Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 590
1.
Sci Rep ; 14(1): 12254, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806593

Migration of nib Cd to the testa during fermentation can be achieved with high temperatures (> 45 °C) and low nib pH values (< 5.0) using spontaneous fermentation. However, this low pH can lead to low flavor quality. This study used three controlled temperature fermentation treatments on three cacao genotypes (CCN 51, ICS 95, and TCS 01) to test its effects on the nib pH, the migration of nib Cd to the testa, and the liquor flavor quality. All treatments were effective in reducing the total nib Cd concentration. Nevertheless, the treatment with the higher mean temperature (44.25 °C) and acidification (pH 4.66) reached the highest mean nib Cd reductions throughout fermentation, a 1.37 factor in TCS 01, promoting the development of fine-flavor cocoa sensorial notes. In unfermented beans, the Cd concentration of nibs was higher than that of the testa, and the Cd migration proceeded down the total concentration gradient. However, Cd migration was observed against the concentration gradient (testa Cd > nib Cd) from the fourth day. Cd migration could increase by extensive fermentation until the sixth day in high temperatures and probably by the adsorbent capacity of the testa. Genotype-by-treatment interactions were present for the nib Cd reduction, and a universal percentage of decrease of Cd for each genotype with fermentation cannot be expected. Selecting genotypes with highly adsorbent testa combined with controlled temperatures would help reduce the Cd concentration in the cacao raw material, improving its safety and quality.


Cacao , Cadmium , Fermentation , Cacao/metabolism , Hydrogen-Ion Concentration , Cadmium/metabolism , Taste , Hot Temperature , Flavoring Agents/metabolism , Temperature
2.
Food Res Int ; 187: 114315, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763628

Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.


Bacteria , Capsicum , Fermentation , Odorants , Taste , Volatile Organic Compounds , Capsicum/microbiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Odorants/analysis , Bacteria/metabolism , Bacteria/classification , Food Microbiology , Fungi/metabolism , Fungi/classification , Amino Acids/analysis , Amino Acids/metabolism , Fermented Foods/microbiology , Fermented Foods/analysis , Metabolic Networks and Pathways , Flavoring Agents/metabolism , Flavoring Agents/analysis
3.
Food Res Int ; 187: 114405, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763659

Sojae semen praeparatum (SSP), a fermented product known for its distinctive flavor and medicinal properties, undergoes a complex fermentation process due to the action of various microorganisms. Despite its widespread use, the effect of these microorganisms on the flavor compounds and functional components of SSP remains poorly understood. This study aimed to shed light on this aspect by identifying 20 metabolites as potential key flavor substances in SSP. Moreover, glycine and lysine were identified as crucial flavor substances. Additionally, 24 metabolites were identified as key functional components. The dominant microorganisms involved in the fermentation process were examined, revealing six genera of fungi and 12 genera of bacteria. At the species level, 16 microorganisms were identified as dominant through metagenome sequencing. Spearman correlation analysis demonstrated a strong association between dominant microorganisms and both flavor substances and functional components. Furthermore, the study validated the significance of four core functional microorganisms in improving the flavor and quality of SSP. This comprehensive exploration of functional microorganisms of SSP on key flavor substances/functional components during SSP fermentation. The study findings serve as a valuable reference for enhancing the overall flavor and quality of SSP.


Bacteria , Fermentation , High-Throughput Nucleotide Sequencing , Metabolomics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Flavoring Agents/metabolism , Taste , Fungi/metabolism , Fungi/genetics , Food Microbiology , Fermented Foods/microbiology , Lysine/metabolism
4.
Food Res Int ; 183: 114196, 2024 May.
Article En | MEDLINE | ID: mdl-38760131

