Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 830
1.
Nat Commun ; 15(1): 4984, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38862481

More than 10 million people suffer from lung diseases caused by the pathogenic fungus Aspergillus fumigatus. Azole antifungals represent first-line therapeutics for most of these infections but resistance is rising, therefore the identification of antifungal targets whose inhibition synergises with the azoles could improve therapeutic outcomes. Here, we generate a library of 111 genetically barcoded null mutants of Aspergillus fumigatus in genes encoding protein kinases, and show that loss of function of kinase YakA results in hypersensitivity to the azoles and reduced pathogenicity. YakA is an orthologue of Candida albicans Yak1, a TOR signalling pathway kinase involved in modulation of stress responsive transcriptional regulators. We show that YakA has been repurposed in A. fumigatus to regulate blocking of the septal pore upon exposure to stress. Loss of YakA function reduces the ability of A. fumigatus to penetrate solid media and to grow in mouse lung tissue. We also show that 1-ethoxycarbonyl-beta-carboline (1-ECBC), a compound previously shown to inhibit C. albicans Yak1, prevents stress-mediated septal spore blocking and synergises with the azoles to inhibit A. fumigatus growth.


Antifungal Agents , Aspergillus fumigatus , Dyrk Kinases , Fungal Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Aspergillus fumigatus/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/enzymology , Animals , Antifungal Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Mice , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Azoles/pharmacology , Aspergillosis/microbiology , Aspergillosis/drug therapy , Lung/microbiology , Spores, Fungal/drug effects , Spores, Fungal/genetics , Female
2.
J Agric Food Chem ; 72(21): 11938-11948, 2024 May 29.
Article En | MEDLINE | ID: mdl-38752540

The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 µg/mL), 6ae (0.32 µg/mL), and 6ah (0.48 µg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 µg/mL). Furthermore, compounds 4ak (0.88 µg/mL), 6ae (0.61 µg/mL), 6ah (0.65 µg/mL), and 6ak (1.11 µg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 µg/mL) and the broad-spectrum fungicide carbendazim (2.15 µg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.


Coumarins , Fungicides, Industrial , Quantitative Structure-Activity Relationship , Rhizoctonia , Succinate Dehydrogenase , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Colletotrichum/drug effects , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Molecular Docking Simulation , Halogenation , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis
3.
J Agric Food Chem ; 72(21): 12260-12269, 2024 May 29.
Article En | MEDLINE | ID: mdl-38759097

Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 µg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 µg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 µg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.


14-alpha Demethylase Inhibitors , Ascomycota , Drug Design , Fungal Proteins , Fungicides, Industrial , Pyrimidines , Rhizoctonia , Sterol 14-Demethylase , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Rhizoctonia/drug effects , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Ascomycota/drug effects , Ascomycota/enzymology , Models, Molecular , Botrytis/drug effects , Penicillium/drug effects , Penicillium/enzymology , Molecular Structure , Molecular Docking Simulation
4.
J Agric Food Chem ; 72(23): 12915-12924, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38807027

