigate the impact of concentrations of organohalogen contaminants and stress (cortisol levels) on thyroid hormone variations in adult male and female SLE belugas. Because plasma could not be collected in SLE belugas for ethical reasons, skin biopsy (n = 40) was used as a less-invasive alternative matrix to determine organohalogens (PBDEs and other halogenated flame retardants, polychlorinated biphenyls, and organochlorine pesticides), cortisol, and thyroid hormones (triiodothyronine [T3] and thyroxine [T4]), and their metabolites reverse T3 and 3,5-diiodothyronine [3,5-T2]). Cortisol and thyroid hormones were analyzed by ultra-performance liquid chromatography-multiple reactions monitoring mass spectrometry (UPLC-MRM/MS). This method was compared using skin and plasma samples obtained from Arctic belugas. Comparisons of linear models showed that cortisol was a weak predictor for T4, rT3 and 3,5-T2. Specifically, there was a weak significant negative association between T4 and cortisol levels. Moreover, in male SLE belugas, a weak significant positive association was found between T3 and Σ34PBDE concentrations in skin. Our findings suggest that stress (i.e., elevated skin cortisol levels) along with organohalogen exposure (mainly PBDEs) may be associated with thyroid hormone level perturbations in skin of cetaceans.


Subject(s)
Beluga Whale , Hydrocortisone , Thyroid Hormones , Water Pollutants, Chemical , Animals , Female , Male , Water Pollutants, Chemical/blood , Hydrocortisone/blood , Thyroid Hormones/blood , Estuaries , Halogenated Diphenyl Ethers/blood , Polychlorinated Biphenyls/blood , Environmental Monitoring , Flame Retardants/metabolism , Stress, Physiological , Endangered Species , Triiodothyronine/blood , Hydrocarbons, Halogenated/blood , Thyroxine/blood
20.
Environ Pollut ; 348: 123883, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548154

ABSTRACT

The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.


Subject(s)
Environmental Pollutants , Flame Retardants , Humans , Flame Retardants/metabolism , Triazines/analysis , Cytochrome P-450 Enzyme System/metabolism , Biotransformation , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL