Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 343: 122493, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174143

ABSTRACT

Cellulose is a major renewable resource for a wide variety of sustainable industrial products. However, for its utilization, finding new efficient enzymes for plant cell wall depolymerization is crucial. In addition to microbial sources, cellulases also exist in plants, however, are less studied. Fleshy fruit ripening includes enzymatic cell wall hydrolysis, leading to tissue softening. Therefore, bilberry (Vaccinium myrtillus L.), which produces small fruits that undergo extensive and rapid softening, was selected to explore cellulases of plant origin. We identified 20 glycoside hydrolase family 9 (GH9) cellulases from a recently sequenced bilberry genome, including four of which showed fruit ripening-specific expression and could be associated with fruit softening based on phylogenetic, transcriptomic and gene expression analyses. These four cellulases were secreted enzymes: two B-types and two C-types with a carbohydrate binding module 49. For functional characterization, these four cellulases were expressed in Pichia pastoris. All recombinant enzymes demonstrated glucanase activity toward cellulose and hemicellulose substrates. Particularly, VmGH9C1 demonstrated high activity and ability to degrade cellulose, xyloglucan, and glucomannan. In addition, all the enzymes retained activity under wide pH (6-10) and temperature ranges (optimum 70 °C), revealing the potential applications of plant GH9 cellulases in the industrial bioprocessing of lignocellulose.


Subject(s)
Cellulases , Cellulose , Fruit , Cellulose/metabolism , Cellulose/chemistry , Cellulases/metabolism , Cellulases/genetics , Cellulases/chemistry , Fruit/enzymology , Phylogeny , Polymerization , Substrate Specificity , Hydrogen-Ion Concentration , Temperature
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000287

ABSTRACT

Cytochrome P450 enzymes are monooxygenases widely diffused in nature ranging from viruses to man. They can catalyze a very wide range of reactions, including the ketonization of C-H bonds, N/O/S-dealkylation, C-C bond cleavage, N/S-oxidation, hydroxylation, and the epoxidation of C=C bonds. Their versatility makes them valuable across various fields such as medicine, chemistry, and food processing. In this review, we aim to highlight the significant contribution of P450 enzymes to fruit quality, with a specific focus on the ripening process, particularly in grapevines. Grapevines are of particular interest due to their economic importance in the fruit industry and their significance in winemaking. Understanding the role of P450 enzymes in grapevine fruit ripening can provide insights into enhancing grape quality, flavor, and aroma, which are critical factors in determining the market value of grapes and derived products like wine. Moreover, the potential of P450 enzymes extends beyond fruit ripening. They represent promising candidates for engineering crop species that are resilient to both biotic and abiotic stresses. Their involvement in metabolic engineering offers opportunities for enhancing fruit quality attributes, such as taste, nutritional content, and shelf life. Harnessing the capabilities of P450 enzymes in crop improvement holds immense promise for sustainable agriculture and food security.


Subject(s)
Cytochrome P-450 Enzyme System , Fruit , Vitis , Cytochrome P-450 Enzyme System/metabolism , Fruit/enzymology , Fruit/metabolism , Fruit/growth & development , Vitis/enzymology , Vitis/metabolism , Plant Proteins/metabolism
3.
Biochem J ; 481(13): 883-901, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38884605

ABSTRACT

Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.


Subject(s)
Capsicum , Catalase , Fruit , Nitric Oxide , Plant Proteins , Capsicum/genetics , Capsicum/growth & development , Capsicum/enzymology , Capsicum/metabolism , Catalase/metabolism , Catalase/genetics , Fruit/growth & development , Fruit/genetics , Fruit/metabolism , Fruit/enzymology , Fruit/drug effects , Nitric Oxide/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Peroxynitrous Acid/metabolism
4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928287

ABSTRACT

Exoglycosidase enzymes hydrolyze the N-glycosylations of cell wall enzymes, releasing N-glycans that act as signal molecules and promote fruit ripening. Vesicular exoglycosidase α-mannosidase enzymes of the GH38 family (EC 3.2.1.24; α-man) hydrolyze N-glycans in non-reduced termini. Strawberry fruit (Fragaria × ananassa) is characterized by rapid softening as a result of cell wall modifications during the fruit ripening process. Enzymes acting on cell wall polysaccharides explain the changes in fruit firmness, but α-man has not yet been described in F. × ananassa, meaning that the indirect effects of N-glycan removal on its fruit ripening process are unknown. The present study identified 10 GH38 α-man sequences in the F. × ananassa genome with characteristic conserved domains and key residues. A phylogenetic tree built with the neighbor-joining method and three groups of α-man established, of which group I was classified into three subgroups and group III contained only Poaceae spp. sequences. The real-time qPCR results demonstrated that FaMAN genes decreased during fruit ripening, a trend mirrored by the total enzyme activity from the white to ripe stages. The analysis of the promoter regions of these FaMAN genes was enriched with ripening and phytohormone response elements, and contained cis-regulatory elements related to stress responses to low temperature, drought, defense, and salt stress. This study discusses the relevance of α-man in fruit ripening and how it can be a useful target to prolong fruit shelf life.


Subject(s)
Fragaria , Fruit , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , alpha-Mannosidase , Fragaria/genetics , Fragaria/enzymology , Fragaria/growth & development , Fragaria/metabolism , Fruit/growth & development , Fruit/genetics , Fruit/enzymology , Fruit/metabolism , alpha-Mannosidase/metabolism , alpha-Mannosidase/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Wall/metabolism
5.
Plant Physiol Biochem ; 212: 108668, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823091

ABSTRACT

Alcohol acyltransferases (AATs) play a crucial role in catalyzing the transfer of acyl groups, contributing to the diverse aroma of fruits, including strawberries. In this research we identified nine AAT genes in strawberries through a comprehensive analysis involving phylogenetics, gene structure, conserved motifs, and structural protein model examinations. The study used the 'Camarosa' strawberry genome database, and experiments were conducted with fruits harvested at different developmental and ripening stages. The transcriptional analysis revealed differential expression patterns among the AAT genes during fruit ripening, with only four genes (SAAT, FaAAT2, FaAAT7, and FaAAT9) showing increased transcript accumulation correlated with total AAT enzyme activity. Additionally, the study employed in silico methods, including sequence alignment, phylogenetic analysis, and structural modeling, to gain insights into the AAT protein model structures with increase expression pattern during fruit ripening. The four modeled AAT proteins exhibited structural similarities, including conserved catalytic sites and solvent channels. Furthermore, the research investigated the interaction of AAT proteins with different substrates, highlighting the enzymes' promiscuity in substrate preferences. The study contributes with valuable information to unveil AAT gene family members in strawberries, providing scientific background for further exploration of their biological characteristics and their role in aroma biosynthesis during fruit ripening.


Subject(s)
Fragaria , Fruit , Phylogeny , Plant Proteins , Fragaria/genetics , Fragaria/enzymology , Fragaria/metabolism , Fragaria/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/enzymology , Fruit/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression Regulation, Plant , Amino Acid Sequence
6.
Food Chem ; 456: 140030, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38909459

ABSTRACT

Microbial pectinolytic enzymes are important in various industries, particularly food processing. This study focuses on uncovering insights into a novel pectin lyase, BvPelB, from Bacillus velezensis 16B, with the aim of enhancing fruit juice processing. The study examines the structural and functional characteristics of pectinolytic enzyme, underscoring the critical nature of substrate specificity and enzymatic reaction mechanisms. BvPelB was successfully expressed and purified, exhibiting robust activity under alkaline conditions and thermal stability. Structural analysis revealed similarities with other pectin lyases, despite limited sequence identity. Biochemical characterization showed BvPelB's preference for highly methylated pectins and its endo-acting mode of cleavage. Treatment with BvPelB significantly increased juice yield and clarity without generating excessive methanol, making it a promising candidate for fruit juice processing. Overall, this study provides valuable insights into the enzymatic properties of BvPelB and its potential industrial applications in improving fruit juice processing efficiency and quality.


Subject(s)
Bacillus , Bacterial Proteins , Food Handling , Fruit and Vegetable Juices , Polysaccharide-Lyases , Bacillus/enzymology , Bacillus/chemistry , Fruit and Vegetable Juices/analysis , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Substrate Specificity , Enzyme Stability , Pectins/metabolism , Pectins/chemistry , Fruit/chemistry , Fruit/enzymology , Fruit/microbiology
7.
Food Chem ; 453: 139621, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761728