Plant pathogenic fungi pose a significant threat to agricultural production, necessitating the development of new and more effective fungicides. The ring replacement strategy has emerged as a highly successful approach in molecular design. In this study, we employed the ring replacement strategy to successfully design and synthesize 32 novel hydrazide derivatives containing diverse heterocycles, such as thiazole, isoxazole, pyrazole, thiadiazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, thiophene, pyridine, and pyrazine. Their antifungal activities were evaluated in vitro and in vivo. Bioassay results revealed that most of the title compounds displayed remarkable antifungal activities in vitro against four tested phytopathogenic fungi, including Fusarium graminearum, Botrytis cinerea, Sclerotinia sclerotiorum, and Rhizoctonia solani. Especially, compound 5aa displayed a broad spectrum of antifungal activity against F. graminearum, B. cinerea, S. sclerotiorum, and R. solani, with the corresponding EC50 values of 0.12, 4.48, 0.33, and 0.15 µg/mL, respectively. In the antifungal growth assay, compound 5aa displayed a protection efficacy of 75.5% against Fusarium head blight (FHB) at a concentration of 200 µg/mL. In another in vivo antifungal activity evaluation, compound 5aa exhibited a noteworthy protective efficacy of 92.0% against rape Sclerotinia rot (RSR) at a concentration of 100 µg/mL, which was comparable to the positive control tebuconazole (97.5%). The existing results suggest that compound 5aa has a broad-spectrum antifungal activity. Electron microscopy observations showed that compound 5aa might cause mycelial abnormalities and organelle damage in F. graminearum. Moreover, in the in vitro enzyme assay, we found that the target compounds 5aa, 5ab, and 5ca displayed significant inhibitory effects toward succinate dehydrogenase, with the corresponding IC50 values of 1.62, 1.74, and 1.96 µM, respectively, which were superior to that of boscalid (IC50 = 2.38 µM). Additionally, molecular docking and molecular dynamics simulation results revealed that compounds 5aa, 5ab, and 5ca have the capacity to bind in the active pocket of succinate dehydrogenase (SDH), establishing hydrogen-bonding interactions with neighboring amino acid residues.


Ascomycota , Botrytis , Drug Design , Fungicides, Industrial , Fusarium , Plant Diseases , Rhizoctonia , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Fusarium/drug effects , Fusarium/growth & development , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Structure-Activity Relationship , Ascomycota/drug effects , Botrytis/drug effects , Botrytis/growth & development , Rhizoctonia/drug effects , Plant Diseases/microbiology , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Microbial Sensitivity Tests , Hydrazines/pharmacology , Hydrazines/chemistry , Hydrazines/chemical synthesis , Molecular Structure , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis
5.
Nat Commun ; 15(1): 3770, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704366

Aspergillus fumigatus is the leading causative agent of life-threatening invasive aspergillosis in immunocompromised individuals. One antifungal class used to treat Aspergillus infections is the fungistatic echinocandins, semisynthetic drugs derived from naturally occurring fungal lipopeptides. By inhibiting beta-1,3-glucan synthesis, echinocandins cause both fungistatic stunting of hyphal growth and repeated fungicidal lysis of apical tip compartments. Here, we uncover an endogenous mechanism of echinocandin tolerance in A. fumigatus whereby the inducible oxylipin signal 5,8-diHODE confers protection against tip lysis via the transcription factor ZfpA. Treatment of A. fumigatus with echinocandins induces 5,8-diHODE synthesis by the fungal oxygenase PpoA in a ZfpA dependent manner resulting in a positive feedback loop. This protective 5,8-diHODE/ZfpA signaling relay is conserved among diverse isolates of A. fumigatus and in two other Aspergillus pathogens. Our findings reveal an oxylipin-directed growth program-possibly arisen through natural encounters with native echinocandin producing fungi-that enables echinocandin tolerance in pathogenic aspergilli.


Antifungal Agents , Aspergillosis , Aspergillus fumigatus , Echinocandins , Fungal Proteins , Oxylipins , Antifungal Agents/pharmacology , Echinocandins/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/antagonists & inhibitors , Oxylipins/metabolism , Oxylipins/pharmacology , Aspergillosis/drug therapy , Aspergillosis/microbiology , Signal Transduction/drug effects , Gene Expression Regulation, Fungal/drug effects , Hyphae/drug effects , Hyphae/growth & development , Hyphae/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
6.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Article En | MEDLINE | ID: mdl-38720452

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Drug Design , Enzyme Inhibitors , Fungicides, Industrial , Oximes , Pyrazoles , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/chemistry , Succinate Dehydrogenase/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Oximes/chemistry , Oximes/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Molecular Docking Simulation , Rhizoctonia/drug effects , Ethers/chemistry , Ethers/pharmacology , Molecular Structure
7.
Proc Natl Acad Sci U S A ; 121(18): e2322567121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38648472

Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.


