Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.019
Filter
1.
Biomed Pharmacother ; 176: 116824, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820973

ABSTRACT

Ganglioside GM3 is one of the most common membrane-bound glycosphingolipids. The over-expression of GM3 on tumor cells makes it defined as a tumor-associated carbohydrate antigen (TACA). The specific expression property in cancers, especially in melanoma, make it become an important target to develop anticancer vaccines or immunotherapies. However, in the manner akin to most TACAs, GM3 is an autoantigen facing with problems of low immunogenicity and easily inducing immunotolerance, which means itself only cannot elicit a powerful enough immune response to prevent or treat cancer. With a comparative understanding of the mechanisms that how immune system responses to the carbohydrate vaccines, this review summarizes the studies on the recent efforts to development GM3-based anticancer vaccines.


Subject(s)
Cancer Vaccines , G(M3) Ganglioside , Neoplasms , G(M3) Ganglioside/immunology , Humans , Cancer Vaccines/immunology , Animals , Neoplasms/immunology , Neoplasms/therapy
2.
Nanoscale ; 16(17): 8533-8545, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38595322

ABSTRACT

Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.


Subject(s)
Liposomes , Membrane Fluidity , Nanoparticles , Polyesters , Polyesters/chemistry , Nanoparticles/chemistry , Liposomes/chemistry , Cholesterol/chemistry , Polymers/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Lactic Acid/chemistry , Lipids/chemistry , Temperature , G(M3) Ganglioside/chemistry
3.
Front Immunol ; 15: 1331345, 2024.
Article in English | MEDLINE | ID: mdl-38370401

ABSTRACT

Chimeric antigen receptor (CAR) T cell technology has ushered in a new era of immunotherapy, enabling the targeting of a broad range of surface antigens, surpassing the limitations of traditional T cell epitopes. Despite the wide range of non-protein tumor-associated antigens, the advancement in crafting CAR T cells for these targets has been limited. Owing to an evolutionary defect in the CMP-Neu5Ac hydroxylase (CMAH) that abolishes the synthesis of CMP-Neu5Gc from CMP-Neu5Ac, Neu5Gc is generally absent in human tissues. Despite this, Neu5Gc-containing antigens, including the ganglioside GM3(Neu5Gc) have consistently been observed on tumor cells across a variety of human malignancies. This restricted expression makes GM3(Neu5Gc) an appealing and highly specific target for immunotherapy. In this study, we designed and evaluated 14F7-28z CAR T cells, with a targeting unit derived from the GM3(Neu5Gc)-specific murine antibody 14F7. These cells exhibited exceptional specificity, proficiently targeting GM3(Neu5Gc)-expressing murine tumor cells in syngeneic mouse models, ranging from B cell malignancies to epithelial tumors, without compromising safety. Notably, human tumor cells enhanced with murine Cmah were effectively targeted and eliminated by the 14F7 CAR T cells. Nonetheless, despite the detectable presence of GM3(Neu5Gc) in unmodified human tumor xenografts, the levels were insufficient to trigger a tumoricidal T-cell response with the current CAR T cell configuration. Overall, our findings highlight the potential of targeting the GM3(Neu5Gc) ganglioside using CAR T cells across a variety of cancers and set the stage for the optimization of 14F7-based therapies for future human clinical application.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , G(M3) Ganglioside/therapeutic use , Antigens, Neoplasm
4.
Eur J Med Chem ; 266: 116108, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38218125

ABSTRACT

Neuronal regenerative ability is vital for the treatment of neurodegenerative diseases and neuronal injuries. Recent studies have revealed that Ganglioside GM3 and its derivatives may possess potential neuroprotective and neurite growth-promoting activities. Herein, six GM3 derivatives were synthesized and evaluated their potential neuroprotective effects and neurite outgrowth-promoting activities on a cellular model of Parkinson's disease and primary nerve cells. Amongst these derivatives, derivatives N-14 and 2C-12 demonstrated neuroprotective effects in the MPP + model in SH-SY5Y cells. 2C-12 combined with NGF (nerve growth factor) induced effecially neurite growth in primary nerve cells. Further action mechanism revealed that derivative 2C-12 exerts neuroprotective effects by regulating the Wnt signaling pathway, specifically involving the Wnt7b gene. Overall, this study establishes a foundation for further exploration and development of GM3 derivatives with neurotherapeutic potential.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Rats , Animals , Humans , Neurites , G(M3) Ganglioside/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , PC12 Cells , Neuroblastoma/metabolism
5.
Circulation ; 149(11): 843-859, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38018467

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Ferroptosis , Humans , Mice , Animals , G(M3) Ganglioside/metabolism , Proteomics , Muscle, Smooth, Vascular/metabolism , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/metabolism , Iron , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
6.
Front Immunol ; 14: 1291292, 2023.
Article in English | MEDLINE | ID: mdl-38094289

ABSTRACT

Humans lack the enzyme that produces the sialic acid N-glycolyl neuraminic acid (Neu5Gc), but several lines of evidence have shown that Neu5Gc can be taken up by mammalian food sources and replace the common human sialic acid N-acetyl neuraminic acid (Neu5Ac) in glycans. Cancer tissue has been shown to have increased the presence of Neu5Gc and Neu5Gc-containing glycolipids such as the ganglioside GM3, which have been proposed as tumor-specific antigens for antibody treatment. Here, we show that a previously described antibody against Neu5Gc-GM3 is binding to Neu5GC-containing gangliosides and is strongly staining different cancer tissues. However, we also found a strong intracellular staining of keratinocytes of healthy skin. We confirmed this staining on freshly isolated keratinocytes by flow cytometry and detected Neu5Gc by mass spectrometry. This finding implicates that non-human Neu5Gc can be incorporated into gangliosides in human skin, and this should be taken into consideration when targeting Neu5Gc-containing gangliosides for cancer immunotherapy.


Subject(s)
Neoplasms , Humans , Antigens, Neoplasm , G(M3) Ganglioside/chemistry , Glycolipids , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/metabolism , Skin/chemistry , Skin/metabolism
7.
J Agric Food Chem ; 71(46): 17899-17908, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955407

ABSTRACT

Gangliosides are complex lipids found in human milk that play important structural and biological functions. In this study, we utilized reversed-phase liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to evaluate the molecular distribution of GM3 in human milk samples collected at distinct lactation stages, ranging from colostrum to advanced lactation samples. Throughout lactation, GM3 d40:1 emerged as the most abundant GM3 species, except in colostrum, where GM3 d42:2 prevailed. The relative content of GM3 species containing very long N-fatty acyl (N-FA) substituents with >22 carbon atoms decreased, while the content of GM3 species containing 14:0, 18:0, 18:1, and 20:0 N-FA substituents increased in the later months of lactation. These findings highlight the divergence of GM3 profiles across the lactation period. Moreover, considerable interindividual variance was observed among the analyzed samples. The assessment of the GM3 profiles contributes to our understanding of the dynamic composition of human milk.


Subject(s)
Chromatography, Reverse-Phase , Milk, Human , Female , Humans , Milk, Human/chemistry , Lactation , G(M3) Ganglioside/analysis , Gangliosides/analysis , Mass Spectrometry
8.
Arch Biochem Biophys ; 750: 109810, 2023 12.
Article in English | MEDLINE | ID: mdl-37939867

ABSTRACT

Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-ß receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.


Subject(s)
Bacteriophage T7 , Breast Neoplasms , Humans , Female , Bacteriophage T7/genetics , Vascular Endothelial Growth Factor A , G(M3) Ganglioside , MCF-7 Cells , Breast Neoplasms/genetics , Doxorubicin , Nuclear Proteins/metabolism , Phosphoproteins
9.
Hum Mol Genet ; 32(24): 3323-3341, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37676252

ABSTRACT

GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.