ABSTRACT

Bael (Aegle marmelos) beverage was pasteurized using continuous-microwave (MW) and traditional thermal processing and the activity of native enzymes, pulp-hydrolyzing enzymes, bioactive, physicochemical, and sensory properties were analyzed. First-order and linear biphasic models fitted well (R2 ≥ 0.90) for enzyme inactivation and bioactive alteration kinetics, respectively. For the most resistant enzyme, polyphenoloxidase (PPO), the inactivation target of ≥ 90 % was achieved at 90 °C TMW (final temperature under MW) and 95 °C for 5 min (conventional thermal). MW treatment displayed faster enzyme inactivation and better retention of TPC and AOC. MW treatment at 90 °C TMW showed 5.3 min D-value, 90% total carotenoid content, 3.42 crisp sensory score (out of 5), and no or minor change in physicochemical attributes. Thermal and MW treatment caused the loss of 14 and 10 bioactive compounds, respectively. The secondary and tertiary structural modifications of PPO enzyme-protein revealed MW's lethality primarily due to its thermal effects.


Subject(s)
Catechol Oxidase , Microwaves , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Food Handling , Hot Temperature , Taste , Humans , Beverages/analysis , Kinetics , Enzyme Stability , Plant Proteins/chemistry , Plant Proteins/metabolism , Fruit/chemistry , Fruit/enzymology
8.
J Agric Food Chem ; 72(20): 11617-11628, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728580

ABSTRACT

When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.


Subject(s)
Fruit , Gas Chromatography-Mass Spectrometry , Glycoside Hydrolases , Glycosides , Phenols , Smoke , Vitis , Hydrolysis , Glycosides/chemistry , Glycosides/metabolism , Glycosides/analysis , Smoke/analysis , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Phenols/chemistry , Phenols/metabolism , Vitis/chemistry , Fruit/chemistry , Fruit/enzymology , Wine/analysis , Wildfires , Biocatalysis
9.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717972

ABSTRACT

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Subject(s)
Botrytis , Fragaria , Plant Proteins , Salicylates , Disease Resistance/genetics , Fragaria/enzymology , Fragaria/genetics , Fragaria/microbiology , Fruit/enzymology , Fruit/genetics , Fruit/microbiology , Gene Expression Regulation, Plant , Molecular Docking Simulation , Multigene Family , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Salicylates/metabolism
10.
Food Chem ; 450: 139375, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653052

ABSTRACT

Cooked off-flavor was produced during the processing of concentrated peach puree (CPP), which led to aroma deterioration. Enzymatic treatment was beneficial in eliminating off-flavors and improving the aroma quality. Herein, the efficacy of glycosidase (AR2000), glucose oxidation (GOD), and their combination on the inhibition of off-flavors and aroma enhancement were evaluated. Compared with CPP, contents of benzaldehyde, benzyl alcohol, nonanal, and linalool increased by 198%, 1222%, 781%, and 71% after AR2000 treatment via the metabolisms of shikimate, glucose, linoleic acid, and linolenic acid, leading to the strengthening of floral and grassy. Due to the removal of 1-octen-3-one via linolenic acid metabolism, cooked off-flavor could be significantly weakened by GOD. Furthermore, Furthermore, the combination of AR2000 and GOD could not only inhibit the production of 1-octen-3-one to weaken the cooked note but also enhance grassy and floral attributes via the increase of aldehydes and alcohols.


Subject(s)
Flavoring Agents , Odorants , Prunus persica , Volatile Organic Compounds , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Fruit/chemistry , Fruit/metabolism , Fruit/enzymology , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Glucosidases/metabolism , Metabolomics , Odorants/analysis , Prunus persica/chemistry , Prunus persica/metabolism , Prunus persica/enzymology , Taste , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry
11.
Food Chem ; 451: 139378, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670019

ABSTRACT

Overcoming the intense variation of enzymatic activity among different temperatures is very critical in catalytic medicine and catalytic biology. Here, Mn-based metal-organic framework-based wide-temperature-adaptive mesoporous artificial enzymes (Mn-TMA-MOF) were designed and synthesized. The oxidase-like Mn-TMA-MOF showed excellent catalytic activity at 0-50 °C and avoided the activity loss and instability due to temperature variation that occurred. The excellent oxidase-like properties of Mn-TMA-MOF with wide temperature adaptativeness are mainly ascribed to the mixed oxidized state (Mn3+/Mn2+) and high substrate affinity (Km = 0.034 mM) of Mn. Moreover, the mesopore-micropores two-level structure of Mn-TMA-MOF provides a large space and surface area for enzyme catalysis. Based on the stability of Mn-TMA-MOF, we developed a colorimetric sensor that can detect total antioxidant capacity in fruits with a limit of detection up to 0.59 µM.