Cellobiose , Cellulase , Cellulose , Hypocreales , Cellobiose/metabolism , Cellulase/metabolism , Cellulase/antagonists & inhibitors , Cellulose/metabolism , Hypocreales/enzymology , Hypocreales/metabolism , Single Molecule Imaging/methods , Catalytic Domain , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry
8.
mBio ; 15(5): e0063324, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587428

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Antifungal Agents , CDPdiacylglycerol-Serine O-Phosphatidyltransferase , Candida albicans , Enzyme Inhibitors , Candida albicans/drug effects , Candida albicans/enzymology , Candida albicans/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/genetics , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Microbial Sensitivity Tests , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Phosphatidylserines/metabolism , Furans , Thiophenes
9.
Molecules ; 28(17)2023 Aug 24.
Article En | MEDLINE | ID: mdl-37687052

Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.


Antifungal Agents , Biofilms , Cryptococcus neoformans , Fungal Proteins , Lysophospholipase , Macrophages, Alveolar , Propolis , Humans , Biofilms/drug effects , Cell Line, Tumor , Cryptococcosis/prevention & control , Cryptococcosis/therapy , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/pathogenicity , Ethanol/chemistry , Fungal Proteins/antagonists & inhibitors , Liposomes , Lung Diseases, Fungal/prevention & control , Lung Diseases, Fungal/therapy , Lysophospholipase/antagonists & inhibitors , Macrophages, Alveolar/microbiology , Propolis/chemistry , Propolis/pharmacology , Virulence/drug effects , Virulence Factors/antagonists & inhibitors , Antifungal Agents/chemistry , Antifungal Agents/pharmacology
10.
J Med Chem ; 65(3): 2656-2674, 2022 02 10.
Article En | MEDLINE | ID: mdl-35099959

Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 µg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.


Antifungal Agents/pharmacology , Azoles/pharmacology , Drug Resistance, Fungal/drug effects , Enzyme Inhibitors/pharmacology , Fructose-Bisphosphate Aldolase/antagonists & inhibitors , Fungal Proteins/antagonists & inhibitors , Allosteric Site , Antifungal Agents/chemical synthesis , Antifungal Agents/metabolism , Azoles/chemical synthesis , Azoles/metabolism , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/physiology , Candida parapsilosis/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , Structure-Activity Relationship
12.
Biomed Res Int ; 2022: 1040693, 2022.
Article En | MEDLINE | ID: mdl-35059457

Tyrosinase and its related proteins are responsible for pigmentation disorders, and inhibiting tyrosinase is an established strategy to treat hyperpigmentation. The carbonyl scaffolds can be effective inhibitors of tyrosinase activity, and the fact that both benzoic and cinnamic acids are safe natural substances with such a scaffolded structure, it was speculated that hydroxyl-substituted benzoic and cinnamic acid derivatives may exhibit potent tyrosinase inhibitory activity. These moieties were incorporated into new chemotypes that displayed in vitro inhibitory effect against mushroom tyrosinase with a view to explore antimelanogenic ingredients. The most active compound, 2-((3-acetylphenyl)amino)-2-oxoethyl(E)-3-(2,4-dihydroxyphenyl)acrylate (5c), inhibited mushroom tyrosinase with an IC50 of 0.0020 ± 0.0002 µM, while 2-((3-acetylphenyl)amino)-2-oxoethyl 2,4-dihydroxybenzoate (3c) had an IC50 of 27.35 ± 3.6 µM in comparison to the positive control arbutin and kojic acid with a tyrosinase inhibitory activity of IC50 of 191.17 ± 5.5 µM and IC50 of 16.69 ± 2.8 µM, respectively. Analysis of enzyme kinetics revealed that 5c is a competitive and reversible inhibitor with dissociation constant (Ki) value 0.0072 µM. In silico docking studies with mushroom tyrosinase (PDB ID 2Y9X) predicted possible binding modes in the enzymatic pocket for these compounds. The orthohydroxyl of the cinnamic acid moiety of 5c is predicted to form hydrogen bond with the active site side chain carbonyl of Asn 260 (2.16 Å) closer to the catalytic site Cu ions. The acetyl carbonyl is picking up another hydrogen bond with Asn 81 (1.90 Å). The inhibitor 5c passed the panassay interference (PAINS) alerts. This study presents the potential of hydroxyl-substituted benzoic and cinnamic acids and could be beneficial for various cosmetic formulations.


Agaricales/enzymology , Enzyme Inhibitors/chemistry , Fungal Proteins , Molecular Docking Simulation , Monophenol Monooxygenase , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/chemistry
13.
J Med Chem ; 65(3): 2471-2496, 2022 02 10.
Article En | MEDLINE | ID: mdl-35077178

Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.


Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/antagonists & inhibitors , Multiple Myeloma/drug therapy , Pyrimidines/therapeutic use , Thiophenes/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/toxicity , Bone Marrow Cells/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/toxicity , Female , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Humans , Liver/drug effects , Male , Mice, Inbred C57BL , Molecular Structure , Protein Binding , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/toxicity , Rats , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/metabolism , Thiophenes/toxicity
14.
J Biomol Struct Dyn ; 40(4): 1748-1763, 2022 03.
Article En | MEDLINE | ID: mdl-33050775

Bombyx mori is an insect of economic importance in the production of silk. It often gets infected by Nosema bombycis, an intracellular parasite. The infection causes a fatal disease known as a Pebrine which affects the development of the worm. The infected larvae of silkworms are coated with brown spots and are unable to spin the silkworm thread. They lose appetite, become sluggish, opaque and ultimately die. The Spore Wall Protein 5 is an exospore protein in N. bombycis and interacts with the polar tube proteins PTP2 and PTP3, a part of the extrusion apparatus that facilitates infection of the host. SWP5 also plays an essential part in maintaining the structural integrity of the spore wall and could possibly regulate the route of the infection in N. bombycis. In the present study, the homology modelling of three protein structures SWP5, PTP2 and PTP3 were performed. The protein-protein interaction was studied and a complete complex of SWP5, PTP2 and PTP3 was generated to understand the discharge of the penetrating polar tube. Virtual screening and molecular dynamics simulation was performed and a potential lead-like molecule is identified.Communicated by Ramaswamy H. Sarma.


Fungal Proteins , Nosema , Animals , Bombyx/microbiology , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungicides, Industrial/chemistry , Microsporidiosis , Molecular Dynamics Simulation , Nosema/chemistry , Protein Conformation , Protein Interaction Mapping , Spores/chemistry
15.
Molecules ; 26(24)2021 Dec 15.
Article En | MEDLINE | ID: mdl-34946697

Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1-5) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60-200 µM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.


Antifungal Agents/chemistry , Aspergillus fumigatus/enzymology , Chitinases , Enzyme Inhibitors/chemistry , Fungal Proteins , Molecular Docking Simulation , Chitinases/antagonists & inhibitors , Chitinases/chemistry , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Hexosaminidases/antagonists & inhibitors , Hexosaminidases/chemistry
16.
Biomolecules ; 11(12)2021 12 16.
Article En | MEDLINE | ID: mdl-34944533

Fermented persimmon juice, Kakishibu, has traditionally been used for wood and paper protection. This protective effect stems at least partially from inhibition of microbial cellulose degrading enzymes. The inhibitory effect of Kakishibu on lytic polysaccharide monooxygenases (LPMOs) and on a cocktail of cellulose hydrolases was studied, using three different cellulosic substrates. Dose dependent inhibition of LPMO activity by a commercial Kakishibu product was assessed for the well-characterized LPMO from Thermoascus aurantiacus TaAA9A, and the inhibitory effect was confirmed on five additional microbial LPMOs. The model tannin compound, tannic acid exhibited a similar inhibitory effect on TaAA9A as Kakishibu. It was further shown that both polyethylene glycol and tannase can alleviate the inhibitory effect of Kakishibu and tannic acid, indicating a likely mechanism of inhibition caused by unspecific tannin-protein interactions.


Diospyros/chemistry , Enzyme Inhibitors/pharmacology , Fruit and Vegetable Juices/microbiology , Mixed Function Oxygenases/antagonists & inhibitors , Thermoascus/enzymology , Carboxylic Ester Hydrolases/adverse effects , Diospyros/microbiology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Fermentation , Fruit and Vegetable Juices/analysis , Fungal Proteins/antagonists & inhibitors , Gene Expression Regulation, Fungal/drug effects , Hydrolases/antagonists & inhibitors , Polyethylene Glycols/adverse effects , Tannins/pharmacology , Thermoascus/drug effects
17.
Int J Mol Sci ; 22(22)2021 Nov 14.
Article En | MEDLINE | ID: mdl-34830189

Laccase from pathogenic fungi participates in both the delignification and neutralization of phytoantibiotics. Furthermore, it interferes with the hormone signaling in plants and catalyzes melanization. Infections of these pathogens contribute to loss in forestry, agriculture, and horticulture. As there is still a need to expand knowledge on efficient defense strategies against phytopathogenic fungi, the present study aimed to reveal more information on the molecular mechanisms of laccase inhibition with natural and natural-like carboxylic acid semi-synthetic derivatives. A set of hydrazide-hydrazones derived from carboxylic acids, generally including electron-rich arene units that serve as a decoy substrate, was synthesized and tested with laccase from Trametes versicolor. The classic synthesis of the title inhibitors proceeded with good to almost quantitative yield. Ninety percent of the tested molecules were active in the range of KI = 8-233 µM and showed different types of action. Such magnitude of inhibition constants qualified the hydrazide-hydrazones as strong laccase inhibitors. Molecular docking studies supporting the experimental data explained the selected derivatives' interactions with the enzyme. The results are promising in developing new potential antifungal agents mitigating the damage scale in the plant cultivation, gardening, and horticulture sectors.


Enzyme Inhibitors/pharmacology , Fungal Proteins/antagonists & inhibitors , Hydrazines/pharmacology , Laccase/antagonists & inhibitors , Phenols/pharmacology , Polyporaceae/enzymology , Biocatalysis/drug effects , Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrazines/chemistry , Hydrazines/metabolism , Kinetics , Laccase/chemistry , Laccase/metabolism , Models, Chemical , Molecular Docking Simulation , Molecular Structure , Phenols/chemistry , Phenols/metabolism , Plant Diseases/microbiology , Polyporaceae/pathogenicity , Structure-Activity Relationship
18.
Molecules ; 26(19)2021 Sep 26.
Article En | MEDLINE | ID: mdl-34641386

Fungicides are used to suppress the growth of fungi for crop protection. The most widely used fungicides are succinate dehydrogenase inhibitors (SDHIs) that act by blocking succinate dehydrogenase, the complex II of the mitochondrial electron transport chain. As recent reports suggested that SDHI-fungicides could not be selective for their fungi targets, we tested the mitochondrial function of human cells (Peripheral Blood Mononuclear Cells or PBMCs, HepG2 liver cells, and BJ-fibroblasts) after exposure for a short time to Boscalid and Bixafen, the two most used SDHIs. Electron Paramagnetic Resonance (EPR) spectroscopy was used to assess the oxygen consumption rate (OCR) and the level of mitochondrial superoxide radical. The OCR was significantly decreased in the three cell lines after exposure to both SDHIs. The level of mitochondrial superoxide increased in HepG2 after Boscalid and Bixafen exposure. In BJ-fibroblasts, mitochondrial superoxide was increased after Bixafen exposure, but not after Boscalid. No significant increase in mitochondrial superoxide was observed in PBMCs. Flow cytometry revealed an increase in the number of early apoptotic cells in HepG2 exposed to both SDHIs, but not in PBMCs and BJ-fibroblasts, results consistent with the high level of mitochondrial superoxide found in HepG2 cells after exposure. In conclusion, short-term exposure to Boscalid and Bixafen induces a mitochondrial dysfunction in human cells.


Biphenyl Compounds/pharmacology , Enzyme Inhibitors/pharmacology , Fibroblasts/pathology , Fungicides, Industrial/pharmacology , Leukocytes, Mononuclear/pathology , Mitochondria/pathology , Niacinamide/analogs & derivatives , Succinate Dehydrogenase/antagonists & inhibitors , Fibroblasts/drug effects , Fungal Proteins/antagonists & inhibitors , Hep G2 Cells , Humans , Leukocytes, Mononuclear/drug effects , Mitochondria/drug effects , Niacinamide/pharmacology
19.
Sci Rep ; 11(1): 21055, 2021 10 26.
Article En | MEDLINE | ID: mdl-34702838

Aspergillus fumigatus is a fungal pathogen whose effects can be debilitating and potentially fatal in immunocompromised patients. Current drug treatment options for this infectious disease are limited to just a few choices (e.g. voriconazole and amphotericin B) and these themselves have limitations due to potentially adverse side effects. Furthermore, the likelihood of the development of resistance to these current drugs is ever present. Thus, new treatment options are needed for this infection. A new potential antifungal drug target is acetohydroxyacid synthase (AHAS; EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, and a target for many commercial herbicides. In this study, we have expressed, purified and characterised the catalytic subunit of AHAS from A. fumigatus and determined the inhibition constants for several known herbicides. The most potent of these, penoxsulam and metosulam, have Ki values of 1.8 ± 0.9 nM and 1.4 ± 0.2 nM, respectively. Molecular modelling shows that these compounds are likely to bind into the herbicide binding pocket in a mode similar to Candida albicans AHAS. We have also shown that these two compounds inhibit A. fumigatus growth at a concentration of 25 µg/mL. Thus, AHAS inhibitors are promising leads for the development of new anti-aspergillosis therapeutics.


Acetolactate Synthase , Antifungal Agents/chemistry , Aspergillus fumigatus/enzymology , Fungal Proteins , Herbicides/chemistry , Pyrimidines/chemistry , Sulfonamides/chemistry , Triazoles/chemistry , Uridine/analogs & derivatives , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/chemistry , Candida albicans/enzymology , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Uridine/chemistry
20.
Arch Biochem Biophys ; 712: 109048, 2021 11 15.
Article En | MEDLINE | ID: mdl-34600893

Like human, fungi too are known to share lot of structural similarities amongst their CYPs (Cytochrome P450 super family of enzymes) which allows antifungal 'azole' compounds to interact with CYPs of human. Clotrimazole, an 'azole' antifungal drug, is a known inhibitor of fungal CYP named CYP51B. Curcumin, a phytochemical obtained from Curcuma longa has the ability to interact with several different human CYPs to induce inhibition. The sequence and the structural similarities amongst both human and fungal CYPs suggest a strong possibility for curcumin to interact with fungal CYP51B to behave like an antifungal agent. To test this hypothesis a study was designed involving mucormycosis agent, Rhizopus oryzae. The ability of curcumin to interact with fungal CYP51B was analysed computationally through molecular docking, MM-GBSA and Molecular Dynamics (MD) simulation assessment. Further, interaction profile for fungal CYP51B-curcumin was compared with human CYP3A4-curcumin, as there are published evidence describing curcumin as an inhibitor of human CYPs. Additionally, to validate in silico findings, an in vitro assay was performed to examine the antifungal potentials of curcumin on the R. oryzae. Conclusive results allow us to determine a plausible mode of action of curcumin to act as an antifungal against a mucormycosis agent.


Antifungal Agents/pharmacology , Curcumin/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Fungal Proteins/antagonists & inhibitors , Rhizopus oryzae/drug effects , Amino Acid Sequence , Antifungal Agents/metabolism , Clotrimazole/metabolism , Clotrimazole/pharmacology , Curcumin/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Ergosterol/metabolism , Fungal Proteins/metabolism , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Phylogeny , Protein Binding
...