Subject(s)
Gangliosides , Glycosphingolipids , Humans , Erlotinib Hydrochloride , Glycosphingolipids/metabolism , G(M3) Ganglioside/genetics , G(M3) Ganglioside/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism , Signal Transduction
10.
J Phys Chem B ; 127(31): 6940-6948, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37523476

ABSTRACT

SARS-CoV-2 spike glycoprotein is anchored by gangliosides. The sialic acid in the ganglioside headgroup is responsible for virus attachment and entry into host cells. We used coarse-grained (CG) molecular dynamics simulations to expand on our previous study of GM1 interaction with two different orientations of the SARS-CoV-2 S1 subunit N-terminal domain (NTD) and to confirm the role of sialic acid receptors in driving the viral receptor; GM3 was used as another ganglioside on the membrane. Because of the smaller headgroup, sialic acid is crucial in GM3 interactions, whereas GM1 interacts with NTD via both the sialic acid and external galactose. In line with our previous findings for NTD orientations in GM1 binding, we identified two orientations, "compact" and "distributed", comprising sugar receptor-interacting residues in GM3-embedded lipid bilayers. Gangliosides in closer proximity to the compact NTD orientation might cause relatively greater restrictions to penetrate the bilayer. However, the attachment of a distributed NTD orientation with more negative interaction energies appears to facilitate GM1/GM3 to move quickly across the membrane. Our findings likely shed some light on the orientations that the NTD receptor acquires during the early phases of interaction with GM1 and GM3 in a membrane environment.


Subject(s)
COVID-19 , G(M3) Ganglioside , Humans , G(M1) Ganglioside/chemistry , G(M3) Ganglioside/chemistry , Gangliosides/chemistry , N-Acetylneuraminic Acid , SARS-CoV-2/metabolism
11.
Cell Mol Life Sci ; 80(6): 167, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37249637

ABSTRACT

Monosialoganglioside GM3 is the simplest ganglioside involved in various cellular signaling. Cell surface distribution of GM3 is thought to be crucial for the function of GM3, but little is known about the cell surface GM3 distribution. It was shown that anti-GM3 monoclonal antibody binds to GM3 in sparse but not in confluent melanoma cells. Our model membrane study evidenced that monoclonal anti-GM3 antibodies showed stronger binding when GM3 was in less fluid membrane environment. Studies using fluorescent GM3 analogs suggested that GM3 was clustered in less fluid membrane. Moreover, fluorescent lifetime measurement showed that cell surface of high density melanoma cells is more fluid than that of low density cells. Lipidomics and fatty acid supplementation experiment suggested that monounsaturated fatty acid-containing phosphatidylcholine contributed to the cell density-dependent membrane fluidity. Our results indicate that anti-GM3 antibody senses GM3 clustering and the number and/or size of GM3 cluster differ between sparse and confluent melanoma cells.


Subject(s)
G(M3) Ganglioside , Melanoma , Humans , G(M3) Ganglioside/metabolism , Cell Membrane/metabolism , Antibodies, Monoclonal , Melanoma/metabolism , Cell Count
12.
FEBS J ; 290(17): 4268-4280, 2023 09.
Article in English | MEDLINE | ID: mdl-37098812

ABSTRACT

Mast cells are a significant source of cytokines and chemokines that play a role in pathological processes. Gangliosides, which are complex lipids with a sugar chain, are present in all eukaryotic cell membranes and comprise lipid rafts. Ganglioside GM3, the first ganglioside in the synthetic pathway, is a common precursor of the specifying derivatives and is well known for its various functions in biosystems. Mast cells contain high levels of gangliosides; however, the involvement of GM3 in mast cell sensitivity is unclear. Therefore, in this study, we elucidated the role of ganglioside GM3 in mast cells and skin inflammation. GM3 synthase (GM3S)-deficient mast cells showed cytosolic granule topological changes and hyperactivation upon IgE-DNP stimulation without affecting proliferation and differentiation. Additionally, inflammatory cytokine levels increased in GM3S-deficient bone marrow-derived mast cells (BMMC). Furthermore, GM3S-KO mice and GM3S-KO BMMC transplantation showed increased skin allergic reactions. Besides mast cell hypersensitivity caused by GM3S deficiency, membrane integrity decreased and GM3 supplementation rescued this loss of membrane integrity. Additionally, GM3S deficiency increased the phosphorylation of p38 mitogen-activated protein kinase. These results suggest that GM3 increases membrane integrity, leading to the suppression of the p38 signalling pathway in BMMC and contributing to skin allergic reaction.


Subject(s)
G(M3) Ganglioside , Mast Cells , Mice , Animals , G(M3) Ganglioside/metabolism , Mast Cells/metabolism , Cell Differentiation , Cytokines
13.
Glycoconj J ; 40(3): 333-341, 2023 06.
Article in English | MEDLINE | ID: mdl-36939991

ABSTRACT

The alkyne tag, consisting of only two carbons, is widely used as a bioorthogonal functional group due to its compactness and nonpolar structure, and various probes consisting of lipids bearing an alkyne tag have been developed. Here, we designed and synthesized analogues of ganglioside GM3 bearing an alkyne tag in the fatty acid moiety and evaluated the effect of the alkyne tag on the biological activity. To eliminate the influence of other factors such as degradation of the glycan chain when evaluating biological activity in a cellular environment, we introduced the tag into sialidase-resistant (S)-CHF-linked GM3 analogues developed by our group. The designed analogues were efficiently synthesized by tuning the protecting group of the glucosylsphingosine acceptor. The growth-promoting effect of these analogues on Had-1 cells was dramatically altered depending upon the position of the alkyne tag.


Subject(s)
G(M3) Ganglioside , G(M3) Ganglioside/analogs & derivatives
14.
PLoS One ; 18(2): e0281414, 2023.
Article in English | MEDLINE | ID: mdl-36827398

ABSTRACT

Gangliosides, sialic acid-containing glycosphingolipids, are widely involved in regulations of signal transductions to control cellular functions. It has been suggested that GM3, the simplest structure among gangliosides, is involved in insulin resistance, whereas it remains unclear whether insulin signaling diminished by GM3 actually aggravates the pathological conditions in metabolic disorders. Moreover, the functional roles of gangliosides in the regulation of insulin signaling have not yet been fully elucidated in liver or hepatocytes despite that it is one of the major insulin-sensitive organs. To understand physiological roles of GM3 in metabolic homeostasis in liver, we conducted a high fat diet (HFD) loading experiment using double knockout (DKO) mice of GM2/GD2 synthase and GD3 synthase, which lack all gangliosides except GM3, as well as wild-type (WT) mice. DKO mice were strikingly resistant to HFD-induced hepatosteatosis, and hepatic lipogenesis-related molecules including insulin signaling components were down-regulated in HFD-fed DKO. Furthermore, we established primary hepatocyte cultures from DKO and WT mice, and examined their responses to insulin in vitro. Following insulin stimulation, DKO hepatocytes expressing GM3 showed attenuated expression and/or activations in the downstream components compared with WT hepatocytes expressing GM2. While insulin stimulation induced lipogenic proteins in hepatocytes from both genotypes, their expression levels were lower in DKO than in WT hepatocytes after insulin treatment. All our findings suggest that the modified gangliosides, i.e., a shift to GM3 from GM2, might exert a suppressive effect on lipogenesis by attenuating insulin signaling at least in mouse hepatocytes, which might result in protection of HFD-induced hepatosteatosis.


Subject(s)
G(M3) Ganglioside , Insulin Resistance , Mice , Animals , Insulin/metabolism , Diet, High-Fat , Signal Transduction , Gangliosides/metabolism , Insulin, Regular, Human , G(M2) Ganglioside
15.
Biophys Chem ; 293: 106934, 2023 02.
Article in English | MEDLINE | ID: mdl-36493587

ABSTRACT

Parkinson's disease is characterized by the aggregation of the presynaptic protein α-synuclein (αSyn), and its co-assembly with lipids and other cellular matter in the brain. Here we investigated lipid-protein co-assembly in a system composed of αSyn and model membranes containing the glycolipid ganglioside GM3. We quantified the uptake of lipids into the co-assembled aggregates and investigated how lipid molecular dynamics is altered by being present in the co-assemblies using solution 1H- and solid-state 13C NMR spectroscopy. Aggregate morphology was studied using cryo-TEM. The overall lipid uptake in the co-assembled aggregates was found to increase with the molar ratio of GM3 in the vesicles. The lipids present in the co-assembled aggregates have reduced acyl chain and headgroup dynamics compared to the protein-free bilayer system. These findings may improve our understanding of how different types of lipids can influence the composition of αSyn aggregates, which may have consequences for amyloid formation in vivo.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , G(M3) Ganglioside , Amyloid/metabolism , Amyloidogenic Proteins , Parkinson Disease/metabolism
16.
Methods Mol Biol ; 2613: 79-87, 2023.
Article in English | MEDLINE | ID: mdl-36587072

ABSTRACT

Glycolipids play important biological roles mainly in biological membranes, but their functions at the molecular level remain to be fully established. A chemical biology approach using exogenously added glycolipid probes would be promising, but the possibility of cleavage by cellular glycohydrolases complicates the interpretation of results. Thus, there is a need for non-hydolyzable analogues. In the present study, we designed and synthesized GM3 analogues resistant to GM3-degrading sialidase by replacing the O-sialoside linkage with a C-sialoside linkage. The bioactivity of the analogues was also investigated.


Subject(s)
G(M3) Ganglioside , Neuraminidase , Cell Membrane , Glycolipids
17.
Methods Mol Biol ; 2613: 101-110, 2023.
Article in English | MEDLINE | ID: mdl-36587074

ABSTRACT

GM3 synthase (GM3S) is a sialyltransferase that transfers sialic acid from CMP-sialic acid to lactosylceramide. This reaction results in formation of ganglioside GM3 and is essential for biosynthesis of its downstream derivatives, which include a- and b-series gangliosides. Here, we describe a method for GM3S enzymatic assay using fluorescence-labeled alkyl lactoside as acceptor substrate, followed by HPLC for separation of enzymatic product. The method allows quantitative assay of GM3S sialyltransferase activity in cultured cells and mouse brain tissues.


Subject(s)
G(M3) Ganglioside , Sialyltransferases , Mice , Animals , Gangliosides , Cells, Cultured
18.
Glycoconj J ; 40(1): 119-122, 2023 02.
Article in English | MEDLINE | ID: mdl-36322334
19.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36335793

ABSTRACT

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Subject(s)
Glucose , Sialyltransferases , Animals , Mice , Brain/diagnostic imaging , Brain/metabolism , G(M3) Ganglioside/metabolism , Glucose/metabolism , Mice, Knockout , Pyruvic Acid , Seizures/genetics , Sialyltransferases/genetics , Sialyltransferases/metabolism
20.
FEBS Lett ; 596(24): 3124-3132, 2022 12.
Article in English | MEDLINE | ID: mdl-36331354

ABSTRACT

The interactions between gangliosides and proteins belonging to the same or different lipid domains and their influence on physiological and pathological states have been analysed in detail. A well-known factor impacting on lipid-protein interactions and their biological outcomes is the dynamic composition of plasma membrane. This review focuses on GM1 and GM3 gangliosides because they are an integral part of protein-receptor complexes and dysregulation of their concentration shows a direct correlation with the onset of pathological conditions. We first discuss the interaction between GM3 and insulin receptor in relation to insulin responses, with an increase in GM3 correlating with the onset of metabolic dysfunction. Next, we describe the case of the GM1-TrkA interaction, relevant to nerve-cell differentiation and homeostasis as deficiency in plasma-membrane GM1 is known to promote neurodegeneration. These two examples highlight the fact that interactions between gangliosides and receptor proteins within the plasma membrane are crucial in controlling cell signalling and pathophysiological cellular states.


Subject(s)
G(M1) Ganglioside , Gangliosides , Humans , Gangliosides/metabolism , G(M1) Ganglioside/metabolism , Receptor, Insulin/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , G(M3) Ganglioside/metabolism , Membrane Microdomains/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...