Subject(s)
Antioxidants , Manganese , Metal-Organic Frameworks , Oxidoreductases , Temperature , Metal-Organic Frameworks/chemistry , Manganese/chemistry , Antioxidants/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Porosity , Catalysis , Fruit/chemistry , Fruit/enzymology , Colorimetry , Oxidation-Reduction , Biocatalysis
12.
J Sci Food Agric ; 104(10): 5860-5868, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38385790

ABSTRACT

BACKGROUND: Avocado fruit is rich in xanthophylls, which have been related to positive effects on human health. Xanthophyl acetyltransferases (XATs) are enzymes catalyzing the esterification of carboxylic acids to the hydroxyl group of the xanthophyll molecule. This esterification is thought to increase the lipophilic nature of the xanthophyll and its stability in a lipophilic environment. Studies on XATs in fruits are very scarce, and no studies had been carried out in avocado fruit during postharvest. The objective of this work was to investigate the changes in the expression of genes encoding XAT, during avocado fruit ripening. RESULTS: Avocado fruits were obtained from a local market and stored at 15 °C for 8 days. The fruit respiration rate, ethylene production, and fruit peel's color space parameters (L*, a*, b*) were measured during storage. Fruit mesocarp samples were taken after 1, 3, 5, and 7 days of storage and frozen with liquid nitrogen. Total RNA was extracted from fruit mesocarp, and the quantification of the two genes designated as COGE_ID: 936743791 and COGE_ID: 936800185 encoding XATs was performed with real-time quantitative reverse transcription polymerase chain reaction using actin as a reference gene. The presence of a climacteric peak and large changes in color were recorded during postharvest. The two genes studied showed a large expression after 3 days of fruit storage. CONCLUSIONS: We conclude that during the last stages of ripening in avocado fruit there was an active esterification of xanthophylls with carboxylic acids, which suggests the presence of esterified xanthophylls in the fruit mesocarp. © 2024 Society of Chemical Industry.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Persea , Plant Proteins , Persea/genetics , Persea/growth & development , Persea/metabolism , Persea/chemistry , Persea/enzymology , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Fruit/enzymology , Fruit/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Food Storage , Xanthophylls/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism
13.
Ann Bot ; 133(4): 547-558, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38180460

ABSTRACT

BACKGROUND AND AIMS: The softening of ripening fruit involves partial depolymerization of cell-wall pectin by three types of reaction: enzymic hydrolysis, enzymic elimination (lyase-catalysed) and non-enzymic oxidative scission. Two known lyase activities are pectate lyase and rhamnogalacturonan lyase (RGL), potentially causing mid-chain cleavage of homogalacturonan and rhamnogalacturonan-I (RG-I) domains of pectin respectively. However, the important biological question of whether RGL exhibits action in vivo had not been tested. METHODS: We developed a method for specifically and sensitively detecting in-vivo RGL products, based on Driselase digestion of cell walls and detection of a characteristic unsaturated 'fingerprint' product (tetrasaccharide) of RGL action. KEY RESULTS: In model experiments, potato RG-I that had been partially cleaved in vitro by commercial RGL was digested by Driselase, releasing an unsaturated tetrasaccharide ('ΔUA-Rha-GalA-Rha'), taken as diagnostic of RGL action. This highly acidic fingerprint compound was separated from monosaccharides (galacturonate, galactose, rhamnose, etc.) by electrophoresis at pH 2, then separated from ΔUA-GalA (the fingerprint of pectate lyase action) by thin-layer chromatography. The 'ΔUA-Rha-GalA-Rha' was confirmed as 4-deoxy-ß-l-threo-hex-4-enopyranuronosyl-(1→2)-l-rhamnosyl-(1→4)-d-galacturonosyl-(1→2)-l-rhamnose by mass spectrometry and acid hydrolysis. Driselase digestion of cell walls from diverse ripe fruits [date, sea buckthorn, cranberry, yew (arils), mango, plum, blackberry, apple, pear and strawberry] yielded the same fingerprint compound, demonstrating that RGL had been acting in vivo in these fruits prior to harvest. The 'fingerprint' : (galacturonate + rhamnose) ratio in digests from ripe dates was approximately 1 : 72 (mol/mol), indicating that ~1.4 % of the backbone Rha→GalA bonds in endogenous RG-I had been cleaved by in-vivo RGL action. CONCLUSIONS: The results provide the first demonstration that RGL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.


