Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.569
Filter
1.
PLoS One ; 19(6): e0304867, 2024.
Article in English | MEDLINE | ID: mdl-38861526

ABSTRACT

We aimed to characterize the change in the incidence of stillbirth (IS) in Japanese Black cattle during and after animal movement restrictions and suspended insemination because of a foot-and-mouth disease (FMD) outbreak in Miyazaki Prefecture in 2010. Calving data from 2006 to 2018 were collected from approximately 900 farms. Post-FMD period was divided into three based on the median IS per month (1.80%): period 1 (May 2011 to February 2013), period 2 (March 2013 to August 2015), and period 3 (September 2015 to December 2018). The ISs were similar during the Pre-FMD period and Post-FMD period 1, then substantially decreased during Post-FMD period 2 (p < .05), before returning to the value before the FMD outbreak period during Post-FMD period 3. Compared with the Pre-FMD period, Post-FMD period 1 was associated with a higher proportion of calvings by primiparous cows and Post-FMD period 2 was associated with a smaller number of calvings per month (p < .05). There were high ISs in primiparous cows during the Pre-FMD period, Post-FMD period 1, and Post-FMD period 3 (p < .05), but not during Post-FMD period 2. In summary, after the animal movement restrictions and suspended insemination introduced because of the FMD outbreak, the IS temporarily decreased and consequently returned to the pre-FMD level.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease , Stillbirth , Animals , Cattle , Stillbirth/epidemiology , Foot-and-Mouth Disease/epidemiology , Incidence , Cattle Diseases/epidemiology , Female , Disease Outbreaks/veterinary , Japan/epidemiology , Pregnancy , Insemination
2.
Vet Q ; 44(1): 1-10, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38903046

ABSTRACT

Foot-and-mouth disease Virus (FMDV) serotype Asia1 is prevalent in the Indian subcontinent, with only G-III and G-VIII reported in India until 2020. However, in 2019, a novel genetic group within serotype Asia1, designated as G-IX, emerged in Bangladesh, followed by its detection in India in 2020. This report presents analyses of the complete coding region sequences of the G-IX lineage isolates. The length of the open reading frame (ORF) of the two G-IX isolates was 6990 nucleotides without any deletion or insertion. The G-IX isolates showed the highest sequence similarity with an isolate of G-III at the ORF, L, P2, and P3 regions, and with an isolate of G-VIII at the P1 region. Phylogenetic analysis based on the capsid region (P1) supports the hypothesis that G-VIII and G-IX originated from a common ancestor, as speculated earlier. Further, VP1 region-based phylogenetic analyses revealed the re-emergence of G-VIII after a gap of 3 years. One isolate of G-VIII collected during 2023 revealed a codon insertion in the G-H loop of VP1. The vaccine matching studies support the suitability of the currently used Indian vaccine strain IND63/1972 to contain outbreaks due to viruses belonging to G-IX.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Phylogeny , Serogroup , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/classification , Animals , Foot-and-Mouth Disease/virology , Foot-and-Mouth Disease/epidemiology , Open Reading Frames/genetics , India/epidemiology , Bangladesh/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Cattle , Antigens, Viral/genetics , Capsid Proteins/genetics , Genome, Viral
3.
Prev Vet Med ; 226: 106192, 2024 May.
Article in English | MEDLINE | ID: mdl-38564991