Baijiu production has relied on natural inoculated Qu as a starter culture, causing the unstable microbiota of fermentation grains, which resulted in inconsistent product quality across batches. Therefore, revealing the core microbes and constructing a synthetic microbiota during the fermentation process was extremely important for stabilizing product quality. In this study, the succession of the microbial community was analyzed by high-throughput sequencing technology, and ten core microbes of Xiaoqu light-aroma Baijiu were obtained by mathematical statistics, including Acetobacter, Bacillus, Lactobacillus, Weissella, Pichia,Rhizopus, Wickerhamomyces, Issatchenkia, Saccharomyces, and Kazachstania. Model verification showed that the core microbiota significantly affected the composition of non-core microbiota (P < 0.01) and key flavor-producing enzymes (R > 0.8, P < 0.01), thus significantly affecting the flavor of base Baijiu. Simulated fermentation validated that the core microbiota can reproduce the fermentation process and quality of Xiaoqu light-aroma Baijiu. The succession of bacteria was mainly regulated by acidity and ethanol, while the fungi, especially non-Saccharomyces cerevisiae, were mainly regulated by the initial dominant bacteria (Acetobacter, Bacillus, and Weissella). This study will play an important role in the transformation of Xiaoqu light-aroma Baijiu fermentation from natural fermentation to controlled fermentation and the identification of core microbes in other fermented foods.


Bacteria , Fermentation , Food Microbiology , Microbiota , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/metabolism , Fungi/isolation & purification , Alcoholic Beverages/microbiology , High-Throughput Nucleotide Sequencing , Taste , Flavoring Agents/metabolism
5.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700031

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
6.
Food Chem ; 450: 139517, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38703670

The purpose of this study was to investigate the impact of high­oxygen-modified atmospheric packaging (HOMAP) on aroma changes in fresh-cut broccoli during storage and to explore its regulatory mechanisms. The results showed that HOMAP reduced the levels of undesirable aroma substances hexanoic acid, isobutyric acid, cyclopentanone and increased glucosinolate accumulation by inhibiting the expression of arogenate/prephenate dehydratase (ADT), bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase (PAT), thiosulfate/3-mercaptopyruvate Transferase (TST) to reduce the odor of fresh-cut broccoli. HOMAP inhibited the expression of respiratory metabolism related genes 6-phosphate fructokinase 1 (PFK), pyruvate kinase (PK), and NADH-ubiquinone oxidoreductase chain 6 (ND6). In HOMAP group, the low expression of phospholipase C (PLC), phospholipase A1 (PLA1), linoleate 9S-lipoxygenase 1 (LOX1) related to lipid metabolism and the high expression of naringenin 3-dioxygenase (F3H), trans-4-Hydroxycinnamate (C4H), glutaredoxin 3 (GRX3), and thioredoxin 1 (TrX1) in the antioxidant system maintained membrane stability while reducing the occurrence of membrane lipid peroxidation.


Brassica , Food Packaging , Oxygen , Brassica/chemistry , Brassica/metabolism , Food Packaging/instrumentation , Oxygen/metabolism , Oxygen/analysis , Taste , Odorants/analysis , Plant Proteins/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Storage , Food Preservation/methods
7.
FEMS Yeast Res ; 242024 Jan 09.
Article En | MEDLINE | ID: mdl-38684485

Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.


Alcoholic Beverages , Fermentation , Flavoring Agents , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis , Flavoring Agents/metabolism , Yeasts/metabolism , Yeasts/genetics , Yeasts/classification , Taste , Scotland , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Volatile Organic Compounds/metabolism
8.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38565314

AIMS: Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS: Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION: In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.


Candida , Caproates , Esters , Fermentation , Fermented Foods , Caproates/metabolism , Esters/metabolism , Esters/analysis , Fermented Foods/microbiology , Fermented Foods/analysis , Candida/metabolism , Flavoring Agents/metabolism , Food Microbiology , Alcoholic Beverages/microbiology , Alcoholic Beverages/analysis
9.
Food Chem ; 449: 139239, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604034

Single starter can hardly improve the volatile flavor of fermented fish surimi. In this study, the changes of volatile compounds (VCs) and microbial composition during cooperative fermentation of Latilactobacillus sakei and Pediococcus acidilactici were studied by headspace solid-phase microextraction gas chromatography-mass spectrometry and 16S rRNA gene high-throughput sequencing. During cooperative fermentation, most VCs and the abundance of Latilactobacillus and Lactococcus significantly increased, while Pediococcus, Acinetobacter, and Macrococcus obviously decreased. After evaluation of correlation and abundance of each genus, Latilactobacillus and Lactococcus possessed the highest influence on the formation of volatile flavor during cooperative fermentation. Compared with the natural fermentation, cooperative fermentation with starters significantly enhanced most of pleasant core VCs (odor activity value≥1), but inhibited the production of trimethylamine and methanethiol, mainly resulting from the absolutely highest influence of Latilactobacillus. Cooperative fermentation of starters is an effective method to improve the volatile flavor in the fermented tilapia surimi.