Subject(s)
Cell Wall , Fruit , Pectins , Polysaccharide-Lyases , Polysaccharide-Lyases/metabolism , Fruit/enzymology , Cell Wall/metabolism , Pectins/metabolism
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008576

ABSTRACT

In order to understand the structural characteristics of squalene synthase genes in the triterpenoids biosynthesis pathway of Crataegus pinnatifida, the squalene synthase genes of C. pinnatifida was cloned and analyzed by bioinformatics and prokaryotic expression. Two squalene synthase genes CpSQS1 and CpSQS2 were cloned from C. pinnatifida fruit by RT-PCR. The ORF length of CpSQS1 and CpSQS2 were 1 239 bp and 1 233 bp respectively, encoding 412 aa and 410 aa respectively. CpSQS1 and CpSQS2 were predicted to be stable acidic proteins by online tools. The secondary structure was mainly composed of α-helix structure, and the tertiary structure was predicted by homology modeling. Structural functional domain analysis showed that 35-367 aa of CpSQS1 and CpSQS2 cDNA containing conserved trans-isoprenyl pyrophosphate synthase domains. Transmembrane domain analysis predicted that two transmembrane domains were founded in CpSQS1 and CpSQS2. The squalene synthase amino sequence of C. pinnatifida had higher homology with the known SQS of Salvia miltiorrhiza and Glycyrrhiza glabra. Phylogenetic tree analysis showed that CpSQS1 and CpSQS2 were clustered into one branch of MdSQS1 and MdSQS2, which were consistent with the phylogenetic rule. Prokaryotic expression vector pGEX-4 T-1-CpSQS1 and pGEX-4 T-1-CpSQS2 were transformed into Escherichia coli Transetta(DE3) for induction, and the target protein was successfully expressed at 65 kDa. The expression levels of CpSQS2 were significantly higher than that of CpSQS1 in three different developmental stages of C. pinnatifida. In this study, the full-length cDNA sequences of C. pinnatifida SQS1 and SQS2 were cloned and analyzed for the first time, which provided the foundation for further study on the metabolic pathway of C. pinnatifida triterpenoids.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Crataegus/genetics , Farnesyl-Diphosphate Farnesyltransferase/genetics , Fruit/enzymology , Phylogeny , Plant Proteins/genetics
15.
Electron. j. biotechnol ; 9(1)Jan. 2006.
Article in English | LILACS | ID: lil-432455

ABSTRACT

In this paper we studied the effect of different organic solvents (1-octanol, trichloroethylene, ethanol, ethyl acetate, tetrahydrofuran, cyclohexane, propanone, acetonitrile, dichloromethane, chlorobenzene, N,N-dimethylformamide, acetophenone, diethyl ether, methanol, ethylene glycol and toluene) with low and constant water content on substrate preferences, thermostability and stability (caseinolytic activity retention after 4 h) of proteases of Araujia hortorum Fourn. (Asclepiadaceae). The stability of araujiain was high in N,N-dimethylformamide and ethanol at 40 ºC, but decreased at higher temperature. Araujiain substrates preferences in buffer Tris-HCl (pH 8), ethylene glycol and N,N-dimethylformamide exhibited different patterns, but the enzyme showed a high preference by glutamine derivative in all cases. According to FTIR spectroscopy studies, araujiain changed its secondary structure and as a consequence, it also changed its substrate preferences. This enzyme showed lower beta-helical character and greater beta-sheet folding in buffer than in organic media. A larger amount of antiparallel beta-sheet residues indicates the formation of tighter intermolecular hydrogen bonds and enzymatic aggregates. These facts could explain the higher esterolytic activities, the greater stability and good hydrolytic potential of araujiain in some organic media such as N,N-dimethylformamide.


