Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.988
Filter
1.
PLoS One ; 19(8): e0304010, 2024.
Article in English | MEDLINE | ID: mdl-39150901

ABSTRACT

M64HCl, which has drug-like properties, is a water-soluble Focal Adhesion Kinase (FAK) activator that promotes murine mucosal healing after ischemic or NSAID-induced injury. Since M64HCl has a short plasma half-life in vivo (less than two hours), it has been administered as a continuous infusion with osmotic minipumps in previous animal studies. However, the effects of more transient exposure to M64HCl on monolayer wound closure remained unclear. Herein, we compared the effects of shorter M64HCl treatment in vitro to continuous treatment for 24 hours on monolayer wound closure. We then investigated how long FAK activation and downstream ERK1/2 activation persist after two hours of M64HCl treatment in Caco-2 cells. M64HCl concentrations immediately after washing measured by mass spectrometry confirmed that M64HCl had been completely removed from the medium while intracellular concentrations had been reduced by 95%. Three-hour and four-hour M64HCl (100 nM) treatment promoted epithelial sheet migration over 24 hours similar to continuous 24-hour exposure. 100nM M64HCl did not increase cell number. Exposing cells twice with 2-hr exposures of M64HCl during a 24-hour period had a similar effect. Both FAK inhibitor PF-573228 (10 µM) and ERK kinase (MEK) inhibitor PD98059 (20 µM) reduced basal wound closure in the absence of M64HCl, and each completely prevented any stimulation of wound closure by M64HCl. Rho kinase inhibitor Y-27632 (20 µM) stimulated Caco-2 monolayer wound closure but no further increase was seen with M64HCl in the presence of Y-27632. M64HCl (100 nM) treatment for 3 hours stimulated Rho kinase activity. M64HCl decreased F-actin in Caco-2 cells. Furthermore, a two-hour treatment with M64HCl (100 nM) stimulated sustained FAK activation and ERK1/2 activation for up to 16 and hours 24 hours, respectively. These results suggest that transient M64HCl treatment promotes prolonged intestinal epithelial monolayer wound closure by stimulating sustained activation of the FAK/ERK1/2 pathway. Such molecules may be useful to promote gastrointestinal mucosal repair even with a relatively short half-life.


Subject(s)
Intestinal Mucosa , Wound Healing , Humans , Wound Healing/drug effects , Caco-2 Cells , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Kinase 1/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cell Movement/drug effects , Pyridines/pharmacology , Animals , Amides/pharmacology
2.
Mol Biol Rep ; 51(1): 821, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023636

ABSTRACT

BACKGROUND: Our previous study has demonstrated that Nischarin (NISCH) exerts its antitumor effects in breast cancer (BC) by suppressing cell migration and invasion. This study aims to explore the underlying mechanism through which NISCH functions in BC. METHODS AND RESULTS: The relevance between EGF Like Repeats and Discoidin Domains 3 (EDIL3) mRNA expression and the overall survival of tumor patients was depicted by the Kaplan-Meier curve. The findings revealed that overexpressed NISCH attenuated cell motility and colony-forming capacities of Hs578T cells, yet silenced NISCH in MDA-MB-231 cells led to contrasting results. Western blot (WB) analysis indicated that overexpression of NISCH significantly down-regulated the Vimentin and Slug expression, and inactivated the FAK/ERK signaling pathway. RNA sequencing (RNA-seq) was performed in NISCH-overexpressed Hs578T cells and the control cells to analyze differentially expressed genes (DeGs), and the results showed a significant down-regulation of EDIL3 mRNA level upon overexpression of NISCH. Subsequent functional analyses demonstrated that overexpression of EDIL3 attenuated the inhibitory effect of NISCH on cell migration, invasion, colony formation, and tube formation. CONCLUSION: In summary, our finding preliminarily revealed that NISCH inhibits the epithelial-mesenchymal transition (EMT) process and angiogenesis in BC cells by down-regulating EDIL3 to inactivate the FAK/ERK signaling pathway, thereby suppressing the progression of BC. Our results hold promise for contributing to the deep understanding of BC pathogenesis and identifying new therapeutic strategies for clinical application.


Subject(s)
Breast Neoplasms , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Neovascularization, Pathologic , Humans , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Cell Movement/genetics , MAP Kinase Signaling System/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Cell Proliferation/genetics , Vimentin/metabolism , Vimentin/genetics , Signal Transduction , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Angiogenesis , Calcium-Binding Proteins , Cell Adhesion Molecules
3.
Cardiovasc Diabetol ; 23(1): 273, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049086

ABSTRACT

BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.


Subject(s)
Benzhydryl Compounds , Diabetic Cardiomyopathies , Extracellular Matrix , Glucosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2 Inhibitors , Animals , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/pathology , Glucosides/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Benzhydryl Compounds/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Male , Oxidative Stress/drug effects , Cell Line , Disease Models, Animal , Reactive Oxygen Species/metabolism , Rats , Focal Adhesion Kinase 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications
4.
Viruses ; 16(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066315

ABSTRACT

To explore whether the p17 protein of oncolytic avian reovirus (ARV) mediates cell migration and invadopodia formation, we applied several molecular biological approaches for studying the involved cellular factors and signal pathways. We found that ARV p17 activates the p53/phosphatase and tensin homolog (PTEN) pathway to suppress the focal adhesion kinase (FAK)/Src signaling and downstream signal molecules, thus inhibiting cell migration and the formation of invadopodia in murine melanoma cancer cell line (B16-F10). Importantly, p17-induced formation of invadopodia could be reversed in cells transfected with the mutant PTENC124A. p17 protein was found to significantly reduce the expression levels of tyrosine kinase substrate 5 (TKs5), Rab40b, non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), and matrix metalloproteinases (MMP9), suggesting that TKs5 and Rab40b were transcriptionally downregulated by p17. Furthermore, we found that p17 suppresses the formation of the TKs5/NCK1 complex. Coexpression of TKs5 and Rab40b in B16-F10 cancer cells reversed p17-modulated suppression of the formation of invadopodia. This work provides new insights into p17-modulated suppression of invadopodia formation by activating the p53/PTEN pathway, suppressing the FAK/Src pathway, and inhibiting the formation of the TKs5/NCK1 complex.


Subject(s)
Cell Movement , Focal Adhesion Kinase 1 , Orthoreovirus, Avian , Podosomes , Signal Transduction , Animals , Mice , Orthoreovirus, Avian/physiology , Orthoreovirus, Avian/genetics , Cell Line, Tumor , Podosomes/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Oncolytic Viruses/physiology , Oncolytic Viruses/genetics , src-Family Kinases/metabolism , src-Family Kinases/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Melanoma, Experimental/therapy , Melanoma, Experimental/pathology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics
5.
Int J Biol Macromol ; 275(Pt 2): 133593, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971284

ABSTRACT

Integrins are heterodimers composed of two subunits, α(120-185kD) and ß (90-110kD), which mediate the connection between cells and their external environment, such as extracellular matrix (ECM), and play an important role in the regulation of cell shape, proliferation and migration. Herein, we identified a potent anti-tumor migration peptide Accutin from crude venom of Agkistrodon acutus using an A549 3D tumor sphere model, and simulation tools and RNA sequencing were performed to reveal the mechanism of Accutin. Accutin is a disintegrin and docking, molecular dynamics simulations and ITC assay indicate that the RGD motif in the Accutin sequence can stably bind to integrins α5ß1. 9.22 nM Accutin can significantly inhibit the migration and invasion of lung cancer cell lines. Transcriptome analysis indicated that many genes are involved in tumor cell adhesion-related biological processes. Several pathways, like the "mTOR signaling pathway", "TGF-ß signaling pathway", and "Focal adhesion" were enriched. Interestingly, pathways involved in "N-Glycan biosynthesis" etc. were significantly inhibited. These transcriptomics data suggested that the molecular basis of Accutin-mediated inhibition of cancer cell migration may be by inhibiting N-glycosylation of integrin, then inhibiting signaling pathways such as PI3K/AKT/mTOR and TGFß/smad. Western blotting analysis further confirmed that Accutin could suppress migration via down-regulating the phosphorylation of FAK and AKT and inhibiting EMT (epithelial-mesenchymal transition). Taken together, as a disintegrin with high efficiency, Accutin may be a potential precursor of a therapeutic agent for the treatment of lung cancer migration.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Cell Movement/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Epithelial-Mesenchymal Transition/drug effects , Signal Transduction/drug effects , A549 Cells , Focal Adhesion Kinase 1/metabolism , Disintegrins/pharmacology , Disintegrins/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy
6.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000462