ABSTRACT

Foot-and-mouth disease is a controlled disease in accordance with the South African Animal Diseases Act (Act 35 of 1984). The country was classified by the World Organisation for Animal Health (WOAH) as having a FMD free zone without vaccination in 1996. However, this status was suspended in 2019 due to a FMD outbreak outside the controlled zones. FMD control in South Africa includes animal movement restrictions placed on cloven-hoofed species and products, prophylactic vaccination of cattle, clinical surveillance of susceptible species, and disease control fencing to separate livestock from wildlife reservoirs. The objectives of this study were to evaluate differences in identifying high-risk areas for FMD using risk factor and expert opinion elicitation analysis. Differences in risk between FMD introduction and FMD spread within the FMD protection zone with vaccination (PZV) of South Africa (2007-2016) were also investigated. The study was conducted in the communal farming area of the FMD PZV, which is adjacent to wildlife reserves and characterised by individual faming units. Eleven risk factors that were considered important for FMD occurrence and spread were used to build a weighted linear combination (WLC) score based on risk factor data and expert opinion elicitation. A multivariable conditional logistic regression model was also used to calculate predicted probabilities of a FMD outbreak for all dip-tanks within the study area. Smoothed Bayesian kriged maps were generated for 11 individual risk factors, overall WLC scores for FMD occurrence and spread and for predicted probabilities of a FMD outbreak based on the conditional logistic regression model. Descriptively, vaccine matching was believed to have a great influence on both FMD occurrence and spread. Expert opinion suggested that FMD occurrence was influenced predominantly by proximity to game reserves and cattle density. Cattle populations and vaccination practices were considered most important for FMD spread. Highly effective cattle inspections were observed within areas that previously reported FMD outbreaks, indicating the importance of cattle inspection (surveillance) as a necessary element of FMD outbreak detection. The multivariable conditional logistic regression analysis, which was consistent with expert opinion elicitation; identified three factors including cattle population density (OR 3.87, 95% CI 1.47-10.21) and proximities to game reserve fences (OR 0.82, 95% CI 0.73-0.92) and rivers (OR 1.04, 95% CI 1.01-1.07) as significant factors for reported FMD outbreaks. Regaining and maintaining an FMD-free status without vaccination requires frequent monitoring of high-risk areas and designing targeted surveillance.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cattle , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , South Africa/epidemiology , Bayes Theorem , Expert Testimony , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Animals, Wild , Risk Factors , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary
4.
Sci Rep ; 14(1): 7929, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575673

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious, endemic, and acute viral cattle ailment that causes major economic damage in Ethiopia. Although several serotypes of the FMD virus have been detected in Ethiopia, there is no documented information about the disease's current serostatus and serotypes circulating in the Wolaita zone. Thus, from March to December 2022, a cross-sectional study was conducted to evaluate FMDV seroprevalence, molecular detection, and serotype identification in three Wolaita Zone sites. A multistage sample procedure was used to choose three peasant associations from each study region, namely Wolaita Sodo, Offa district, and Boloso sore district. A systematic random sampling technique was employed to pick 384 cattle from the population for the seroprevalence research, and 10 epithelial tissue samples were purposefully taken from outbreak individuals for molecular detection of FMDV. The sera were examined using 3ABC FMD NSP Competition ELISA to find antibodies against FMDV non-structural proteins, whereas epithelial tissue samples were analyzed for molecular detection using real-time RT-PCR, and sandwich ELISA was used to determine the circulating serotypes. A multivariable logistic regression model was used to evaluate the associated risk variables. The total seroprevalence of FMD in cattle was 46.88% (95% CI 41.86-51.88), with Wolaita Sodo Town having the highest seroprevalence (63.28%). As a consequence, multivariable logistic regression analysis revealed that animal age, herd size, and interaction with wildlife were all substantially related to FMD seroprevalence (p < 0.05). During molecular detection, only SAT-2 serotypes were found in 10 tissue samples. Thus, investigating FMD outbreaks and identifying serotypes and risk factors for seropositivity are critical steps in developing effective control and prevention strategies based on the kind of circulating serotype. Moreover, further research for animal species other than cattle was encouraged.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Humans , Cattle , Animals , Foot-and-Mouth Disease Virus/genetics , Seroepidemiologic Studies , Cross-Sectional Studies , Ethiopia/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Serogroup , Disease Outbreaks/veterinary , Animals, Wild , Antibodies, Viral
5.
Am J Vet Res ; 85(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38626798

ABSTRACT

OBJECTIVE: Foot-and-mouth disease (FMD) is a highly contagious disease in ruminants that causes significant economic losses worldwide. However, the prevalence of FMD virus (FMDV) in small ruminants has been overlooked in Pakistan. This study aimed to determine the prevalence of FMD in sheep and goats in the border area between Pakistan and Afghanistan. ANIMALS: 800 sheep and goats belongs to age groups of 6 month to > 2 years. METHODS: A total of 800 serum samples were collected from sheep (n = 424) and goats (n = 376) and subjected to structural protein (SP) and 3ABC non-SP (NSP) ELISAs for the detection of antibodies against SP and NSP of the FMDV. RESULTS: For NSP, 340/800 (42.5%) of samples were positive, while SP analysis revealed that serotype O (44.5%) was the most common in sheep and goats, followed by Asia-1 (42%) and A (32%) serotypes. Sheep (39%; 95% CI, 34 to 44) had a higher (P < .05) prevalence of FMD than goats (46%; 95% CI, 41 to 51). Statistically significant (P < .05) differences in the seroprevalence of FMD-SP and FMD-NSPs were observed between various agencies (areas) of the study area. Risk factors such as age, sex, breed, season, flock size, body condition, animal movement, and production system were significantly (P < .05) associated with FMDV prevalence. CONCLUSIONS: This study showed that FMD is highly prevalent in sheep and goats in the border areas of Pakistan and Afghanistan. Therefore, outbreak investigation teams should be arranged at the border level to develop FMD risk-based surveillance and control plans for small ruminants in order to mitigate infection risks.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Goat Diseases , Goats , Sheep Diseases , Animals , Pakistan/epidemiology , Goat Diseases/epidemiology , Goat Diseases/virology , Seroepidemiologic Studies , Sheep , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/virology , Afghanistan/epidemiology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Female , Foot-and-Mouth Disease Virus/immunology , Prevalence , Male , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/veterinary
6.
Prev Vet Med ; 227: 106197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613943