Subject(s)
Apocynaceae/enzymology , Cysteine Endopeptidases/metabolism , Fruit/enzymology , Solvents , Catalysis , Caseins/metabolism , Enzyme Stability , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration , Peptide Hydrolases/metabolism , Substrate Specificity , Temperature , Water
16.
Sao Paulo; s.n; 1997. 91 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-194252

ABSTRACT

A enzima sacarose-fosfato sintase foi parcialmente purificada de bananas fisiologicamente imaturas (70 dias após antese), fisiologicamente maturas pré-climatéricas (110 dias após a antese) e climatéricas (130 dias após a antese). De acordo com os resultados apresentados a SPS de banana é uma enzima constituída de subunidade de 116kD, apresentando peso molecular nativo de 440 kD por filtraçäo em gel e bandas de 180, 240 e 686 kD por eletroforese em gel de poliacrilamida, nos três estágios estudados. Uma sequência parcial do gene da SPS foi amplificado através de PCR, clonado e seu sequenciamento indicou que a enzima de banana apresenta elevada homologia com as de outras fontes vegetais. A análise dos níveis de proteína e mRNA durante o desenvolvimento e amadurecimentro do fruto permitem correlacionar o aumento de atividade com o aumento na expressäo do gene da SPS. Näo foram observadas alteraçöes significativas no estado de ativaçäo, sugestivas de modificaçäo covalente como mecanismo de ativaçäo durante o amadurecimento


Subject(s)
Fruit/enzymology , Gene Expression , Glycosyltransferases/analysis , Glycosyltransferases/isolation & purification , Electrophoresis , Enzyme Activation , Enzymes/analysis , Food Analysis
17.
Arch. med. res ; 25(1): 11-5, 1994.
Article in English | LILACS | ID: lil-198800

ABSTRACT

The traditional herbal remedy from Psidium guajava leaves had been medically proposed in mexico as effective treatment of acute diarrhea. A methanolic leaf extract was subjected to a bioassay-guided isolation of spasmolytic constituents. Six fractions were separated on a polyvinylpolypyrrolidine (PVPP) columm using a water methanol-gradient. The fraction containing flavonols inhibited peristalsis of guinea pig ileum in vitro. A trace of quercetin aglycone together with five glycosides was isolated from this active fraction and identified as quercentin 3-O-alpha-L-arabinoside (guajaravin); quercetin 3-O-ß-D-glucoside (isoquercetin); quercetin 3-O-ß-D-galactoside (hyperin); quercetin 3-O-ß-L-rhamnoside (quercitrin) and quercetin 3-O-gentobioside. Biological activity of each pure compound was studied in the same bioassay. Obtained results suggets that the spasmolytic activity of the Psidium guajava leaf remedy is mainly due to the aglycone quercetin, present in the leaf and in the extract mainly in the form of live flavonols, and whose effect is produced when these products are hydrolyzed by gastrointestinal fluid


Subject(s)
Diarrhea/therapy , Fruit/enzymology , Glycosides/pharmacokinetics , Medicine, Traditional , Peristalsis/physiology , Quercetin/pharmacokinetics
18.
Arch. latinoam. nutr ; 39(2): 171-84, jun. 1989. tab
Article in Spanish | LILACS | ID: lil-88944

ABSTRACT

El objetivo de este trabajo fue el aislamiento y la caracterización parcial de la enzima polifenoloxidasa de manzana (Malus domestica Var. Anna), cosechada en la región semidesértica de la Costa de Hermosillo, Sonora, México. Se estudió el efecto que tienen el pH, temperatura, especificidad hacia sustratos y separación bajo condiciones de cromatografía hidrofóbica. La enzima se aisló a partir de manzanas maduras tratadas con acetona fría. Del polvo residual obtenido se extrajo la enzima con regulador de fosfatos, y el extracto se utilizó para realizar caracterización, encontrándose que el pH y temperatura óptimos eran 5.36 y 35§C, respectivamente. La especificidad hacia sustratos mostró ser decreciente desde 4-metil catecol, ácido clorogénico, catecol y ácido cafeico hasta 3.4-dihidroxifenilalanina (DOPA). La enzima resultó ser más termoestable que la generalidad de las oxidasas en el intervalo de temperatura de 35§C a 60§C. El comportamiento del extracto a través de cromatografía hidrofóbica produjo un solo pico con actividad polifenolásica, lográndose una purificación de aproximadamente 300 veces. El contenido de compuestos con grupo fenólico fue de 1.16 g/100 g de fruta fresca. Las características polifenolásicas encontradas se asemejan a las de manzanas de regiones templadas, aunque éstas presentan una mayor termoestabilidad, lo que explica hasta cierto grado la gran influencia que la temperatura ejerce sobre el fenómeno del oscurecimiento enzimático en las condiciones tan cálidas...


Subject(s)
Fruit/enzymology , Monophenol Monooxygenase/isolation & purification , Chromatography , Fruit/analysis , Monophenol Monooxygenase/metabolism , Philippines , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL