Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.428
1.
Carbohydr Polym ; 339: 122268, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823931

The influence of locust bean gum (LBG) galactomannans (GMs) molecular weight (Mw) to assemble microparticulate systems was evaluated, and carriers for deep lung delivery were developed. A commercial batch of LBG with a mannose/galactose (M/G) ratio of 2.4 (batch 1) was used to study the influence of different microwave partial acid hydrolysis conditions on carbohydrate composition, glycosidic linkages, and aqueous solutions viscosity. The microwave treatment did not affect the composition, presenting 4-Man (36-42 %), 4,6-Man (27-35 %), and T-Gal (24-25 %) as the main glycosidic linkages. Depolymerization led to a viscosity reduction (≤0.005 Pa·s) with no major impact on polysaccharide debranching. The structural composition of the LBG galactomannans were further elucidated with sequence-specific proteins using carbohydrate microarray technologies. A second batch of LBG (M/G 3.3) was used to study the impact of GMs with different Mw on microparticle assembling, characteristics, and insulin release kinetics. The low-Mw GMs microparticles led to a faster release (20 min) than the higher-Mw (40 min) ones, impacting the release kinetics. All microparticles exhibited a safety profile to cells of the respiratory tract. However, only the higher-Mw GMs allowed the assembly of microparticles with sizes suitable for this type of administration.


Galactose , Mannans , Molecular Weight , Plant Gums , Mannans/chemistry , Galactose/chemistry , Galactose/analogs & derivatives , Plant Gums/chemistry , Humans , Lung/metabolism , Drug Carriers/chemistry , Particle Size , Viscosity , Insulin/chemistry , Insulin/administration & dosage , Drug Liberation , Galactans/chemistry , Mannose/chemistry , Animals
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732045

In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.


Galactose , Galactose/analogs & derivatives , Galactose/metabolism , Galactose/chemistry , Aspergillus/metabolism , Aspergillus/genetics , Lectins/metabolism , Lectins/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Mannans/chemistry , Animals , Serum Albumin, Bovine/chemistry
3.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731598

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Abelmoschus , Antioxidants , Plant Extracts , Plant Roots , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Abelmoschus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Spectroscopy, Fourier Transform Infrared , Skin Care/methods , Rhamnose/chemistry , Galactose , Hexuronic Acids/chemistry , Phenols/chemistry , Phenols/analysis , Phenols/pharmacology , Humans
4.
J Oleo Sci ; 73(5): 729-742, 2024.
Article En | MEDLINE | ID: mdl-38692895

Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.


Aging , Galactose , Gastrointestinal Microbiome , Liver , Oxidative Stress , Xanthophylls , Animals , Male , Mice , Aging/drug effects , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Dietary Supplements , Galactose/pharmacology , Gastrointestinal Microbiome/drug effects , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Xanthophylls/pharmacology , Xanthophylls/isolation & purification
5.
Nutrients ; 16(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38794753

Recent studies have indicated that fucoidan has the potential to improve cognitive impairment. The objective of this study was to demonstrate the protective effect and possible mechanisms of fucoidan in D-galactose (D-gal)-induced cognitive dysfunction. Sprague Dawley rats were injected with D-galactose (200 mg/kg, sc) and administrated with fucoidan (100 mg/kg or 200 mg/kg, ig) for 8 weeks. Our results suggested that fucoidan significantly ameliorated cognitive impairment in D-gal-exposed rats and reversed histopathological changes in the hippocampus. Fucoidan reduced D-gal-induced oxidative stress, declined the inflammation level and improved mitochondrial dysfunction in hippocampal. Fucoidan promoted mitochondrial biogenesis by regulating the PGC-1α/NRF1/TFAM pathway, thereby improving D-gal-induced mitochondrial dysfunction. The regulation effect of fucoidan on PGC-1α is linked to the upstream protein of APN/AMPK/SIRT1. Additionally, the neuroprotective action of fucoidan could be related to maintaining intestinal flora homeostasis with up-regulation of Bacteroidota, Muribaculaceae and Akkermansia and down-regulation of Firmicutes. In summary, fucoidan may be a natural, promising candidate active ingredient for age-related cognitive impairment interventions.


Cognitive Dysfunction , Galactose , Gastrointestinal Microbiome , Hippocampus , Homeostasis , Mitochondria , Organelle Biogenesis , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Polysaccharides , Rats, Sprague-Dawley , Polysaccharides/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Cognitive Dysfunction/drug therapy , Homeostasis/drug effects , Male , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Sirtuin 1/metabolism , Disease Models, Animal , Transcription Factors
6.
Mol Biol Rep ; 51(1): 694, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796662

BACKGROUND: Curcumin (Curcuma longa) is a well-known medicinal plant that induces autophagy in various model species, helping maintain cellular homeostasis. Its role as a caloric restriction mimetic (CRM) is being investigated. This study explores the potential of curcumin (CUR), as a CRM, to provide neuroprotection in D galactose induced accelerated senescence model of rats through modulation of autophagy. For six weeks, male rats received simultaneous supplementation of D-gal (300 mg/kg b.w., subcutaneously) and CUR (200 mg/kg b.w., oral). METHOD AND RESULTS: The oxidative stress indices, antioxidants, and electron transport chain complexes in brain tissues were measured using standard methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) gene expression analysis was used to evaluate the expression of autophagy, neuroprotection, and aging marker genes. Our results show that curcumin significantly (p ≤ 0.05) enhanced the level of antioxidants and considerably lowered the level of oxidative stress markers. Supplementing with CUR also increased the activity of electron transport chain complexes in the mitochondria of aged brain tissue, demonstrating the antioxidant potential of CUR at the mitochondrial level. CUR was found to upregulate the expression of the aging marker gene (SIRT-1) and the genes associated with autophagy (Beclin-1 and ULK-1), as well as neuroprotection (NSE) in the brain. The expression of IL-6 and TNF-α was downregulated. CONCLUSION: Our findings demonstrate that CUR suppresses oxidative damage brought on by aging by modulating autophagy. These findings imply that curcumin might be beneficial for neuroprotection in aging and age-related disorders.


Aging , Antioxidants , Autophagy , Brain , Curcumin , Oxidative Stress , Animals , Curcumin/pharmacology , Autophagy/drug effects , Oxidative Stress/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Rats , Aging/drug effects , Male , Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Galactose/pharmacology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Beclin-1/metabolism , Beclin-1/genetics
7.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812238

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Apoptosis , Fruit , Galactose , Glutaminase , Glutamine , Mitochondria , Signal Transduction , Triterpenes , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Signal Transduction/drug effects , Cell Line , Fruit/chemistry , Glutamine/pharmacology , Glutamine/metabolism , Glutaminase/metabolism , Glutaminase/genetics , Cellular Senescence/drug effects , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/metabolism
8.
Bioorg Med Chem ; 107: 117756, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38759255

Herein, four silver(I) complexes bearing acetylated d-galactopyranoside-based N-heterocyclic carbene ligands were synthesized and fully characterized by elemental analysis, NMR, and X-ray photoelectron spectroscopy. All complexes were obtained with an anomeric ß-configuration and as monocarbene species. In this study, we investigated the biological effects of the silver(I) complexes 2a-d on the human rhabdomyosarcoma cell line, RD. Our results show concentration-dependent effects on cell density, growth inhibition, and activation of key signaling pathways such as Akt 1/2, ERK 1/2, and p38-MAPK, indicating their potential as anticancer agents. Notably, at 35.5 µM, the complexes induced mitochondrial network disruption, as observed with 2b and 2c, whereas with 2a, this disruption was accompanied by nuclear content release. These results provide insight into the utility of carbohydrate incorporated NHC complexes of silver(I) as new agents in cancer therapy.


Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Rhabdomyosarcoma , Silver , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Cell Proliferation/drug effects , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Structure-Activity Relationship , Molecular Structure , Methane/chemistry , Methane/analogs & derivatives , Methane/pharmacology , Methane/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Dose-Response Relationship, Drug , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Cell Line, Tumor , Acetylation , Galactose/chemistry , Galactose/pharmacology
9.
Exp Cell Res ; 439(1): 114075, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38710404

Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.


DNA, Mitochondrial , Fibroblasts , Galactose , Mutation , Optic Atrophy, Hereditary, Leber , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Optic Atrophy, Hereditary, Leber/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Galactose/metabolism , Mutation/genetics , Cell Proliferation/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Cells, Cultured , Glucose/metabolism , Glucose/pharmacology
10.
Int J Biol Macromol ; 269(Pt 1): 131995, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692529

In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-ß-D-Manp-(1 and 4)-ß-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.


Aging , Dendrobium , Mannans , Animals , Dendrobium/chemistry , Mice , Mannans/pharmacology , Mannans/chemistry , Aging/drug effects , Oxidative Stress/drug effects , Cognition Disorders/drug therapy , Male , Apoptosis/drug effects , Galactose
11.
Int J Biol Macromol ; 270(Pt 1): 132312, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744370

This study aimed to immobilize ß-galactosidase (ß-GAL) into enhanced polystyrene (PS) electrospun nanofiber membranes (ENMs) with functionalized graphene oxide (GO). Initially, GO sheets were functionalized by salinization with 3-aminopropyl triethoxysilane (APTES). Then the ENMs (PS, PS/GO, and PS/GO-APTES) were prepared and characterized. Then, the ß-GAL was immobilized in the different ENMs to produce the ß-GAL-bound nanocomposites (PS-GAL, PS/GO-GAL, and PS/GO-APTES-GAL). Immobilization of ß-GAL into PS/GO-APTES significantly improved enzyme adsorption by up to 87 %. Also, PS/GO-APTES-GAL improved the enzyme activity, where the highest enzyme activity was obtained at enzyme concentrations of 4 mg/L, 50 °C, and pH 4.5. Likewise, the storage stability and reusability of immobilized ß-GAL were improved. Furthermore, this process led to enhanced catalytic behavior and transgalactosylation efficiency, where GOS synthesis (72 %) and lactose conversion (81 %) increased significantly compared to the free enzyme. Overall, the immobilized ß-GAL produced in this study showed potential as an effective biocatalyst in the food industry.


Enzymes, Immobilized , Graphite , Nanofibers , Oligosaccharides , beta-Galactosidase , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Nanofibers/chemistry , Graphite/chemistry , Oligosaccharides/chemistry , Galactose/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Silanes/chemistry , Biocatalysis , Polystyrenes/chemistry , Temperature , Catalysis
12.
Int J Biol Macromol ; 270(Pt 1): 132379, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754680

Hydrogels based on natural polysaccharides have demonstrated efficacy in epithelial recovery from cutaneous burn wounds. Here, we prepared a double-network hydrogel consisting of galactomannan (from Cassia grandis seeds) and κ-carrageenan (commercially sourced), cross-linked with CaCl2, as a matrix for immobilizing lactoferrin and/or Cramoll, aiming at its applicability as dressings for second-degree burn wounds. The formulations obtained [H - hydrogel, HL - hydrogel + lactoferrin, HC - hydrogel + Cramoll and HLC - hydrogel + lactoferrin + Cramoll] were analyzed rheologically as well as in terms of their stability (pH, color, microbial contamination) for 90 days. The burn was created with an aluminum bar (97 ± 3 °C) in the dorsal region of Wistar rats and subsequently treated with hydrogels (H, HL, HC, HLC) and control saline solution (S). The burn was monitored for 3, 7 and 14 days to evaluate the efficacy of the hydrogels in promoting wound healing. The hydrogels did not reveal significant pH or microbiological changes; there was an increase in brightness and a reduction in opacity for H. The rheological analysis confirmed the gel-like viscoelastic signature of the systems without substantial modification of the basic rheological characteristics, however HLC proved to be more rigid, due to rheological synergy when combining protein biomolecules. Macroscopic analyses confirmed centripetal healing with wound contraction: S < H < HC < HL < HLC. Histopathological analyses showed that hydrogel-treated groups reduced inflammation, tissue necrosis and fibrosis, while promoting re-epithelialization with focal acanthosis, especially in HLC due to a positive synergistic effect, indicating its potential as a promising therapy in the repair of burns.


Burns , Carrageenan , Galactose , Hydrogels , Mannans , Rats, Wistar , Wound Healing , Hydrogels/chemistry , Mannans/chemistry , Mannans/pharmacology , Animals , Burns/therapy , Burns/drug therapy , Carrageenan/chemistry , Wound Healing/drug effects , Rats , Galactose/analogs & derivatives , Galactose/chemistry , Male , Lactoferrin/chemistry , Rheology
13.
Food Funct ; 15(11): 6174-6188, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38770619

Probiotic intervention is an effective strategy to alleviate oxidative stress-related diseases. Our previous studies found that Lactiplantibacillus plantarum NJAU-01 (NJAU-01) exhibited antioxidant effects in a D-galactose (D-gal)-induced aging mouse model. However, the underlying mechanism remains to be unveiled. This study was aimed to investigate the ameliorative effect and mechanism of NJAU-01 against oxidative stress induced by D-gal. The results showed that NJAU-01 could reverse the tendency of a slow body weight gain induced by D-gal. NJAU-01 relieved hepatic oxidative stress via increasing the hepatic total antioxidant capacity and antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Moreover, the malondialdehyde (MDA) level was reversed after NJAU-01 supplementation. The proteomic results showed that there were 201 differentially expressed proteins (DEPs) between NJAU-01 and D-gal groups. NJAU-01 regulated the expressions of glutathione S-transferase Mu 5 (Gstm5), glutathione S-transferase P2 (Gstp2) and NADH dehydrogenase 1α subcomplex subunit 7 (Ndufa7) related to oxidative stress, and autophagy protein 5 (Atg5) and plasma alpha-L-fucosidase (Fuca2) involved in autophagy, etc. 16S rDNA sequencing results showed that NJAU-01 supplementation could regulate the gut microbiota dysbiosis induced by D-gal via increasing the relative abundances of the phylum Firmicutes and the genus Lactobacillus and reducing the relative abundances of the phylum Bacteroidetes and the genera Lachnospiraceae_NK4A136_group as well as Prevotellaceae_UCG-001, etc.. Spearman correlation analysis results showed that the altered gut microbiota composition had a significant correlation with antioxidant enzyme activities and the DEPs related to oxidative stress. Overall, NJAU-01 alleviated hepatic oxidative stress induced by D-gal via manipulating the gut microbiota composition and hepatic protein expression profile.


Galactose , Gastrointestinal Microbiome , Liver , Oxidative Stress , Probiotics , Proteomics , Oxidative Stress/drug effects , Animals , Gastrointestinal Microbiome/drug effects , Mice , Probiotics/pharmacology , Probiotics/administration & dosage , Liver/drug effects , Liver/metabolism , Male , Lactobacillus plantarum , Antioxidants/pharmacology , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism
14.
J Mycol Med ; 34(2): 101481, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718721