ABSTRACT

The use of virus-neutralizing (VN) and nonstructural protein (NSP) antibody tests in a serosurveillance program for foot-and-mouth disease (FMD) can identify pig herds that are adequately vaccinated, with a high percentage of pigs with VN positive antibody titers; these tests can also help identify pigs with NSP-positivity that have previously been or are currently infected even in vaccinated herds. To identify infected herds and manage infection, the combination of VN and NSP antibody tests was used in Taiwan's serosurveillance program implemented simultaneously with the compulsory FMD vaccination program. The result was the eradication of FMD: Taiwan was recognized by the World Organization for Animal Health as an FMD-free country without vaccination in 2020. Evaluation of the compulsory vaccination program incorporated in the FMD control program in Taiwan revealed that the vaccine quality was satisfactory and the vaccination program was effective during the period of compulsory vaccination (2010-2017). Sound immunological coverage was achieved, with 89.1% of pigs having VN antibody titers exceeding 1:16 in 2016. This level of immunological coverage would be expected to substantially reduce or prevent FMD transmission, which was borne out by the results of the NSP tests. We identified farms having positive NSP reactors (very low annual prevalence) before the cessation of FMD vaccination in July 2018; however, detailed serological and clinical investigations of pigs of all ages in suspect herds demonstrated that no farms were harboring infected animals after the second half of 2013. Thus, the results revealed no evidence of FMD circulation in the field, and Taiwan regained FMD-free status.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Swine Diseases , Viral Nonstructural Proteins , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Taiwan/epidemiology , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Swine Diseases/virology , Viral Nonstructural Proteins/immunology , Seroepidemiologic Studies , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Foot-and-Mouth Disease Virus/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccination/veterinary
7.
PeerJ ; 12: e16998, 2024.
Article in English | MEDLINE | ID: mdl-38436010

ABSTRACT

Total ring depopulation is sometimes used as a management strategy for emerging infectious diseases in livestock, which raises ethical concerns regarding the potential slaughter of large numbers of healthy animals. We evaluated a farm-density-based ring culling strategy to control foot-and-mouth disease (FMD) in the United Kingdom (UK), which may allow for some farms within rings around infected premises (IPs) to escape depopulation. We simulated this reduced farm density, or "target density", strategy using a spatially-explicit, stochastic, state-transition algorithm. We modeled FMD spread in four counties in the UK that have different farm demographics, using 740,000 simulations in a full-factorial analysis of epidemic impact measures (i.e., culled animals, culled farms, and epidemic length) and cull strategy parameters (i.e., target farm density, daily farm cull capacity, and cull radius). All of the cull strategy parameters listed above were drivers of epidemic impact. Our simulated target density strategy was usually more effective at combatting FMD compared with traditional total ring depopulation when considering mean culled animals and culled farms and was especially effective when daily farm cull capacity was low. The differences in epidemic impact measures among the counties are likely driven by farm demography, especially differences in cattle and farm density. To prevent over-culling and the associated economic, organizational, ethical, and psychological impacts, the target density strategy may be worth considering in decision-making processes for future control of FMD and other diseases.


Subject(s)
Communicable Diseases, Emerging , Epidemics , Foot-and-Mouth Disease , Animals , Cattle , Foot-and-Mouth Disease/epidemiology , Disease Outbreaks/prevention & control , Epidemics/prevention & control , Algorithms
8.
Prev Vet Med ; 224: 106120, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309135

ABSTRACT

FMD is an acute contagious disease that poses a significant threat to the health and safety of cloven-hoofed animals in Asia, Europe, and Africa. The impact of FMD exhibits geographical disparities within different regions of China. The present investigation undertook an exhaustive analysis of documented occurrences of bovine FMD in China, spanning the temporal range from 2011 to 2020. The overarching objective was to elucidate the temporal and spatial dynamics underpinning these outbreaks. Acknowledging the pivotal role of global factors in FMD outbreaks, advanced machine learning techniques were harnessed to formulate an optimal prediction model by integrating comprehensive meteorological data pertinent to global FMD. Random Forest algorithm was employed with top three contributing factors including Isothermality(bio3), Annual average temperature(bio1) and Minimum temperature in the coldest month(bio6), all relevant to temperature. By encompassing both local and global factors, our study provides a comprehensive framework for understanding and predicting FMD outbreaks. Furthermore, we conducted a phylogenetic analysis to trace the origin of Foot-and-mouth disease virus (FMDV), pinpointing India as the country posing the greatest potential hazard by leveraging the spatio-temporal attributes of the collected data. Based on this finding, a quantitative risk model was developed for the legal importation of live cattle from India to China. The model estimated an average probability of 0.002254% for FMDV-infected cattle imported from India to China. TA sensitivity analysis identified two critical nodes within the model: he possibility of false negative clinical examination in infected cattle at destination (P5) and he possibility of false negative clinical examination in infected cattle at source(P3). This comprehensive approach offers a thorough evaluation of FMD landscape within China, considering both domestic and global perspectives, thereby augmenting the efficacy of early warning mechanisms.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Foot-and-Mouth Disease/epidemiology , Phylogeny , Cattle Diseases/epidemiology , Disease Outbreaks/veterinary , China/epidemiology , Spatio-Temporal Analysis
9.
J R Soc Interface ; 21(211): 20230445, 2024 02.
Article in English | MEDLINE | ID: mdl-38379412

ABSTRACT

Understanding the population dynamics of an infectious disease requires linking within-host dynamics and between-host transmission in a quantitative manner, but this is seldom done in practice. Here a simple phenomenological model for viral dynamics within a host is linked to between-host transmission by assuming that the probability of transmission is related to log viral titre. Data from transmission experiments for two viral diseases of livestock, foot-and-mouth disease virus in cattle and swine influenza virus in pigs, are used to parametrize the model and, importantly, test the underlying assumptions. The model allows the relationship between within-host parameters and transmission to be determined explicitly through their influence on the reproduction number and generation time. Furthermore, these critical within-host parameters (time and level of peak titre, viral growth and clearance rates) can be computed from more complex within-host models, raising the possibility of assessing the impact of within-host processes on between-host transmission in a more detailed quantitative manner.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Swine Diseases , Virus Diseases , Animals , Swine , Cattle , Foot-and-Mouth Disease/epidemiology , Livestock , Cattle Diseases/epidemiology , Virus Diseases/veterinary , Swine Diseases/epidemiology
10.
Arch Virol ; 169(3): 44, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341400

ABSTRACT

Foot-and-mouth disease is a highly contagious disease that affects cloven-hoofed animals. It has an important socio-economic impact on the livestock industry because it produces a drastic decrease of productivity. The disease has been successfully eradicated from some regions, including North America and Western Europe, but it is still endemic in developing countries. Agriculture plays an important role in the national economy of Vietnam, to which animal production contributes a great proportion. The concurrent circulation of foot-and-mouth disease virus (FMDV) serotypes O, A, and Asia 1 has been detected in recent years, but serotype O remains the most prevalent and is responsible for the highest numbers of outbreaks. Appropriate vaccine strain selection is an important element in the control of FMD and is necessary for the application of vaccination programs in FMD-affected regions. Here, we present updated information about the genetic and antigenic characteristics of circulating strains, collected from endemic outbreaks involving types O and A, between 2010 and 2019. Neutralizing assays showed a good in vitro match between type O strains and the monovalent O1 Campos vaccine strain. High r1 values were obtained (above 0.7) when testing a swine serum pool collected 21 days after vaccination, but the O/VTN/2/2019 strain was an exception. An EPP estimation resulted in a median neutralizing titre of about 1.65 log10, indicating that good protection could be achieved. For type A Asia SEA 97 lineage strains, acceptable individual neutralizing titres were obtained with estimated EPP values over 80% for different combinations of vaccine strains. Taking into account that the r1 value is one tool of a battery of tests that should be considered for estimating the cross-protection of a field strain against a vaccine strain, an in vivo challenge experiment was also performed, yielding a PD50 value of 8.0. The results indicate that South American strains could be potentially used for controlling outbreaks involving these lineages. This study demonstrates the importance of considering strain characteristics when choosing vaccine strains and controls.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Swine , Vietnam/epidemiology , Viral Vaccines/genetics , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Antigens, Viral/genetics , Serogroup
11.
J Vet Sci ; 25(1): e13, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38311326

ABSTRACT

BACKGROUND: Foot-and-mouth disease (FMD) is a highly contagious viral disease in livestock that has tremendous economic impact nationally. After multiple FMD outbreaks, the South Korean government implemented a vaccination policy for efficient disease control. However, during active surveillance by quarantine authorities, pig farms have reported an insufficient antibody positivity rate to FMD. OBJECTIVE: In this study, the spatial and temporal trends of insufficiency among pig farms were analyzed, and the effect of the number of government veterinary officers was explored as a potential preventive factor. METHODS: Various data were acquired, including national-level surveillance data for antibody insufficiency from the Korea Animal Health Integrated System, the number of veterinary officers, and the number of local pig farms. Temporal and geographical descriptive analyses were conducted to overview spatial and temporal trends. Additionally, logistic regression models were employed to investigate the association between the number of officers per pig farm with antibody insufficiency. Spatial cluster analysis was conducted to detect spatial clusters. RESULTS: The results showed that the incidence of insufficiency tended to decrease in recent years (odds ratio [OR], 0.803; 95% confidence interval [95% CIs], 0.721-0.893), and regions with a higher density of governmental veterinary officers (OR, 0.942; 95% CIs, 0.918-0.965) were associated with a lower incidence. CONCLUSIONS: This study implies that previously conducted national interventions would be effective, and the quality of government-provided veterinary care could play an important role in addressing the insufficient positivity rate of antibodies.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Swine Diseases , Animals , Antibodies , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Farms , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Livestock , Republic of Korea/epidemiology , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control
12.
Prev Vet Med ; 223: 106113, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194859

ABSTRACT

Rapid identification and characterization of circulating foot-and-mouth disease virus (FMDV) strains is crucial for effective disease control. In Oman, a few serological and molecular studies have been conducted to identify the strains of FMDV responsible for the outbreaks that have been occurring within the country. In this study, 13 oral epithelial tissue samples from cattle were collected from suspected cases of FMD in Ash Sharqiyah North, Al Batinah North, Dhofar and Ad Dhakhyilia governorates of Oman between 2018 and 2021. FMDV RNA was detected in all samples by real-time RT-PCR and viruses were isolated after one- or two-blind passages in the porcine Instituto Biologico-Rim Suino-2 cell line. Antigen capture ELISA characterized all isolates as serotype A and VP1 phylogenetic analysis placed all sequences within a single clade of the G-I genotype within the A/AFRICA topotype. These sequences shared the closest nucleotide identities to viruses circulating in Bahrain in 2021 (93.5% to 99.5%) and Kenya in 2017 (93.4% to 99.1%). To the best of our knowledge, this is the first time that A/AFRICA/G-I viruses have been detected in Oman. Together with the closely related viruses detected recently in Bahrain, these findings reinforce the importance of deploying effective quarantine control measures to minimize the risks of transboundary transmission of FMD associated with the importation of cattle from East Africa.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Swine Diseases , Animals , Cattle , Swine , Foot-and-Mouth Disease/epidemiology , Oman/epidemiology , Phylogeny , Cattle Diseases/epidemiology , Serogroup , Disease Outbreaks/veterinary , Genotype , Swine Diseases/epidemiology
13.
Aust Vet J ; 102(4): 200-214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38220215

ABSTRACT

We quantified the sensitivity of surveillance for lumpy skin disease (LSD) and foot and mouth disease (FMD) in cattle in the Kimberley region of Western Australia. We monitored producer and veterinary activity with cattle for 3 years commencing January 2020. Each year, ~274,000 cattle of 685,540 present on 92 pastoral leases (stations) were consigned to other stations, live export or slaughter. Veterinarians examined 103,000 cattle on the stations, 177,000 prior to live export, and 10,000 prior to slaughter. Detection probabilities for the disease prior to transport or during veterinary procedures and inspections were elicited by survey of 17 veterinarians working in Northern Australia. The veterinarians estimated the probabilities that they would notice, recognise, and submit samples from clinical cases of LSD and FMD, given a 5% prevalence of clinical signs in the herd. We used scenario tree methodology to estimate monthly surveillance sensitivity of observations made by producers and by veterinarians during herd management visits, pre-export inspections, and ante-mortem inspections. Average monthly combined sensitivities were 0.49 for FMD and 0.37 for LSD. Sensitivity was high for both diseases during the dry season and low in the wet season. We estimated the confidence in freedom from the estimated surveillance sensitivity given one hypothetically infected herd, estimated probability of introduction, and prior confidence in freedom. This study provided assurance that the Kimberley is free of these diseases and that routine producer and veterinary interactions with cattle are adequate for the timely detection of the disease should they be introduced.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease , Lumpy Skin Disease , Animals , Cattle , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Western Australia/epidemiology , Lumpy Skin Disease/diagnosis , Lumpy Skin Disease/epidemiology , Disease Outbreaks/veterinary , Australia/epidemiology , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology
14.
Epidemics ; 46: 100740, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232411

ABSTRACT

To control an outbreak of an infectious disease it is essential to understand the different routes of transmission and how they contribute to the overall spread of the pathogen. With this information, policy makers can choose the most efficient methods of detection and control during an outbreak. Here we assess the contributions of direct contact and environmental contamination to the transmission of foot-and-mouth disease virus (FMDV) in a cattle herd using an individual-based model that includes both routes. Model parameters are inferred using approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) applied to data from transmission experiments and the 2007 epidemic in Great Britain. This demonstrates that the parameters derived from transmission experiments are applicable to outbreaks in the field, at least for closely related strains. Under the assumptions made in the model we show that environmental transmission likely contributes a majority of infections within a herd during an outbreak, although there is a lot of variation between simulated outbreaks. The accumulation of environmental contamination not only causes infections within a farm, but also has the potential to spread between farms via fomites. We also demonstrate the importance and effectiveness of rapid detection of infected farms in reducing transmission between farms, whether via direct contact or the environment.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Bayes Theorem , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Disease Outbreaks/veterinary
15.
Vet Res Commun ; 48(2): 923-939, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38015325

ABSTRACT

Determining the dynamics associated with foot-and-mouth disease (FMD) outbreaks is important for being able to develop effective strategic plans against the disease. In this direction, spatiotemporal analysis of FMD virus (FMDV) epidemic data that occurred in Türkiye between 2010 and 2019 was carried out. Spatiotemporal analysis was performed by the space-time scan statistic using data from a total of 7,796 FMD outbreaks. Standard deviational ellipse analysis (SDE) was performed to analyse the directional trend of FMD. Five, six, and three significant and high-risk clusters were identified by the space-time cluster analysis for serotypes A, O, and Asia-1, respectively. The SDE analysis indicated that direction of FMD transmission was northeast to southwest. A significant decrease in the number of outbreaks and cases were observed between 2014 and 2019 compared to 2010-2013 (p = 0.010). Most of the serotype A, serotype O, and serotype Asia-1 associated FMD outbreaks were observed during the dry season (April to September). Among FMD cases, cattle and small ruminants accounted for 80.75% (180,932 cases) and 19.25% (43,116 cases), respectively. Among the serotypes detected in the cases, the most frequently detected serotype was serotype O (50.84%), followed by serotypes A (35.67%) and Asia-1 (13.49%). The results obtained in this study may contribute to when and where control programs could be implemented more efficiently for the prevention and control of FMD. Developing risk-defined regional control plans by taking into account the current livestock production including uncontrolled animal movements in border regions, rural livestock, livestock trade between provinces are recommended.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Foot-and-Mouth Disease/epidemiology , Turkey , Cattle Diseases/epidemiology , Ruminants , Disease Outbreaks/veterinary , Serogroup , Spatio-Temporal Analysis
16.
Article in English | LILACS, CUMED | ID: biblio-1551093

ABSTRACT

Foot and mouth disease is a highly contagious viral disease that poses a significant economic threat to cloven-hoofed animals, including cattle and sheep. The emergence of a novel foot and mouth disease virus-A isolate, FMDV-A-Egy-AHRI-RL385-Ven-2022, in Egypt in 2022 has raised concerns about its potential impact on existing vaccination programs. Given that vaccination is a key strategy for foot and mouth disease virus control, the present study was aimed to assess the cross-protective efficacy of both local and imported inactivated vaccines against this new threat. Through challenge experiments and serum neutralization tests, we observed limited effectiveness of both vaccine types. The calculated r1-values at 28 days post-vaccination indicated a minimal immune response to FMDV-A-Egy-AHRI-RL385-Ven-2022 (0.176 and 0.175 for local and imported vaccines, respectively). Challenge experiments further confirmed these findings, revealing 0percent protection from the local vaccine and only 20percent rotection from imported vaccines by day 7 post-challenge. These results underscore the urgent need to update existing foot and mouth disease virus vaccines in Egypt by incorporating the newly circulating FMDV-A-Egy-AHRI-RL385-Ven-2022 strain. This proactive measure is crucial to prevent future outbreaks and ensure effective disease control(AU)


La fiebre aftosa es una enfermedad vírica muy contagiosa que supone una importante amenaza económica para los animales biungulados, entre ellos el ganado vacuno y ovino. La aparición de un nuevo aislado del virus A de la fiebre aftosa, el FMDV-A-Egy-AHRI-RL385-Ven-2022, en Egipto en 2022 ha suscitado preocupación por su posible impacto en los programas de vacunación existentes. Dado que la vacunación es una estrategia clave para el control del virus de la fiebre aftosa, el objetivo del presente estudio fue evaluar la eficacia protectora cruzada de las vacunas inactivadas locales e importadas frente a esta nueva amenaza. Mediante experimentos de desafío y pruebas de seroneutralización, observamos una eficacia limitada de ambos tipos de vacuna. Los valores r1 calculados a los 28 días posvacunación indicaron una respuesta inmunitaria mínima frente a FMDV-A-Egy-AHRI-RL385-Ven-2022 (0,176 y 0,175 para las vacunas local e importada, respectivamente). Los experimentos de provocación confirmaron aún más estos resultados, revelando un 0 por ciento de protección de la vacuna local y sólo un 20 por ciento de protección de las vacunas importadas al séptimo día después de la provocación. Estos resultados subrayan la urgente necesidad de actualizar las vacunas existentes contra el virus de la fiebre aftosa en Egipto incorporando la nueva cepa circulante FMDV-A-Egy-AHRI-RL385-Ven-2022. Esta medida proactiva es crucial para prevenir futuros brotes y garantizar un control eficaz de la enfermedad(AU)


Subject(s)
Animals , Disease Outbreaks , Livestock , Foot-and-Mouth Disease/epidemiology , Vaccines , Egypt
17.
Virology ; 590: 109950, 2024 02.
Article in English | MEDLINE | ID: mdl-38104361

ABSTRACT

Despite routine vaccination, Israel experiences recurrent outbreaks of foot and mouth disease (FMD). We analyzed VP1 coding sequences of viruses isolated during FMD outbreaks from 2001 to 2011 in Israel and neighboring nations. The Israeli strains were aligned with strains from neighboring countries in corresponding years, implying repeated FMD virus incursions. In 2007 a large FMD epidemic, caused by a serotype O virus, occurred in Israel. Bayesian analysis of whole-genome sequences of viruses isolated during this epidemic revealed predominant transmission among extensively farmed beef-cattle and small ruminants. Small ruminants were key in spreading to beef-cattle, which then transmitted the virus to feedlot-cattle. Wild gazelles had a minor role in transmission. The results may suggest probable transmission of FMD virus from the Palestinian Authority to Israel. Targeting extensive farms via enhanced surveillance and vaccination could improve FMDV control. Given cross-border transmission, a collaborative FMD mitigation strategy across the Middle-East is crucial.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Sheep , Foot-and-Mouth Disease Virus/genetics , Israel/epidemiology , Bayes Theorem , Phylogeny , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Serogroup , Disease Outbreaks/veterinary , Cattle Diseases/epidemiology , Sequence Analysis , Ruminants
18.
J Vet Diagn Invest ; 36(2): 192-204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38111309

ABSTRACT

We optimized and verified a single-spot solid-phase competitive ELISA (ss-SPCE) to detect antibodies against structural proteins of Southern African Territories (SAT) serotypes of foot-and-mouth disease virus (FMDV) in small ruminants. Sera from goats vaccinated and experimentally challenged with a SAT1 FMDV pool were tested in duplicate at 4 dilutions (1:10, 1:15, 1:22.5, 1:33.8) to optimize the assay. To assess the performance of the assay in naturally infected animals, we evaluated 316 goat and sheep field sera collected during active SAT2 outbreaks. Relative to results of the virus neutralization test, the optimal serum dilution and cutoff percentage inhibition (PI) were 1:15 and 50%, respectively. At these values, the Spearman rank correlation coefficient was 0.85 (p < 0.001), and the sensitivity and specificity (95% CI) were 80.3% (72.6, 87.2) and 91.1% (84.1, 95.9), respectively. Relative to the liquid-phase blocking ELISA and the nonstructural protein ELISA, the ss-SPCE exhibited divergent performance characteristics between the goat and sheep field sera. Repeatability was better for goats, but the correlation and agreement among all 3 assays were better for the sheep sera. The prevalence of SAT2 FMDV infection in the sampled sheep was 23.6%; sampled goats were seemingly FMDV-free. The ss-SPCE is an appropriate FMDV detection tool to investigate the role of small ruminants in the epidemiology of FMD in Africa.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Goat Diseases , Sheep Diseases , Animals , Sheep , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/epidemiology , Serogroup , Goats , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral , Goat Diseases/diagnosis , Goat Diseases/epidemiology , Sheep Diseases/diagnosis , Sheep Diseases/epidemiology
19.
PLoS One ; 18(12): e0295319, 2023.
Article in English | MEDLINE | ID: mdl-38051725

ABSTRACT

Foot-and-mouth Disease (FMD) is a highly contagious viral disease affecting all hoof-cloven animals. Serotypes A, O and SAT 2 of the foot-and-mouth disease virus (FMDV) are circulating in Egypt. The present study aimed to identify and molecularly characterize the FMDV strains circulating in Northern Egypt during an epidemic that struck the nation in 2022. RNA was extracted from the epithelial specimens, vesicular fluid from affected cattle. The samples were screened using real-time reverse-transcription polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase (RdRp) gene. Positive samples underwent individual serotype-specific amplification using primers designed for VP1 of O, A, and SAT 2 serotypes. Subsequently, direct sequencing was performed on the positive samples. The real-time RT-PCR detected positive samples from epithelial and vesicular fluid samples, but not in the blood of infected animals. Out of the 16 samples, seven tested positive for FMDV serotype A. Of these seven positive samples, six were categorized as serotype A-African topotype-G-IV, and these positive samples were isolated in BHK-21 cells, yielding an overt cytopathic effect caused by the virus. In conclusion, it is necessary to sustain continuous surveillance of the evolution of circulating FMDV strains to facilitate the assessment and aid in the selection of vaccine strains for the effective control of FMDV in Egypt.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Cattle , Serogroup , Egypt/epidemiology , Foot-and-Mouth Disease/epidemiology , Cattle Diseases/epidemiology , Genetic Variation , Phylogeny
20.
Sci Rep ; 13(1): 22583, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114542

ABSTRACT

Foot-and-mouth disease (FMD) is a severe contagious viral disease of cloven-hoofed animals. In India, a vaccination-based official FMD control programme was started, which got expanded progressively to cover entire country in 2019. The serological tests are used to determine non-structural protein based sero-prevalence rates for properly implementing and assessing the control programme. Since 2008, reporting of the FMD sero-surveillance was limited to the serum sample-based serological test results without going for population-level estimation due to lack of proper statistical methodology. Thus, we present a computational approach for estimating the sero-prevalence rates at the state and national levels. Based on the reported approach, a web-application ( https://nifmd-bbf.icar.gov.in/FMDSeroSurv ) and an R software package ( https://github.com/sam-dfmd/FMDSeroSurv ) have been developed. The presented computational techniques are applied to the FMD sero-surveillance data during 2008-2021 to get the status of virus circulation in India under a strict vaccination policy. Furthermore, through various structural equation models, we attempt to establish a link between India's estimated sero-prevalence rate and field FMD outbreaks. Our results indicate that the current sero-prevalence rates are significantly associated with previous field outbreaks up to 2 years. Besides, we observe downward trends in sero-prevalence and outbreaks over the years, specifically after 2013, which indicate the effectiveness of various measures implemented under the FMD control programme. The findings of the study may help researchers and policymakers to track virus infection and identification of potential disease-free zones through vaccination.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Cattle , Animals , Prevalence , Antibodies, Viral , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Disease Outbreaks/veterinary , India/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...