Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.352
Filter
1.
Food Res Int ; 192: 114809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147506

ABSTRACT

Legumes are abundant sources of proteins, and white common bean proteins play an important role in air-water interface properties. This study aims to investigate the technical-functional properties of white common bean protein isolate (BPI) as a function of pH, protein concentration, and guar gum (GG) presence. BPI physicochemical properties were analyzed in terms of solubility, zeta potential, and mean particle diameter at pH ranging from 2 to 9, in addition to water-holding capacity (WHC), oil-holding capacity (OHC), and thermogravimetric analysis. Protein dispersions were evaluated in terms of dynamic, interfacial, and foam-forming properties. BPI showed higher solubility (>80 %) at pH 2 and above 7. Zeta potential and mean diameter ranged from 15.43 to -34.08 mV and from 129.55 to 139.90 nm, respectively. BPI exhibited WHC and OHC of 1.37 and 4.97 g/g, respectively. Thermograms indicated decomposition temperature (295.81 °C) and mass loss (64.73 %). Flow curves indicated pseudoplastic behavior, with higher η100 values observed in treatments containing guar gum. The behavior was predominantly viscous (tg δ > 1) at lower frequencies, at all pH levels, shifting to predominantly elastic at higher frequencies. Equilibrium surface tension (γeq) ranged from 43.87 to 41.95 mN.m-1 and did not decrease with increasing protein concentration under all pH conditions. All treatments exhibited ϕ < 15°, indicating predominantly elastic surface films. Foaming properties were influenced by higher protein concentration and guar gum addition, and the potential formation of protein-polysaccharide complexes favored the kinetic stability of the system.


Subject(s)
Galactans , Mannans , Phaseolus , Plant Gums , Plant Proteins , Solubility , Surface Properties , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogen-Ion Concentration , Plant Proteins/chemistry , Phaseolus/chemistry , Particle Size , Water/chemistry
2.
Int J Biol Macromol ; 275(Pt 2): 133168, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950801

ABSTRACT

Softness is a crucial criterion in assessing the comfort and usability of tissue paper. Flexible fibers contribute to the softness of the tissue paper by allowing the sheets to conform to the contours of the skin without feeling rough or abrasive. This study focuses on developing innovative CGG/APAM/PDA hydrogels with interpenetrating networks consisting of cationic guar gum, anionic polyacrylamide, and polydopamine for cellulase immobilization, aimed at improving bamboo fiber flexibility. Cellulase biomolecules are efficiently immobilized on CGG/APAM/PDA hydrogels through the Schiff base reaction. Immobilized cellulases have a wider pH applicability than free cellulases, good storage stability, and can maintain high relative activity at relatively high temperatures. The treatment of bamboo fibers with immobilized cellulase results in a significant increase in flexibility, reaching 6.90 × 1014 N·m2, which is 7.18 times higher than that of untreated fibers. The immobilization of cellulases using CGG/APAM/PDA hydrogels as carriers results in a substantial enhancement of storage stability, pH applicability, and inter-fiber bonding strength, as well as the capacity to sustain high relative enzymatic activity at elevated temperatures. The immobilization of cellulase within CGG/APAM/PDA interpenetrating network hydrogels presents a viable strategy for enhancing bamboo fiber flexibility, thereby expanding the accessibility of tissue products.


Subject(s)
Acrylic Resins , Cellulase , Enzymes, Immobilized , Galactans , Hydrogels , Indoles , Mannans , Plant Gums , Polymers , Plant Gums/chemistry , Hydrogels/chemistry , Acrylic Resins/chemistry , Cellulase/chemistry , Cellulase/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Indoles/chemistry , Polymers/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogen-Ion Concentration , Temperature , Sasa/chemistry
3.
Carbohydr Res ; 542: 109204, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981322

ABSTRACT

The hexasaccharide arabinan domain of Mycobacterial Arabinogalactan was provided with the versatile methodology toward ß-selective arabinofuranosylation directed by B(C6F5)3, demonstrating the effectiveness of the ß-arabinofuranosylation strategy. Derivatization of the amino moiety at the reducing end are essential prerequisites for elucidating the biosynthetic pathway and conjugating of this compound to a protein carrier for vaccine generation.


Subject(s)
Galactans , Galactans/chemistry , Galactans/chemical synthesis , Oligosaccharides/chemical synthesis , Oligosaccharides/chemistry , Carbohydrate Sequence , Mycobacterium/chemistry , Polysaccharides
4.
Int J Pharm ; 661: 124450, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38986968

ABSTRACT

Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ± 2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1ß, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.


Subject(s)
Acrylamide , Galactans , Hydrogels , Mannans , Plant Gums , Polymerization , Wound Healing , Plant Gums/chemistry , Mannans/chemistry , Galactans/chemistry , Wound Healing/drug effects , Hydrogen-Ion Concentration , Animals , Hydrogels/chemistry , Acrylamide/chemistry , Male , Acrylates/chemistry , Delayed-Action Preparations , Drug Liberation , Microwaves , Rats , Acrylamides
5.
Int J Biol Macromol ; 275(Pt 2): 133517, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960251

ABSTRACT

Reducing the risk of wound infection is an urgent issue health priority. Antibacterial polysaccharide-based hydrogels have attracted great attention for infectious wounds, attributed to their safe antimicrobial performance and natural non-toxicity and biodegradability advantages. In this study, the "all-in-one" self-adaptive and injectable cationic guar gum (CG)-based polysaccharide hydrogels (FA-TOB/CG) loaded with bioactive complexes were developed for infectious wound healing. The constructed antioxidant and antibacterial ferulic acid (FA)-tobramycin (TOB) bioactive complexes (FA-TOB) were used as the cross-linking agent and introduced into the CG matrix to construct the FA-TOB/CG hydrogel with a three-dimensional porous structure. The sterilization rates of FA-TOB/CG hydrogel against S. aureus and E. coli reached 98 % and 80 % respectively. In addition, the FA-TOB/CG also exhibits enhanced antioxidant performances (DPPH: > 40 %; ABTS: > 90 %; ·OH: > 50 %). More importantly, FA-TOB/CG hydrogel also showed the ability to sustain the release of FA and TOB. These superiorities of the FA-TOB/CG hydrogel enabled it to provide a moist wound environment and promote wound healing by eliminating bacteria, modulating the local inflammatory response, and accelerating collagen deposition and vascular regeneration. Thus, this study may enlarge a new sight for developing multifunctional dressings by incorporating bioactive complexes into polysaccharide hydrogels for infected wounds.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Galactans , Hydrogels , Mannans , Plant Gums , Wound Healing , Mannans/chemistry , Mannans/pharmacology , Plant Gums/chemistry , Galactans/chemistry , Galactans/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Bandages , Escherichia coli/drug effects , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Cations/chemistry , Mice , Injections
6.
Int J Biol Macromol ; 275(Pt 1): 133490, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960257

ABSTRACT

Sandy soils are suffering from water loss and desertification, which severely restrict the development of local agriculture. In this work, an eco-friendly hydrogel composed of borax and locust bean gum was synthesized to enhance the water retention capacity of sandy soil and support agricultural development in arid regions. Locust bean gum/borax hydrogel with a 3D network structure exhibited great water-absorbing capacity (130.29 g/g) within 30 min. After mixing 0.9 wt% hydrogel with sandy soil, the maximum soil water content, water retention time, soil porosity and soil organic matter were increased by 32.03 %, 14 days, 38.9 % and 8.64 g/kg respectively. Little effect on soil microorganisms revealed barely toxicity. Furthermore, the hydrogel was confirmed to be biodegradable at 43.47 % after 4 weeks. According to the study, locust bean gum/borax hydrogel possesses good water absorbing capacity, soil water retention ability, soil optimization ability and low adverse environmental impact. Together, it is inferred that the hydrogel can improve the water retention capacity of sandy soil in arid areas, promoting plant growth in arid areas.


Subject(s)
Galactans , Hydrogels , Mannans , Plant Gums , Soil , Water , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Soil/chemistry , Water/chemistry , Hydrogels/chemistry , Porosity , Sand/chemistry , Biodegradation, Environmental , Soil Microbiology , Borates
7.
Int J Biol Macromol ; 275(Pt 1): 133619, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964694

ABSTRACT

Locust bean gum (LBG), a polysaccharide-based natural polymer, is being widely researched as an appropriate additive for various products, including food, gluten-free formulations, medicines, paper, textiles, oil well drilling, cosmetics, and medical uses. Drug delivery vehicles, packaging, batteries, and catalytic supports are all popular applications for biopolymer-based materials. This review discusses sustainable food packaging and drug delivery applications for LBG. Given the benefits of LBG polysaccharide as a source of dietary fiber, it is also being investigated as a potential treatment for many health disorders, including colorectal cancer, diabetes, and gastrointestinal difficulties. The flexibility of LBG polysaccharide allows it to form hydrogen bonds with water molecules, a crucial characteristic of biomaterials, and the film-forming properties of LBG are critical for food packaging applications. The extraction process of LBG plays an important role in properties such as viscosity and gel-forming properties. Moreover, there are multiple factors such as temperature, pressure, pH, etc. The LBG-based functional composite film is effective in improving the shelf life as well as monitoring the freshness of fruits, meat and other processed food. The LBG-based hydrogel is excellent carrier of drugs and can be used for slow and sustainable release of active components present in drugs. Thus, the primary goal of this review was to conduct a comprehensive evaluation of the literature with a focus on the composition, properties, processing, food packaging, and medicine delivery applications of LBG polysaccharides. Thus, we investigated the chemical composition, extraction, and characteristics of LBG polysaccharides that underlie their applications in the food packaging and medicine delivery fields.


Subject(s)
Drug Delivery Systems , Food Packaging , Galactans , Mannans , Plant Gums , Polysaccharides , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Food Packaging/methods , Polysaccharides/chemistry , Humans , Drug Carriers/chemistry
8.
Int J Biol Macromol ; 275(Pt 2): 133687, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972650

ABSTRACT

Herein, the design and fabrication of an anticancer nanoplatform (LBG/PRA-NG) based on locust bean gum-stabilized nanogold and functionalized with Phyllanthus reticulatus anthocyanins was described. LBG/PRA-NG was prepared in an eco-friendly, one-pot approach at room temperature, mediated by the anthocyanins and gum as bio-reductant and stabilizer, respectively. The nanostructure was elaborately characterized by FESEM, TEM, UV-visible, DLS, Zeta potential, FTIR, XRD, TGA/DTG, and XPS analysis. Its anticancer attributes were examined based on cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the generation of intracellular reactive oxygen species. The results revealed the successful formation of a homogenous and highly stable nanocomposite (LBG/PRA-NG), with quasi-spherical shape, small size (14.73 nm), Zeta potential and PDI values of -58.30 mV and 0.237, respectively. The presence of a plasmonic peak at 525 nm was indicative of AuNPs. Compared to the galactomannan and anthocyanin, LBG/PRA-NG exhibited superior antioxidative properties with IC50 values of 35.44 µg/mL against DPPH and 24.55 µg/mL against ABTS+. Notably, LBG/PRA-NG also demonstrated enhanced anticancer properties relative to LBG and anthocyanins, with IC50 values of 16.17 µg/mL and 25.06 µg/mL against MCF-7 and MDA-MB-231 cells. Meanwhile, the normal cells (HEK-293 and L929) resisted the innocuous effects of LBG/PRA-NG. Furthermore, treatment of breast cancer cells with LBG/PRA-NG drastically elevated the intracellular ROS levels. This suggested that the anticancer activity of LBG/PRA-NG may be mediated via amplification of ROS/oxidative stress-induced apoptosis. Altogether, these findings indicate the remarkable potential of LBG/PRA-NC in the development of anticancer therapy.


Subject(s)
Anthocyanins , Antineoplastic Agents , Antioxidants , Galactans , Gold , Mannans , Metal Nanoparticles , Plant Gums , Humans , Plant Gums/chemistry , Plant Gums/pharmacology , Mannans/chemistry , Mannans/pharmacology , Anthocyanins/chemistry , Anthocyanins/pharmacology , Galactans/chemistry , Galactans/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Gold/chemistry , Gold/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Metal Nanoparticles/chemistry , MCF-7 Cells , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Nanocomposites/chemistry
9.
Carbohydr Polym ; 342: 122324, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048213

ABSTRACT

The system of polysaccharides from Schizymenia dubyi (Nemastomatales) was investigated. It contains a mixture of hybrid dl galactans (SH-S) and carrageenan-like polysaccharides, which were separated by means of precipitation with KCl at high concentrations. The structural features of the carrageenan-like fraction (SH-I) were investigated by methylation analysis, desulfation, uronic acid reduction, and NMR spectroscopy. It was concluded that the structure has the typical alternance α-(1 â†’ 3), ß-(1 â†’ 4) of d-galactose units, with most of the 3-linked units sulfated in O-2 (and some in O-4), and most of the 4-linked units sulfated in O-3, and substituted in O-2 by single stubs of ß-d-glucuronic acid (partly sulfated in each of the three available positions). This substituent has been only seldom found in red seaweed galactans. Rheological studies of 5 % and 10 % w/v SH, SH-S and SH-I aqueous systems, either without ions, or in KCl or CaCl2 solution gave thickening behaviors. Their random coil conformations justify the pseudoplastic behavior observed in the viscosity versus shear rate curves. As SH-S and SH-I are both contained in SH, an interpenetrating network could form in SH between the glucurono-carrageenan and the agaran, as inferred from the mechanical spectra recorded in water, especially with potassium ion.


Subject(s)
Carrageenan , Rheology , Carrageenan/chemistry , Viscosity , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Galactans/chemistry , Rhodophyta/chemistry , Magnetic Resonance Spectroscopy
10.
Carbohydr Polym ; 342: 122417, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048243

ABSTRACT

RSA-1 is a polysaccharide obtained from Raphani semen with a relatively clear structure and anti-colon cancer activity. In this study, high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy were applied to characterise the complex chain structure of RSA-1. Subsequently, the inhibitory effect on colon cancer growth through apoptosis induction in colon cancer cells was explored. The findings indicate that the main chain of RSA-1 consists of →3)-ß-D-Galp-(1 â†’ and 3,6)-ß-D-Galp-(1 â†’ substituted at C-6 with branched α-L-Araf side chains. RSA-1 disrupts the Bax/Bcl-2 ratio and thus inhibits the viability of colon cancer cells in vitro. Furthermore, it inhibits colon cancer migration by attenuating epithelial-mesenchymal transition. Notably, RSA-1 exhibited negligible impact on the growth of human intestinal epithelial cells within a relevant concentration range. This study establishes a theoretical foundation and provides technical support for the prospective development and application of RSA-1 as a dual-purpose anti-colon cancer drug and functional food.


Subject(s)
Colonic Neoplasms , Galactans , Humans , Galactans/chemistry , Galactans/pharmacology , Galactans/isolation & purification , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects
11.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240017, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043473

ABSTRACT

OBJECTIVE: This work is aimed to formulate and evaluate Mucoadhesive Microspheres contain Amoxicillin for the effective use in the treatment of H.Pylori. METHODS: Microspheres were prepared using Emulsification-cross linking technique. To this guar gum (GG) and sodium alginate (SA) was dissolved in 200 ml of water and allowed to swell for 24 h at room temperature. And separately chitosan (CH) was dissolved in 2% (v/v) glacial acetic acid and this also kept for 24 h to swell or dissolve properly. After 24 h this swelled mixture was mixed under magnetic stirrer (Remi, India) at specific stirring rate for 1 h in order to find homogeneous mass of both the gum. Then slurry of chitosan also was homogenized for half an hour. The drug, Amoxicillin (1g) was then added to the chitosan solution and mixed homogeneously. RESULTS: The aim of the study was to formulate and evaluate microspheres, for SR of the chosen drug. The particle size of microspheres was in the range of 200-500 µ, maximum mucoadhesive property observed was 57.41% for Optimized formulation F-9, Drug release 68.52% till 8 h, and the maximum entrapment was 94.87% for F-9 formulation. The work also aims to study various parameters affecting the behavior of microspheres in oral dosage form. CONCLUSION: Drugs with short half life that are absorbed from the gastrointestinal tract (GIT) are eliminated rapidly from the blood flow. To avoid this, the oral SR was developed as this formulation released the drug slowly into the GIT and maintained a stable drug concentration in the serum for a longer duration of time.


Subject(s)
Alginates , Amoxicillin , Chitosan , Mannans , Microspheres , Plant Gums , Amoxicillin/administration & dosage , Amoxicillin/pharmacokinetics , Amoxicillin/chemistry , Chitosan/chemistry , Plant Gums/chemistry , Mannans/chemistry , Alginates/chemistry , Helicobacter pylori/drug effects , Galactans/chemistry , Particle Size
12.
Int J Biol Macromol ; 275(Pt 2): 133740, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986986

ABSTRACT

Coffee beverage is a source of dietary fiber composed by arabinogalactans, which can also be associated to proteins and phenolic compounds, originating melanoidins. Human colonic in vitro fermentations of coffee fractions, one rich in melanoidins (Mel) and the other in its parental polysaccharide arabinogalactans (AG), were performed in order to evaluate the metabolites produced by microbiota, namely short-chain fatty acids (SCFA), phenolic compounds, and bile acids. After 48 h of fermentation, a higher fermentability of the carbohydrate fraction of AG (62 %) than that of Mel (27 %) was observed, resulting in a SCFA content of 63 mM and 22 mM, respectively. Supplementation with AG and Mel fractions decreased the acetate:propionate ratio from 4.7 (in the absence of coffee fractions) to 2.5 and 3.5, respectively, suggesting a potential inhibition of HMG-CoA reductase, a rate-limiting enzyme for cholesterol synthesis. The fermentation of coffee fractions yielded dihydroferulic and dihydrocaffeic acids, known to have antioxidant properties. In the presence of Mel, it was observed a decrease (from 0.25 to 0.16 mg/mL) in the production of secondary bile acids, whose high content is associated to the development of several diseases, such as colorectal cancer, neurodegenerative and cardiovascular.


Subject(s)
Bile Acids and Salts , Coffee , Colon , Fermentation , Galactans , Polymers , Humans , Galactans/chemistry , Galactans/metabolism , Coffee/chemistry , Colon/metabolism , Bile Acids and Salts/metabolism , Polymers/chemistry , Fatty Acids, Volatile/metabolism , Phenols/metabolism
13.
Fish Shellfish Immunol ; 151: 109753, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977111

ABSTRACT

Bimetallic (Au/Ag) nanoparticles (BNPs) have shown enhanced antibacterial activity compared to their monometallic counterparts. Sulfated galactans (SG) are a naturally occurring polymer commonly found in red seaweed Gracilaria fisheri. They are biocompatible and biodegradable and environmentally friendly. In this study, we utilized SG in combination with BNPs to develop composite materials that potentially enhance antibacterial activity against shrimp pathogens Vibrio parahaemolyticus and Vibrio harveyi, compared to BNPs or SG alone. BNPs were coated with sulfated galactan (SGBNPs) and characterized using UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and transmission electron microscopy (TEM). UV-vis spectroscopy analysis revealed that the surface plasmon peaks of BNPs and SGBNPs appeared at 530 nm and 532 nm, respectively. Zeta potential measurements showed that SGBNPs had a negative charge of -32.4 mV, while the BNPs solution had a positive charge of 38.7 mV. TEM images demonstrated the spherical morphology of both BNPs and SGBNPs with narrow size distributions (3-10 nm). Analysis of the FTIR spectra indicated that SG maintained its backbone structure in SGBNPs, but some functional groups were altered. Notably, SGBNPs showed superior antimicrobial and antibiofilm activities against V. parahaemolyticus and V. harveyi compared to SG and BNPs. Furthermore, treatment with SGBNPs significantly down-regulated the expression of virulence-related genes (toxR, cpsQ, and mfpA) for V. parahaemolyticus 3HP compared to the respective control, bacteria treated with BNPs or SG. Diets supplemented with SGBNPs, BNPs, or SG showed no detrimental impact on the growth of shrimp Penaeus vannamei. Shrimp fed with SGBNPs-supplemented feed showed significantly higher survival rates than those fed with BNPs-supplemented feed when infected with 3HP after being on the supplemented feed for seven days and a subsequent number of fifteen days. These findings collectively demonstrate the benefit of using SG capped Au-Ag BNPs as an antibacterial agent for the prevention and control of Vibrio sp. Infection in shrimp while reducing the risk of environmental contamination.