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths in the western world. Squamous cell carcinoma is one of the most common histological subtypes of this malignancy. For squamous cell carcinoma of the lung (LSCC), prognostic and predictive markers still are largely missing. In a previous study, we were able to show that the expression of THSD7A shows an association with unfavorable prognostic parameters in prostate cancer. There is also a link to a high expression of FAK. There is incidence that SCARA5 might be the downstream gene of THSD7A. Furthermore, there is evidence that SCARA5 interacts with FAK. We were interested in the role of SCARA5 as a potential biomarker in LSCC. Furthermore, we wanted to know whether SCARA5 expression is linked to THSD7A positivity and to the expression level of FAK. For this reason, we analyzed 101 LSCC tumors by immunohistochemistry. Tissue microarrays were utilized. No significant association was found between SCARA5 expression and overall survival or clinicopathological parameters. There was also no significant association between THSD7A positivity and SCARA5 expression level. Moreover, no significant association was found between FAK expression level and SCARA5 expression level. SCARA5 seems not to play a major role as a biomarker in squamous cell carcinoma of the lung.


Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Male , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Middle Aged , Aged , Female , Prognosis , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation, Neoplastic , Aged, 80 and over , Immunohistochemistry , Scavenger Receptors, Class A
7.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38994756

ABSTRACT

Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem­like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti­tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)­resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit­8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT­related proteins and stem cell markers after sphere formation. Parental cells and drug­resistant cells were screened by high­throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) in vitro in PTX­resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug­resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX­resistant ESCC cells but did not show significant toxicity in vivo. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX­resistant ESCC and could be a promising agent for the treatment of PTX­resistant ESCC cancers.


Subject(s)
Drug Resistance, Neoplasm , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Luteolin , Paclitaxel , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Luteolin/pharmacology , Paclitaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Signal Transduction/drug effects , Mice , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Mice, Nude , Cell Movement/drug effects , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Antineoplastic Agents, Phytogenic/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Epithelial-Mesenchymal Transition/drug effects , Female , Male
8.
Aging (Albany NY) ; 16(13): 11090-11102, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38975937

ABSTRACT

OBJECTIVE: In this study, we investigated the mechanism of action of LIMK1 in cervical cancer progression. METHODS: The biological role of LIMK1 in regulating the growth, invasion, and metastasis of cervical cancer was studied in SiHa, CaSki cells and nude mice tumor models. The role of LIMK1 in the growth of cervical cancer was evaluated by HE staining. The role of LIMK1 in the invasion, metastasis, and proliferation of cervical cancer was evaluated by cell scratch, Transwell, and monoclonal experiments. The interaction among LIMK1, ROS, and Src was evaluated by Western blotting. The effects of regulating ROS and p-Src expression on LIMK1 in the migration/invasion and proliferation of cervical cancer cells were evaluated through cellular functional assays. RESULTS: Overexpression of LIMK1 promoted tumor growth in nude mice. Cell scratch, Transwell, and monoclonal experiments suggested that LIMK1 promoted the invasion, metastasis, and proliferation of cervical cancer cells. Western blotting suggested that LIMK1 can promote the expression of ROS-related proteins NOX2, NOX4, p-Src, and downstream proteins p-FAK, p-ROCK1/2, p-Cofilin-1, F-actin and inhibit the expression of p-SHP2 protein. Correction experiments showed that LIMK1 regulated the expression of p-FAK and p-Cofilin-1 proteins by regulating ROS and p-Src. Through the detection of cervical cancer cell functions, it was found that the activation of ROS and p-Src induced by LIMK1 is an early event that promotes the migration, proliferation, and invasion of cervical cancer cells. CONCLUSIONS: LIMK1 promotes the expression of F-actin and promotes the development of cervical cancer by regulating the oxidative stress/Src-mediated p-FAK/p-ROCK1/2/p-Cofilin-1 pathway.


Subject(s)
Lim Kinases , Mice, Nude , Reactive Oxygen Species , Signal Transduction , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Lim Kinases/metabolism , Lim Kinases/genetics , Animals , Female , Reactive Oxygen Species/metabolism , Humans , Cell Line, Tumor , Mice , Cell Proliferation , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Up-Regulation , src-Family Kinases/metabolism , src-Family Kinases/genetics , Cell Movement/genetics , Actin Depolymerizing Factors/metabolism , Actin Depolymerizing Factors/genetics , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic , Cofilin 1/metabolism , Cofilin 1/genetics
9.
Oncol Res ; 32(7): 1173-1184, 2024.
Article in English | MEDLINE | ID: mdl-38948026

ABSTRACT

Background: Inhibitor of NF-κB kinase-interacting protein (IKIP) is known to promote proliferation of glioblastoma (GBM) cells, but how it affects migration and invasion by those cells is unclear. Methods: We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases. We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays, and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved. Results: Based on data from our clinical samples and from public databases, IKIP was overexpressed in GBM tumors, and its expression level correlated inversely with survival. IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays, whereas IKIP knockdown exerted the opposite effects. IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue. The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling. Conclusions: IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.


Subject(s)
Brain Neoplasms , Cell Movement , Focal Adhesion Kinase 1 , Glioblastoma , Neoplasm Invasiveness , Signal Transduction , Thrombospondin 1 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Animals , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Proliferation
10.
Bone ; 187: 117199, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38992453

ABSTRACT

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Dental Cementum , Signal Transduction , YAP-Signaling Proteins , Animals , Dental Cementum/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Mice , C-Reactive Protein/metabolism , Integrin beta1/metabolism , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics , Mice, Inbred C57BL , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Cementogenesis
11.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000009

ABSTRACT

Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase C-gamma 1 pathway. However, the transcriptional regulatory mechanism of YHB controlling the behavior of VSMCs is not fully understood. In this study, YHB downregulated the expression of cell cycle regulatory proteins, such as proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin E, by modulating the transcription factor FOXO3a in VSMCs induced by PDGF. Furthermore, YHB decreased p-38 and mTOR phosphorylation in a dose-dependent manner. Notably, YHB significantly reduced the phosphorylation at Y397 and Y925 sites of focal adhesion kinase (FAK), and this effect was greater at the Y925 site than Y397. In addition, the expression of paxillin, a FAK-associated protein known to bind to the Y925 site of FAK, was significantly reduced by YHB treatment in a dose-dependent manner. A pronounced reduction in the migration and proliferation of VSMCs was observed following co-treatment of YHB with mTOR or p38 inhibitors. In conclusion, this study shows that YHB inhibits the PDGF-induced proliferation and migration of VSMCs by regulating the transcription factor FOXO3a and the mTOR/p38/FAK signaling pathway. Therefore, YHB may be a potential therapeutic candidate for preventing and treating cardiovascular diseases such as atherosclerosis and vascular restenosis.


Subject(s)
Cell Movement , Cell Proliferation , Forkhead Box Protein O3 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Platelet-Derived Growth Factor , Yohimbine , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Forkhead Box Protein O3/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Animals , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Phosphorylation/drug effects , Yohimbine/pharmacology , Rats , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Focal Adhesion Kinase 1/metabolism , Cells, Cultured , Paxillin/metabolism , Rats, Sprague-Dawley , Male
12.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000274

ABSTRACT

Understanding the molecular factors involved in the development of uterine myomas may result in the use of pharmacological drugs instead of aggressive surgical treatment. ANG1, CaSR, and FAK were examined in myoma and peripheral tissue samples taken from women after myoma surgery and in normal uterine muscle tissue samples taken from the control group. Tests were performed using tissue microarray immunohistochemistry. No statistically significant differences in ANG1 expression between the tissue of the myoma, the periphery, and the normal uterine muscle tissue of the control group were recorded. The CaSR value was reduced in the myoma and peripheral tissue and normal in the group of women without myomas. FAK expression was also lower in the myoma and periphery compared to the healthy uterine myometrium. Calcium supplementation could have an effect on stopping the growth of myomas.