Several lateral flow assays (LFA) capable of detecting Aspergillus fumigatus in serum and broncho-alveolar lavage fluid (BALF) within the hour, thereby potentially accelerating the screening process, are now commercially available. We prospectively compared three LFA targeting A. fumigatus on BALF collected from non-surgical intensive care patients between June 2022 and February 2023. The three LFA tested were Sõna Aspergillus galactomannan LFA (Immy), Fungadia Aspergillus antigen (Gadia), and AspLFD (OLM Diagnostics). We compared the results of these LFA with those of the galactomannan (GM) Platelia Aspergillus enzyme immunoassay (Bio-Rad), culture on Sabouraud medium and Aspergillus qPCR. We tested 97 BALF samples from 92 patients. In total 84 BALF samples tested negative with all three LFA, and four BALF samples tested positive with the AspLFD assay only (OLM). Only one BALF sample tested positive with the three LFA. In addition, three BALF samples tested positive only with the GM Platelia immunoassay. Four diagnosis of probable invasive aspergillosis were retained for the 92 patients tested. This prospective series included very few positive samples. From a practical point of view, the LFA from OLM presented the simplest protocol for use.


Antigens, Fungal , Aspergillus fumigatus , Bronchoalveolar Lavage Fluid , Galactose , Invasive Pulmonary Aspergillosis , Mannans , Humans , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/chemistry , Prospective Studies , Galactose/analogs & derivatives , Antigens, Fungal/analysis , Mannans/analysis , Male , Female , Aspergillus fumigatus/isolation & purification , Middle Aged , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Aged , Adult , Mass Screening/methods , Sensitivity and Specificity , Immunoassay/methods , Aged, 80 and over
15.
PeerJ ; 12: e17299, 2024.
Article En | MEDLINE | ID: mdl-38799055

Background: Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. Aim: This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. Results: The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. Conclusion: Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.


Dental Pulp , Galactose , Myocytes, Cardiac , Rats, Sprague-Dawley , Animals , Male , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/transplantation , Myocytes, Cardiac/drug effects , Dental Pulp/cytology , Stem Cell Transplantation/methods , Aging/physiology , Sirtuin 1/metabolism , Cell Differentiation/drug effects , Connexin 43/metabolism , Disease Models, Animal , Stem Cells/metabolism , Stem Cells/cytology , Apoptosis/drug effects
16.
Biosensors (Basel) ; 14(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38667160

Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are a promising approach, which can be enhanced by means of their inclusion in a redox polymer coating. This strategy simultaneously allows the immobilization of the biocatalyst to the electroactive surface and hosts the electron shuttling units. An additional deposition of capping polymers prevents external interferences like ascorbic or uric acid as well as biofouling when measuring in physiological fuels. This work studies the protection effect of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate (MPC) and polyvinylimidazole-polysulfostyrene (P(VI-SS)) when incorporated in the biosensor design for the detection of galactose in human plasma.


Biosensing Techniques , Galactose , Polymers , Humans , Polymers/chemistry , Galactose Oxidase , Methacrylates/chemistry
17.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38612681

Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16. A similar tendency was observed in senescent RGC-5 cells induced by long-term culture, indicating that SPAM1 exhibits significant in vitro and in vivo anti-senescence activity in neurons. Then, using whole-transcriptome sequencing and proteomic analysis, we further explored the mechanism behind SPAM1's neuroprotective effects and found that SPAM is involved in the longevity-regulating pathway. Finally, the up-regulation of neurofilament light and medium polypeptides indicated by the proteomics results was further confirmed by Western blotting. These results help to lay a pharmacological network foundation for the use of SPAM1 as a potent anti-aging therapeutic drug to combat neurodegeneration with anti-senescence, neuroprotective, and nerve regeneration activity.


Proteomics , Transcriptome , Animals , Mice , Gene Expression Profiling , Aging/genetics , Longevity , Galactose/pharmacology
18.
Bioresour Technol ; 399: 130642, 2024 May.
Article En | MEDLINE | ID: mdl-38561154

Aqueous galactose solutions containing eggshell was heated at 120 °C to produce calcium supplements containing rare sugars. Galactose was isomerized to rare sugars with improving rare sugar yields compared to those without eggshell. Organic acids were also formed as byproducts during the reaction. These acids were neutralized by dissolving eggshells with increasing the calcium ion concentration in the solution. When eggshell components (calcium carbonate, magnesium carbonate, or calcium phosphate) were used for the treatment, rare sugars were also formed. Especially, addition of magnesium carbonate improved rare sugar yield, but byproduct formation became more pronounced. Eggshells used in the treatment were used for repeated treatments. When eggshells were used three times, rare sugar yield changed only slightly but the selectivity of rare sugars improved significantly. By these processes, we obtained an aqueous solution of rare sugars containing calcium ion at 295 mg/L, which has potential as ingredients for dietary supplements.


Calcium , Magnesium , Sugars , Animals , Galactose , Egg Shell , Carbohydrates , Water
19.
In Vivo ; 38(3): 1170-1181, 2024.
Article En | MEDLINE | ID: mdl-38688613

BACKGROUND/AIM: Disability and mortality rates for renal failure are still increasing. DNA damage and oxidative stress intoxication from body metabolism, high blood glucose, or the environment cause significant kidney damage. Recently, we reported that Box A of HMGB1 (Box A) acts as molecular scissors, producing DNA gaps that prevent DNA damage in kidney cell lines and ultimately reverse aging phenotypes in aging rat models. The present study aimed to demonstrate the potency of Box A in preventing D-galactose (D-gal)-induced kidney injury. MATERIALS AND METHODS: A Box A expression plasmid was constructed and administered to a rat model. D-gal was injected subcutaneously for eight weeks. Serum was collected to study renal function, and white blood cells were collected for DNA gap measurement. Kidney tissue was also collected for γ-H2AX and NF-κB immunostaining; Senescence-associated (SA)-beta-gal staining; and analysis of the mRNA expression of p16INK4A, TNF-α, and IL-6. Moreover, histopathology analysis was performed using hematoxylin & eosin and Masson trichome staining. RESULTS: Pretreatment with Box A administration prevented the reduction of DNA gaps and the consequences of the DNA damage response, which include elevated serum creatinine; high serum BUN; an increased positive SA-beta-gal staining area; overexpression of p16INK4A, NF-κB and senescence-associated secretory phenotype molecules, including IL-6, TNF-α; and histological alterations, including tubular dilation and collagen accumulation. CONCLUSION: Box A effectively prevents DNA gap reduction and all D-gal-induced kidney pathological changes at the molecular, histological, and physiological levels. Therefore, Box A administration is a promising novel therapeutic strategy to prevent DNA-damaging agent-induced kidney failure.


DNA Damage , Galactose , HMGB1 Protein , Animals , Male , Rats , Disease Models, Animal , DNA Damage/drug effects , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects
20.
Int J Biol Macromol ; 267(Pt 2): 131518, 2024 May.
Article En | MEDLINE | ID: mdl-38615865

D-Galactose derivatives, including galactosyl-conjugates and galactose-upgrading compounds, provide various physiological benefits and find applications in industries such as food, cosmetics, feed, pharmaceuticals. Many research on galactose derivatives focuses on identification, characterization, development, and mechanistic aspects of their physiological function, providing opportunities and challenges for the development of practical approaches for synthesizing galactose derivatives. This study focuses on recent advancements in enzymatic biosynthesis of galactose derivatives. Various strategies including isomerization, epimerization, transgalactosylation, and phosphorylation-dephosphorylation were extensively discussed under the perspectives of thermodynamic feasibility, theoretical yield, cost-effectiveness, and by-product elimination. Specifically, the enzymatic phosphorylation-dephosphorylation cascade is a promising enzymatic synthesis route for galactose derivatives because it can overcome the thermodynamic equilibrium of isomerization and utilize cost-effective raw materials. The study also elucidates the existing challenges and future trends in enzymatic biosynthesis of galactose derivatives. Collectively, this review provides a real-time summary aimed at promoting the practical biosynthesis of galactose derivatives through enzymatic catalysis.


Galactose , Galactose/metabolism , Galactose/chemistry , Galactose/biosynthesis , Phosphorylation , Enzymes/metabolism , Enzymes/chemistry , Glycosylation
...