Subject(s)
Galactans , Metal Nanoparticles , Penaeidae , Vibrio parahaemolyticus , Vibrio , Animals , Vibrio parahaemolyticus/drug effects , Vibrio parahaemolyticus/physiology , Penaeidae/immunology , Metal Nanoparticles/chemistry , Galactans/chemistry , Galactans/pharmacology , Vibrio/drug effects , Vibrio/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/pharmacology , Silver/chemistry , Gold/chemistry , Gold/pharmacology
14.
Int J Biol Macromol ; 274(Pt 2): 133497, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944090

ABSTRACT

The monitoring of foodborne bacterial contamination requires simple and convenient biosensors. This work describes a novel paper-based colorimetric biosensor for the rapid and sensitive bacteria detection. The biosensor was constructed via the encapsulation of D-alanyl-D-alanine capped gold nanoparticles (DADA-AuNPs) in a modified paper that was fabricated by the freeze-drying of TEMPO-oxidized cellulose nanofibers/cationic guar gum composite hydrogel-modified filter paper. The results indicated that the size of DADA-AuNPs largely determined the color of their aqueous system and they exhibited light red to dark red as their size increased from around 6 to 36 nm. All these different sized DADA-AuNPs turned into colorless when encountered with either S. aureus or E. coli. In particular, the smaller the DADA-AuNPs size, the faster the discoloration. The encapsulation of DADA-AuNPs into modified paper negligibly changed their responsiveness towards bacteria. In comparison to the original filter paper and oven-dried hydrogel-modified filter paper, the freeze-dried hydrogel-modified paper was demonstrated to be a better substrate for the encapsulation of DADA-AuNPs since they could be loaded with a larger amount of DADA-AuNPs in a faster way and showed a better perceivable color. This work demonstrated a promising paper-based colorimetric biosensor for the facile and rapid detection of bacteria.


Subject(s)
Biosensing Techniques , Colorimetry , Cyclic N-Oxides , Galactans , Mannans , Metal Nanoparticles , Nanofibers , Paper , Plant Gums , Mannans/chemistry , Plant Gums/chemistry , Nanofibers/chemistry , Colorimetry/methods , Galactans/chemistry , Biosensing Techniques/methods , Cyclic N-Oxides/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Staphylococcus aureus/isolation & purification , Hydrogels/chemistry , Escherichia coli/isolation & purification , Cellulose/chemistry , Cellulose, Oxidized/chemistry , Bacteria
15.
Int J Biol Macromol ; 274(Pt 1): 133159, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880459

ABSTRACT

Soft ionic conductors exhibit immense potential for applications in soft ionotronics, including ionic skin, human-machine interface, and soft luminescent device. Nevertheless, the majority of ionogel-based soft ionic conductors are plagued by issues such as freezing, evaporation, liquid leakage, and inadequate self-healing capabilities, thereby constraining their usability in complex environments. In this study, we present a novel strategy for fabricating conductive ionogels through the proportionally mixing cationic guar gum (CGG), water, 1-butyl-3-methylimidazolium chloride (BmimCl)/glycerol eutectic-based ionic liquid, and poly(3,4-ethylenedioxythiophene)/lignosulfonate (PEDOT/LS). The resultant benefits from strong hydrogen bonding and electrostatic interactions among its constituents, endowing it with an ultrafast self-healing capability (merely 30 s) while sustaining high electrical conductivity (~16.5 mS cm-1). Moreover, it demonstrates exceptional water retention (62 % over 10 days), wide temperature tolerance (-20 to 60 °C), and injectability. A wearable sensor fabricated from this ionogel displayed remarkable sensitivity (gauge factor = 17.75) and a rapid response to variations in strain, pressure, and temperature, coupled with both long-term stability and wide working temperature range. These attributes underscore its potential for applications in healthcare devices and flexible electronics.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Electric Conductivity , Galactans , Gels , Lignin , Mannans , Plant Gums , Polymers , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Polymers/chemistry , Lignin/chemistry , Lignin/analogs & derivatives , Gels/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Wearable Electronic Devices , Cations/chemistry , Freezing , Humans
16.
Int J Biol Macromol ; 274(Pt 1): 133409, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925200

ABSTRACT

This study presents the rheological properties of quince seed gum (Q) solution in comparison with xanthan gum (X) and locust bean gums (L) and the polymeric interactions of different ratios of Q:X and Q:L blends (1:1, 1:3 and 3:1). Q exhibits greater and stronger elastic properties than X and L. The frequency and temperature stability of Q and X are both higher than that of L. The viscoelastic properties of Q:X and Q:L solutions were found to be higher than those of the individual solutions. The higher polymer entanglements observed in Q:L blends resulted in enhanced synergistic interactions and thixotropy compared to Q:X. 3QX exhibited an enhanced elastic structure, but the best synergism was observed for 3QL due to the establishment of a stronger intermolecular bond for gelling. The lower tan δ observed with increasing Q indicate a Q-induced synergistic interaction with L. At all temperatures, 3QL showed the highest thixotropy. The combination of Q and L resulted in the formation of a true gel, with the higher gel strength being observed for QL and 3QL. This study shows that Q:L and Q:X combinations can yield desired flow properties. In particular, L provides a firmer gel network with Q.


Subject(s)
Galactans , Mannans , Plant Gums , Polysaccharides, Bacterial , Rheology , Seeds , Solutions , Polysaccharides, Bacterial/chemistry , Plant Gums/chemistry , Mannans/chemistry , Galactans/chemistry , Seeds/chemistry , Rosaceae/chemistry , Viscosity , Water/chemistry , Temperature
17.
Food Chem ; 456: 140056, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38878546

ABSTRACT

In this study, carrageenan (CG), xanthan gum (XG) and locust bean gum (LBG), which can be used in infant formulas in China national standards, were selected to prepare LF-polysaccharide complexes to improve the stability of lactoferrin. The results showed that LF interacted more strongly with polysaccharides and did not affect the LF structure to a large extent when the pH and protein/polysaccharide mass ratio were 7 and 10:1 for LF-CG, 8 and 5:1 for LF-XG, 7 and 15:1 for LF-LBG. The zeta potential and fluorescence intensity of the LF-polysaccharide complexes displayed a decreasing trend with the increase in pH. When pH < 6, LF-CG and LF-XG exhibited precipitation and increased UV absorbance. Complexation between LF and CG/XG mainly attributed to electrostatic interactions, while LF and LBG form complexes based on hydrogen bonding or hydrophobic interactions. This study could provide a reference for the practical application of LF in infant formula.


Subject(s)
Infant Formula , Lactoferrin , Polysaccharides , Lactoferrin/chemistry , Hydrogen-Ion Concentration , Polysaccharides/chemistry , Infant Formula/chemistry , Galactans/chemistry , Polysaccharides, Bacterial/chemistry , Plant Gums/chemistry , Mannans/chemistry , Humans , Carrageenan/chemistry
18.
Food Chem ; 456: 140090, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38878542

ABSTRACT

Few studies have been conducted on the relationship between the crosslinking ability of dialdehyde polysaccharides (DPs) with different structures and the structure and properties of hydrogels. Herein, the effects of dialdehyde sodium alginate (DSA), dialdehyde guar gum (DGG), and dialdehyde dextran (DDE) as crosslinking agents for gelatin (GE)-based hydrogels were comparatively studied. First, the structure and aldehyde content of DPs were evaluated. Subsequently, the structure, crosslinking degree, and physicochemical properties of GE/DP hydrogels were characterized. Compared with pure GE hydrogels, GE/DP hydrogels had higher thermal stability and mechanical properties. Moreover, the aldehyde content of DPs was ordered as follows: DSA < DGG < DDE. The higher crosslinking degree of the hydrogels formed by DPs with a higher aldehyde content resulted in smaller hydrogel pores, higher mechanical strength, and a lower equilibrium swelling rate. These observations provide a theoretical basis for selecting crosslinking candidates for hydrogel-specific applications.


Subject(s)
Cross-Linking Reagents , Gelatin , Hydrogels , Polysaccharides , Schiff Bases , Gelatin/chemistry , Hydrogels/chemistry , Polysaccharides/chemistry , Cross-Linking Reagents/chemistry , Schiff Bases/chemistry , Galactans/chemistry , Plant Gums/chemistry , Mannans/chemistry
19.
Bioresour Technol ; 406: 130979, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879054

ABSTRACT

Addressing the drawbacks of traditional flocculants on microalgae biomass harvesting is crucial for large-scale industrial applications of microalgae production. In this study, cationic bioflocculant was successfully prepared by introducing cationic groups into the side chain of guar gum, achieving in-situ algae flocculation efficiency of 83.5 % with the dosage of 18.0 mg/L under pH = 10.0. Through a harmonious integration of predictive modelling and practical experimentation, a superior cell flocculation capacity of 23.5 g/g was achieved. In addition, the environmental safety and biocompatibility of cationic guar gum was assessed, using the typical suspension quantitative bacteriostatic method and the fluorescent double-staining technique. The results showed that the inhibition efficiency of Staphylococcus aureus in the system containing 60.0 mg/L cationic guar gum was only 12.0 % and there was no inhibition against Escherichia coli colonies. These findings provide a safe and green flocculant for efficient microalgae harvesting and spent medium treatment.


Subject(s)
Cations , Flocculation , Galactans , Mannans , Microalgae , Plant Gums , Galactans/pharmacology , Galactans/chemistry , Plant Gums/chemistry , Plant Gums/pharmacology , Flocculation/drug effects , Mannans/pharmacology , Mannans/chemistry , Microalgae/drug effects , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Hydrogen-Ion Concentration
20.
Sci Rep ; 14(1): 14015, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890382

ABSTRACT

Optimized production of Aspergillus niger ATCC 26011 endo-ß-mannanase (ManAn) on copra meal resulted in 2.46-fold increase (10,028 U/gds). Purified ManAn (47 kDa) showed high affinity towards guar gum (GG) as compared to konjac gum and locust bean gum with Km 2.67, 3.25 and 4.07 mg/mL, respectively. ManAn efficiently hydrolyzed GG and liberated mannooligosaccharides (MOS). Changes occurring in the rheological and compositional aspects of GG studied using Differential scanning calorimetry (DSC), Thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) revealed increased thermal stability and crystallinity of the partially hydrolyzed guar gum (PHGG). Parametric optimization of the time and temperature dependent hydrolysis of GG (1% w/v) with 100 U/mL of ManAn at 60 °C and pH: 5.0 resulted in 12.126 mg/mL of mannotetraose (M4) in 5 min. Enhanced growth of probiotics Lactobacilli and production of short chain fatty acids (SCFA) that inhibited enteropathogens, confirmed the prebiotic potential of PHGG and M4.


Subject(s)
Aspergillus niger , Galactans , Mannans , Oligosaccharides , Plant Gums , Prebiotics , beta-Mannosidase , Mannans/chemistry , Mannans/metabolism , Plant Gums/chemistry , Galactans/chemistry , Aspergillus niger/enzymology , Oligosaccharides/chemistry , Hydrolysis , beta-Mannosidase/metabolism , beta-Mannosidase/chemistry , Hydrogen-Ion Concentration , Fatty Acids, Volatile/metabolism , X-Ray Diffraction , Temperature , Lactobacillus/metabolism , Probiotics
SELECTION OF CITATIONS
SEARCH DETAIL