Subject(s)
Focal Adhesion Kinase 1 , Leiomyoma , Receptors, Calcium-Sensing , Uterine Neoplasms , Adult , Female , Humans , Middle Aged , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Immunohistochemistry , Leiomyoma/metabolism , Leiomyoma/pathology , Leiomyoma/genetics , Myometrium/metabolism , Myometrium/pathology , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/genetics
13.
Clin Transl Med ; 14(7): e1742, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925910

ABSTRACT

BACKGROUND: White adipose tissue (WAT) has a key role in maintaining energy balance throughout the body, and their dysfunction take part in the regulation of diabetes mellitus. However, the internal regulatory mechanisms underlying are still unknown. METHODS AND RESULTS: We generated adipocyte-specific FAK KO (FAK-AKO) mice and investigated their phenotype. The cascade of adipocyte, macrophage in adipocyte tissues, and pancreatic ß-cells were proposed in FAK-AKO mice and validated by cell line studies using 3T3-L1, Raw264.7 and Min6. The FAK-AKO mice exhibited glucose intolerance, reduced adipose tissue mass and increased apoptosis, lipolysis and inflammatory response in adipose tissue. We further demonstrate that adipocyte FAK deletion increases ß cell apoptosis and inflammatory infiltrates into islets, which is potentiated if mice were treated with STZ. In the STZ-induced diabetes model, FAK AKO mice exhibit less serum insulin content and pancreatic ß cell area. Moreover, serum pro-inflammatory factors increased and insulin levels decreased after glucose stimulation in FAK AKO mice. In a parallel vitro experiment, knockdown or inhibition of FAK during differentiation also increased apoptosis, lipolysis and inflammatory in 3T3-L1 adipocytes, whereas the opposite was observed upon overexpression of FAK. Moreover, coculturing LPS-treated RAW264.7 macrophages with knockdown FAK of 3T3-L1 adipocytes increased macrophage pro-inflammatory response. Furthermore, conditioned medium from above stimulated Min6 cells apoptosis (with or without STZ), whereas the opposite was observed upon overexpression of FAK. Mechanistically, FAK protein interact with TRAF6 in adipocytes and knockdown or inhibition of FAK activated TRAF6/TAK1/NF-κB signaling, which exacerbates inflammation of adipocytes themselves. CONCLUSION: Adipocyte FAK deletion promotes both adipocyte apoptosis and adipose tissue inflammation. Pro-inflammatory factors released by the FAK-null adipose tissue further trigger apoptosis in pancreatic islets induced by the administration of STZ, thereby exacerbating the diabetes mellitus. This study reveals a link between FAK-mediated adipose inflammation and diabetes mellitus, a mechanism that has not been previously recognized.


Subject(s)
Adipocytes , Apoptosis , Diabetes Mellitus, Experimental , Focal Adhesion Kinase 1 , Insulin-Secreting Cells , Mice, Knockout , Animals , Mice , Apoptosis/genetics , Insulin-Secreting Cells/metabolism , Adipocytes/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Diabetes Mellitus, Experimental/metabolism , Inflammation/metabolism , Inflammation/genetics , Male , Adipose Tissue/metabolism , Disease Models, Animal
14.
Cardiovasc Toxicol ; 24(8): 818-835, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896162

ABSTRACT

Doxorubicin (DOX) is an effective anticancer agent, yet its clinical utility is hampered by dose-dependent cardiotoxicity. This study explores the cardioprotective potential of Marein (Mar) against DOX-induced cardiac injury and elucidates underlying molecular mechanisms. Neonatal rat cardiomyocytes (NRCMs) and murine models were employed to assess the impact of Mar on DOX-induced cardiotoxicity (DIC). In vitro, cell viability, oxidative stress were evaluated. In vivo, a chronic injection method was employed to induce a DIC mouse model, followed by eight weeks of Mar treatment. Cardiac function, histopathology, and markers of cardiotoxicity were assessed. In vitro, Mar treatment demonstrated significant cardioprotective effects in vivo, as evidenced by improved cardiac function and reduced indicators of cardiac damage. Mechanistically, Mar reduced inflammation, oxidative stress, and apoptosis in cardiomyocytes, potentially via activation of the Focal Adhesion Kinase (FAK)/AKT pathway. Mar also exhibited an anti-ferroptosis effect. Interestingly, Mar did not compromise DOX's efficacy in cancer cells, suggesting a dual benefit in onco-cardiology. Molecular docking studies suggested a potential interaction between Mar and FAK. This study demonstrates Mar's potential as a mitigator of DOX-induced cardiotoxicity, offering a translational perspective on its clinical application. By activating the FAK/AKT pathway, Mar exerts protective effects against DOX-induced cardiomyocyte damage, highlighting its promise in onco-cardiology. Further research is warranted to validate these findings and advance Mar as a potential adjunctive therapy in cancer treatment.


Subject(s)
Apoptosis , Cardiotoxicity , Disease Models, Animal , Doxorubicin , Focal Adhesion Kinase 1 , Heart Diseases , Myocytes, Cardiac , Oxidative Stress , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Doxorubicin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Signal Transduction/drug effects , Focal Adhesion Kinase 1/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Humans , Heart Diseases/chemically induced , Heart Diseases/metabolism , Heart Diseases/prevention & control , Heart Diseases/enzymology , Heart Diseases/pathology , Male , Anthraquinones/pharmacology , Mice, Inbred C57BL , Rats, Sprague-Dawley , Rats , Cell Line, Tumor , Cytoprotection , Cells, Cultured , Antibiotics, Antineoplastic/toxicity , Mice
15.
Cell Rep ; 43(6): 114297, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38824643

ABSTRACT

The mechanical environment generated through the adhesive interaction of endothelial cells (ECs) with the matrix controls nuclear tension, preventing aberrant gene synthesis and the transition from restrictive to leaky endothelium, a hallmark of acute lung injury (ALI). However, the mechanisms controlling tension transmission to the nucleus and EC-restrictive fate remain elusive. Here, we demonstrate that, in a kinase-independent manner, focal adhesion kinase (FAK) safeguards tension transmission to the nucleus to maintain EC-restrictive fate. In FAK-depleted ECs, robust activation of the RhoA-Rho-kinase pathway increased EC tension and phosphorylation of the nuclear envelope protein, emerin, activating DNMT3a. Activated DNMT3a methylates the KLF2 promoter, impairing the synthesis of KLF2 and its target S1PR1 to induce the leaky EC transcriptome. Repleting FAK (wild type or kinase dead) or inhibiting RhoA-emerin-DNMT3a activities in damaged lung ECs restored KLF2 transcription of the restrictive EC transcriptome. Thus, FAK sensing and control of tension transmission to the nucleus govern restrictive endothelium to maintain lung homeostasis.


Subject(s)
Cell Nucleus , Endothelial Cells , Kruppel-Like Transcription Factors , Transcriptome , rhoA GTP-Binding Protein , Animals , Humans , Mice , Cell Nucleus/metabolism , DNA Methyltransferase 3A , Endothelial Cells/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Promoter Regions, Genetic/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Transcriptome/genetics , Male , Female
16.
Biochem Biophys Res Commun ; 725: 150236, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38897039

ABSTRACT

BACKGROUND: Macrophage-derived foam cell formation is a hallmark of atherosclerosis and is retained during plaque formation. Strategies to inhibit the accumulation of these cells hold promise as viable options for treating atherosclerosis. Plexin D1 (PLXND1), a member of the Plexin family, has elevated expression in atherosclerotic plaques and correlates with cell migration; however, its role in macrophages remains unclear. We hypothesize that the guidance receptor PLXND1 negatively regulating macrophage mobility to promote the progression of atherosclerosis. METHODS: We utilized a mouse model of atherosclerosis based on a high-fat diet and an ox-LDL- induced foam cell model to assess PLXND1 levels and their impact on cell migration. Through western blotting, Transwell assays, and immunofluorescence staining, we explored the potential mechanism by which PLXND1 mediates foam cell motility in atherosclerosis. RESULTS: Our study identifies a critical role for PLXND1 in atherosclerosis plaques and in a low-migration capacity foam cell model induced by ox-LDL. In the aortic sinus plaques of ApoE-/- mice, immunofluorescence staining revealed significant upregulation of PLXND1 and Sema3E, with colocalization in macrophages. In macrophages treated with ox-LDL, increased expression of PLXND1 led to reduced pseudopodia formation and decreased migratory capacity. PLXND1 is involved in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK. Additionally, FAK inhibitors counteract the ox-LDL-induced migration suppression by modulating the phosphorylation states of FAK, Paxillin and their downstream effectors CDC42 and PAK. CONCLUSION: Our findings indicate that PLXND1 plays a role in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK to promoting atherosclerosis.