Fermentation , Fish Products , Latilactobacillus sakei , Pediococcus acidilactici , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Animals , Pediococcus acidilactici/metabolism , Fish Products/analysis , Fish Products/microbiology , Latilactobacillus sakei/metabolism , Tilapia/microbiology , Tilapia/metabolism , Tilapia/growth & development , Taste , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Fermented Foods/microbiology , Fermented Foods/analysis , Gas Chromatography-Mass Spectrometry
10.
Food Chem ; 449: 139281, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38608608

In this study, metabolomics and proteomics were performed to investigate the fluctuations of non-volatile compounds and proteins in tea leaves from three tea cultivars with varying colours during withering. A total of 2798 compounds were detected, exhibiting considerable variations in amino acids, phenylpropanoids, and flavonoids. The ZH1 cultivar displayed increased levels of amino acids but decreased levels of polyphenols, which might be associated with the up-regulation of enzymes responsible for protein degradation and subsequent amino acid production, as well as the down-regulation of enzymes involved in phenylpropanoid and flavonoid biosynthesis. The FUD and ZH1 cultivars had elevated levels of flavanols and flavanol-O-glycosides, which were regulated by the upregulation of FLS. The ZJ and ZH1 cultivars displayed elevated levels of theaflavin and peroxidase. This work presents a novel investigation into the alterations of metabolites and proteins between tea cultivars during withering, and helps with the tea cultivar selection and manufacturing development.


Camellia sinensis , Flavoring Agents , Metabolomics , Plant Leaves , Plant Proteins , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/genetics , Camellia sinensis/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Proteomics , Polyphenols/metabolism , Polyphenols/chemistry , Polyphenols/analysis , Color , Tea/chemistry , Flavonoids/analysis , Flavonoids/metabolism , Flavonoids/chemistry , Multiomics
11.
Food Chem ; 449: 139302, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38608610

In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.


Hot Temperature , Sea Cucumbers , Animals , Sea Cucumbers/chemistry , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Protein Hydrolysates/chemistry , Taste , Hydrolysis , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Ultrasonic Waves
12.
Food Chem ; 449: 139213, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38631134

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Fermentation , Flavoring Agents , Odorants , Pyrus , Saccharomyces cerevisiae , Sorbitol , Taste , Wine , Wine/analysis , Wine/microbiology , Pyrus/chemistry , Pyrus/microbiology , Pyrus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Sorbitol/metabolism , Sorbitol/analysis , Odorants/analysis , Ethanol/metabolism , Ethanol/analysis , Pichia/metabolism , Metschnikowia/metabolism , Fruit/chemistry , Fruit/microbiology , Fruit/metabolism
13.
J Agric Food Chem ; 72(18): 10558-10569, 2024 May 08.
Article En | MEDLINE | ID: mdl-38668637

As a traditional Thai condiment, Pla-ra is used to add flavor and richness to dishes. Nine treatment combinations of Pla-ra formulations created from 3 types of fish (Mor fish, Kradee fish, and Mor + Kradee fish) and 4 different carbohydrate sources (none, rice bran, roasted rice, and rice bran─roasted rice mixture) were studied through a 12 month fermentation period (1, 3, 5, 7, 8, 9, 10, 11, and 12 months). 16S rRNA Next Generation Sequencing (NGS) and LC-MS/MS techniques were used to analyze the microbial diversity and identify taste-enhancing peptides. Descriptive sensory analysis was performed on the extracts of the 108 Pla-ra samples mixed in a model broth. Koku perception and saltiness-enhancing attributes were clearly perceived and dominant in all samples, even though glutamyl peptides, including γ-Glu-Val-Gly, were found at subthreshold levels. The samples from mixed fish and Mor fish fermented with roasted ground rice and rice bran for 12 months had the most typical Pla-ra odors and tastes and had high taste-enhancing activities. NGS analysis revealed the presence of bacteria containing a large number of protease and aminopeptidase genes in the samples. Bacillus spp., Gallicola spp., and Proteiniclasticum spp. correlated well with the generation of glutamyl and arginyl peptides and typical odors in the samples. These results confirmed the typical sensory quality of Pla-ra depended on protein sources, carbohydrate sources, and bacteria communities. Further optimization of the microbial composition found could lead to the development of starter cultures to control and promote flavor development in fermented fish products.


Bacteria , Fermentation , Fishes , Flavoring Agents , Microbiota , Peptides , Taste , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Fishes/microbiology , Thailand , Humans , Peptides/metabolism , Fish Products/analysis , Fish Products/microbiology , Fermented Foods/analysis , Fermented Foods/microbiology , Odorants/analysis , Male , Female , Adult , Oryza/chemistry , Oryza/microbiology , Oryza/metabolism , RNA, Ribosomal, 16S/genetics , Condiments/analysis , Condiments/microbiology , Southeast Asian People
14.
J Biotechnol ; 389: 43-60, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38616038

Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.


Flavoring Agents , Metabolic Engineering , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/enzymology , Perfume , Odorants/analysis , Fermentation
15.
Food Chem ; 450: 139354, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38636385

The interaction between gut microbiota and muscles through the gut-muscle axis has received increasing attention. This study attempted to address existing research gaps by investigating the effects of gut microbiota on meat flavor. Specifically, lactic acid bacteria were administered to ducks, and the results of e-nose and e-tongue showed significantly enhanced meat flavor in the treatment group. Further analyses using GC-MS revealed an increase in 6 characteristic volatile flavor compounds, including pentanal, hexanal, heptanal, 1-octen-3-ol, 2,3-octanedione, and 2-pentylfuran. Linoleic acid was identified as the key fatty acid that influences meat flavor. Metagenomic and transcriptomic results further confirmed that cecal microbiota affects the duck meat flavor by regulating the metabolic pathways of fatty acids and amino acids, especially ACACB was related to fatty acid biosynthesis and ACAT2, ALDH1A1 with fatty acid degradation. This study sheds light on a novel approach to improving the flavor of animal-derived food.


Ducks , Gastrointestinal Microbiome , Lactobacillales , Meat , Taste , Animals , Ducks/microbiology , Meat/analysis , Meat/microbiology , Lactobacillales/metabolism , Lactobacillales/genetics , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Fatty Acids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry
16.
Food Chem ; 450: 139236, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38640537

The aftertaste with a prolonged duration in ampelopsis grossedentata infusion (AGTI) is easily perceived, however, its formation mechanism is unclear. Therefore, aftertaste-A and richness were confirmed as the characteristic aftertaste of AGTI through sensory evaluation and electronic tongue. Moreover, 5-KETE, theobromine, etc., metabolites were identified as the differential components between AGTI and green tea infusion. Among them, p-coumaroyl quinic acid, xanthine etc., and proline, dihydromyricetin, etc., components contributed more to the formation of aftertaste-A and richness, respectively. Further, the bonding between characteristic metabolites for aftertaste in AGTI with their receptors were shown to be more stable using molecular docking, compared to metabolites related to typical taste profiles. The aftertaste in AGTI was more easily perceived by saltiness components or in NaCl system by molecular simulation. This study offers novel insight into the interaction mechanism of aftertaste in tea infusion and will contribute to further study on aftertaste for other foods.


Ampelopsis , Taste , Humans , Ampelopsis/chemistry , Ampelopsis/metabolism , Metabolomics , Molecular Docking Simulation , Male , Female , Adult , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Young Adult , Tea/chemistry , Tea/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism
17.
Food Chem ; 450: 139335, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38642533

Laotan Suancai, a popular traditional Chinese fermented vegetable, is manufactured in the industry via four fermentation rounds. However, the differences in flavor quality of Laotan Suancai from the four fermentation rounds and the causes of this variation remain unclear. Metabolome analysis indicated that the different content of five taste compounds and 31 aroma compounds caused the differences in flavor quality among the variated fermentation rounds of Laotan Suancai. Amplicon sequencing indicated that the microbial succession exhibited a certain pattern during four fermentation rounds and further analysis unveiled that organic acids drove the microbiota shift to more acid-resistant populations. Spearman correlation analysis highlighted that seven core microbes may be involved in the formation of differential flavor and the corresponding metabolic pathways were reconstructed by function prediction. Our findings offer a novel perspective on comprehending the deterioration of flavor quality across the fermentation rounds of Laotan Suancai.


Bacteria , Fermentation , Flavoring Agents , Metabolome , Microbiota , Taste , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Fermented Foods/analysis , Fermented Foods/microbiology , Odorants/analysis , Humans , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Vegetables/microbiology , Vegetables/metabolism , Vegetables/chemistry
18.
Food Chem ; 450: 139376, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38648695

Wuyi Rock Tea (WRT) has different characteristics of "rock flavor" due to different production areas. In this study, we investigated the flavor characteristics and key components of "rock flavor" and the influence of microorganisms on the substances by combining metabolomics and microbiomics with the Rougui WRTs from the Zhengyan, Banyan, and Waishan production areas. The results showed that Rougui has a strong floral and fruity aroma, which is mainly brought by hotrienol, and the sweet, smooth, and fresh taste is composed of epicatechin gallate, epigallocatechin, epigallocatechin gallate, caffeine, theanine, soluble sugar, and sweet and bitter amino acids. Bacteria Chryseobacterium, Pedobacter, Bosea, Agrobacterium, Stenotrophomonas, and Actinoplanes mainly influence the production of hotrienol, epicatechin gallate, and theanine. Fungi Pestalotiopsis, Fusarium, Elsinoe, Teichospora and Tetracladium mainly influence the production of non-volatile compounds. This study provides a reference for the biological formation mechanism of the characteristic aroma of WRT's "rock falvor".


Bacteria , Camellia sinensis , Flavoring Agents , Fungi , Metabolomics , Taste , Tea , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Tea/chemistry , Tea/microbiology , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/microbiology , Fungi/metabolism , Odorants/analysis , Humans
19.
Food Chem ; 450: 139375, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38653052

Cooked off-flavor was produced during the processing of concentrated peach puree (CPP), which led to aroma deterioration. Enzymatic treatment was beneficial in eliminating off-flavors and improving the aroma quality. Herein, the efficacy of glycosidase (AR2000), glucose oxidation (GOD), and their combination on the inhibition of off-flavors and aroma enhancement were evaluated. Compared with CPP, contents of benzaldehyde, benzyl alcohol, nonanal, and linalool increased by 198%, 1222%, 781%, and 71% after AR2000 treatment via the metabolisms of shikimate, glucose, linoleic acid, and linolenic acid, leading to the strengthening of floral and grassy. Due to the removal of 1-octen-3-one via linolenic acid metabolism, cooked off-flavor could be significantly weakened by GOD. Furthermore, Furthermore, the combination of AR2000 and GOD could not only inhibit the production of 1-octen-3-one to weaken the cooked note but also enhance grassy and floral attributes via the increase of aldehydes and alcohols.


Flavoring Agents , Glucose Oxidase , Metabolomics , Odorants , Prunus persica , Volatile Organic Compounds , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Odorants/analysis , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Prunus persica/chemistry , Prunus persica/metabolism , Prunus persica/enzymology , Glucosidases/metabolism , Taste , Fruit/chemistry , Fruit/metabolism , Fruit/enzymology
20.
Food Chem ; 451: 139458, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38670017

Ripening refers to the process of chemical change during the refinement of Keemun black tea (KBT) and is crucial in the formation of Keemun Congou black tea's quality. In this study, the aroma composition of KBT during the ripening was analyzed. Sensomics indicated that ripening strengthened the coconut and fatty aroma of KBT and contributed to the decrease of green aroma substances, resulting in a shift of the overall aroma type of KBT to an integrated aroma profile, which was consistent with sensory evaluation. Changes in fatty acid content and the results of in vitro addition simulation tests confirmed that heat causes highly degradation of fatty acids into fatty aroma volatiles, which is a key driver of the formation of "Keemun aroma" quality. This study revealed the mechanism behind the formation of KBT's integrated "Keemun aroma" quality and the mode of thermal degradation of major fatty acids.


Fatty Acids , Hot Temperature , Odorants , Volatile Organic Compounds , Odorants/analysis , Fatty Acids/metabolism , Fatty Acids/chemistry , Humans , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Tea/chemistry , Tea/metabolism , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Camellia sinensis/growth & development , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Handling
...