Subject(s)
Atherosclerosis , Cell Movement , Foam Cells , Mice, Inbred C57BL , Paxillin , Animals , Paxillin/metabolism , Foam Cells/metabolism , Foam Cells/pathology , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Signal Transduction , Lipoproteins, LDL/metabolism , Male , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , cdc42 GTP-Binding Protein/metabolism , Macrophages/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Disease Models, Animal , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mice, Knockout , Membrane Glycoproteins , Intracellular Signaling Peptides and Proteins
17.
BMB Rep ; 57(6): 305-310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835117

ABSTRACT

T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelialmesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway. [BMB Reports 2024; 57(6): 305-310].


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Lung Neoplasms , Microfilament Proteins , Proto-Oncogene Proteins c-akt , Signal Transduction , Snail Family Transcription Factors , Humans , Cadherins/metabolism , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Microfilament Proteins/metabolism , Neoplasm Invasiveness , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Snail Family Transcription Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 121(25): e2400566121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870061

ABSTRACT

Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.


Subject(s)
Adaptor Proteins, Signal Transducing , Drug Resistance, Neoplasm , Melanoma , Protein Kinase Inhibitors , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Animals , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Xenograft Model Antitumor Assays , Mitogen-Activated Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Female
19.
Elife ; 132024 Jun 26.
Article in English | MEDLINE | ID: mdl-38921956

ABSTRACT

BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a 'just-right' level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a 'just-right' ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.


Subject(s)
Cecal Neoplasms , Focal Adhesion Kinase 1 , Proto-Oncogene Proteins B-raf , Animals , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Phosphorylation , Mice , Humans , Cecal Neoplasms/metabolism , Cecal Neoplasms/genetics , Cecal Neoplasms/pathology , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Signaling System , ErbB Receptors/metabolism , ErbB Receptors/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male
20.
ACS Biomater Sci Eng ; 10(7): 4463-4479, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38848471

ABSTRACT

Scaffold-free bone microtissues differentiated from mesenchymal stem cell (MSC) spheroids offer great potential for bottom-up bone tissue engineering as a direct supply of cells and osteogenic signals. Many biomaterials or biomolecules have been incorporated into bone microtissues to enhance their osteogenic abilities, but these materials are far from clinical approval. Here, we aimed to incorporate hydroxyapatite (HAP) nanoparticles, an essential component of bone matrix, into MSC spheroids to instruct their osteogenic differentiation into bone microtissues and further self-organization into bone organoids with a trabecular structure. Furthermore, the biological interaction between HAP nanoparticles and MSCs and the potential molecular mechanisms in the bone development of MSC spheroids were investigated by both in vitro and in vivo studies. As a result, improved cell viability and osteogenic abilities were observed for the MSC spheroids incorporated with HAP nanoparticles at a concentration of 30 µg/mL. HAP nanoparticles could promote the sequential expression of osteogenic markers (Runx2, Osterix, Sclerostin), promote the expression of bone matrix proteins (OPN, OCN, and Collagen I), promote the mineralization of the bone matrix, and thus promote the bone development of MSC spheroids. The differentiated bone microtissues could further self-organize into linear, lamellar, and spatial bone organoids with trabecular structures. More importantly, adding FAK or Akt inhibitors could decrease the level of HAP-induced osteogenic differentiation of bone microtissues. Finally, excellent new bone regeneration was achieved after injecting bone microtissues into cranial bone defect models, which could also be eliminated by the Akt inhibitor. In conclusion, HAP nanoparticles could promote the development of bone microtissues by promoting the osteogenic differentiation of MSCs and the formation and mineralization of the bone matrix via the FAK/Akt pathway. The bone microtissues could act as individual ossification centers and self-organize into macroscale bone organoids, and in this meaning, the bone microtissues could be called microscale bone organoids. Furthermore, the bone microtissues revealed excellent clinical perspectives for injectable cellular therapies for bone defects.


Subject(s)
Bone Regeneration , Cell Differentiation , Durapatite , Mesenchymal Stem Cells , Nanoparticles , Osteogenesis , Proto-Oncogene Proteins c-akt , Durapatite/chemistry , Durapatite/pharmacology , Bone Regeneration/drug effects , Nanoparticles/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Animals , Osteogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Cell Differentiation/drug effects , Humans , Signal Transduction/drug effects , Tissue Engineering/methods , Focal Adhesion Kinase 1/metabolism , Bone and Bones/drug effects , Mice , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL