Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56.281
1.
Food Res Int ; 188: 114454, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823832

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Cysteine , Gas Chromatography-Mass Spectrometry , Glucose , Maillard Reaction , Volatile Organic Compounds , Cysteine/chemistry , Glucose/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Density Functional Theory , Hot Temperature
2.
Food Res Int ; 188: 114484, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823870

The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.


Fermentation , Food Microbiology , Garlic , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Garlic/chemistry , Antioxidants/analysis , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fermented Foods/microbiology , Fermented Foods/analysis
3.
Food Res Int ; 188: 114483, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823869

The Monascus-fermented cheese (MC) is a unique cheese product that undergoes multi-strain fermentation, imparting it with distinct flavor qualities. To clarify the role of microorganisms in the formation of flavor in MC, this study employed SPME (arrow)-GC-MS, GC-O integrated with PLS-DA to investigate variations in cheese flavors represented by volatile flavor compounds across 90-day ripening periods. Metagenomic datasets were utilized to identify taxonomic and functional changes in the microorganisms. The results showed a total of 26 characteristic flavor compounds in MC at different ripening periods (VIP>1, p < 0.05), including butanoic acid, hexanoic acid, butanoic acid ethyl ester, hexanoic acid butyl ester, 2-heptanone and 2-octanone. According to NR database annotation, the genera Monascus, Lactococcus, Aspergillus, Lactiplantibacillus, Staphylococcus, Flavobacterium, Bacillus, Clostridium, Meyerozyma, and Enterobacter were closely associated with flavor formation in MC. Ester compounds were linked to Monascus, Meyerozyma, Staphylococcus, Lactiplantibacillus, and Bacillus. Acid compounds were linked to Lactococcus, Lactobacillus, Staphylococcus, and Bacillus. The production of methyl ketones was closely related to the genera Monascus, Staphylococcus, Lactiplantibacillus, Lactococcus, Bacillus, and Flavobacterium. This study offers insights into the microorganisms of MC and its contribution to flavor development, thereby enriching our understanding of this fascinating dairy product.


Cheese , Fermentation , Food Microbiology , Metagenomics , Monascus , Taste , Volatile Organic Compounds , Cheese/microbiology , Cheese/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Monascus/metabolism , Monascus/genetics , Monascus/growth & development , Metagenomics/methods , Gas Chromatography-Mass Spectrometry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flavoring Agents/metabolism
4.
Food Res Int ; 188: 114525, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823888

As a kind of green tea with unique multiple baking processes, the flavor code of Lu'an Guapian (LAGP) has recently been revealed. To improve and stabilize the quality of LAGP, further insight into the dynamic changes in odorants during the whole processing is required. In this study, 50 odorants were identified in processing tea leaves, 14 of which were selected for absolute quantification to profile the effect of processes. The results showed that spreading is crucial for key aroma generation and accumulation, while these odorants undergo significant changes at the deep baking stage. By adjusting the conditions of the spreading and deep baking, it was found that low-temperature (4 °C) spreading for 6 h and low-temperature with long-time baking (final leaf temperature: 102 °C, 45 min) could improve the overall aroma quality. These results provide a new direction for enhancing the quality of LAGP green tea.


Odorants , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Plant Leaves/chemistry , Food Handling/methods , Cooking/methods , Camellia sinensis/chemistry , Gas Chromatography-Mass Spectrometry , Hot Temperature
5.
Molecules ; 29(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38792027

The aim of our study was to develop a gas chromatographic method coupled with mass spectrometry (GC-MS) for the determination of underivatised neutral (CBDs-N) and acidic (CBDs-A) cannabinoids (CBDs) and cholesterol (Chol). Emphasis was also placed on comparing our original GC-MS method with the currently developed C18-high-performance liquid chromatography with photodiode detection (C18-HPLC-DAD). A combination of a long GC column, shallow temperature column programme, and mass-spectrometry was employed to avoid issues arising from the overlap between CBDs and Chol and background fluctuations. The pre-column procedure for CBDs and Chol in egg yolks consisted of hexane extractions, whereas the pre-column procedure for CBDs in non-animal samples involved methanol and hexane extractions. CBDs-A underwent decarboxylation to CBDs during GC-MS analyses, and pre-column extraction of the processed sample with NaOH solution allowed for CBD-A removal. No losses of CBDs-N were observed in the samples extracted with NaOH solution. GC-MS analyses of the samples before and after extraction with NaOH solution enabled the quantification of CBDs-A and CBDs-N. CBDs-A did not undergo decarboxylation to CBDs-N during C18-HPLC-DAD runs. The use of the C18-HPLC-DAD method allowed simultaneous determination of CBDs-N and CBDs-A. In comparison to the C18-HPLC-DAD method, our GC-MS technique offered improved sensitivity, precision, specificity, and satisfactory separation of underivatised CBDs and Chol from biological materials of endogenous species, especially in hemp and hen egg yolk. The scientific novelty of the present study is the application of the GC-MS method for quantifying underivatised CBDs-A, CBDs-N, and Chol in the samples of interest.


Cannabinoids , Cholesterol , Gas Chromatography-Mass Spectrometry , Cannabinoids/analysis , Cannabinoids/chemistry , Gas Chromatography-Mass Spectrometry/methods , Cholesterol/analysis , Cholesterol/chemistry , Chromatography, High Pressure Liquid/methods , Animals
6.
Molecules ; 29(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38792102

This study investigates the chemical composition of the essential oil obtained from the leaves of Bocageopsis multiflora (Mart.) R.E.Fr (Annonaceae), examining its effectiveness in combating both the larvae and adult forms of Aedes aegypti mosquitoes. Additionally, for a deeper understanding of the insecticidal activity, toxicity properties and molecular docking calculations were conducted using the main compounds of this essential oil. GC/MS analysis revealed the presence of 26 constituents, representing 95.2% of the essential oil, with the major components identified as the sesquiterpenes α-selinene, ß-selinene, and ß-elemene. Larvicidal assays demonstrated potent activity of this essential oil with significant LC50 values of 40.8 and 39.4 µg/mL at 24 and 48 h, respectively. Adulticidal assessments highlighted strong efficacy with LC50 of 12.5 µg/mL. Molecular docking analysis identified optimal interaction activities of α-selinene and ß-selinene with key Aedes proteins. The in silico studies comparing synthetic insecticides with the major sesquiterpenes of the essential oil revealed that ß-selinene exhibited a significantly higher binding affinity compared to the other two sesquiterpenes. Also, ADMET studies of the three main sesquiterpenes indicated acceptable drug-like properties. In these findings, safety evaluations showed low toxicity and skin sensitization for the main sesquiterpenes, contrasting with commercial synthetic insecticides. Therefore, in silico analyses suggest promising interactions with Aedes proteins, indicating its potential as an effective alternative to conventional insecticides These results show the larvicidal and adulticidal potential of the essential oil from Bocageopsis multiflora against Aedes aegypti, supported by its predominant constituents, α-selinene, ß-selinene and ß-elemene.


Aedes , Insecticides , Larva , Molecular Docking Simulation , Oils, Volatile , Animals , Aedes/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects , Plant Leaves/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Gas Chromatography-Mass Spectrometry
7.
Molecules ; 29(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38792158

This work is focused on the characterization of the composition of a CO2 supercritical fluid extract of Aquilaria sinensis (Chinese agarwood) collected in the Dongguan area (China) and infected by mechanical methods. The constituents of this extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and quantified accurately by gas chromatography with a flame ionization detector (GC-FID), using an internal reference and predicted response factors. Since a significant number of components of this extract remained non-identified after the initial GC-MS analysis of the whole extract, its fractionation by chromatography on silica gel helped to characterize several additional constituents by isolation and structural analysis by NMR spectroscopy. The main components are the classical agarwood chromones (Flindersia chromone and its mono-, di-, and trimethoxylated analogues (respectively, 11.01% and 0.11-4.02%) along with sesquiterpenic constituents typically found in agarwood essential oils, like baimuxinal (1.90%) and kusunol (1.24%), as well as less common selinane dialdehydes (1.58-2.27%) recently described in the literature. Moreover, the structure and stereochemistry of a new sesquiterpenic alcohol, 14ß,15ß-dimethyl-7αH-eremophila-9,11-dien-8ß-ol (0.67%), was determined unambiguously by the combination of structural analysis (NMR, MS), hemisynthesis, and total synthesis, leading to dihydrokaranone and a neopetasane epimer.


Carbon Dioxide , Chromatography, Supercritical Fluid , Gas Chromatography-Mass Spectrometry , Thymelaeaceae , Thymelaeaceae/chemistry , Chromatography, Supercritical Fluid/methods , Carbon Dioxide/chemistry , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy/methods , Oils, Volatile/chemistry , Oils, Volatile/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Molecular Structure , East Asian People
8.
Molecules ; 29(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38792172

Pyrethroid pesticides (PYRs) have found widespread application in agriculture for the protection of fruit and vegetable crops. Nonetheless, excessive usage or improper application may allow the residues to exceed the safe limits and pose a threat to consumer safety. Thus, there is an urgent need to develop efficient technologies for the elimination or trace detection of PYRs from vegetables. Here, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed for the simultaneous purification and enrichment of five PYRs in vegetables, employing the magnetic covalent organic framework nanomaterial COF-SiO2@Fe3O4 as an adsorbent. COF-SiO2@Fe3O4 was prepared by a straightforward solvothermal method, using Fe3O4 as a magnetic core and benzidine and 3,3,5,5-tetraaldehyde biphenyl as the two building units. COF-SiO2@Fe3O4 could effectively capture the targeted PYRs by virtue of its abundant π-electron system and hydroxyl groups. The impact of various experimental parameters on the extraction efficiency was investigated to optimize the MSPE conditions, including the adsorbent amount, extraction time, elution solvent type and elution time. Subsequently, method validation was conducted under the optimal conditions in conjunction with gas chromatography-mass spectrometry (GC-MS). Within the range of 5.00-100 µg·kg-1 (1.00-100 µg·kg-1 for bifenthrin and 2.5-100 µg·kg-1 for fenpropathrin), the five PYRs exhibited a strong linear relationship, with determination coefficients ranging from 0.9990 to 0.9997. The limits of detection (LODs) were 0.3-1.5 µg·kg-1, and the limits of quantification (LOQs) were 0.9-4.5 µg·kg-1. The recoveries were 80.2-116.7% with relative standard deviations (RSDs) below 7.0%. Finally, COF-SiO2@Fe3O4, NH2-SiO2@Fe3O4 and Fe3O4 were compared as MSPE adsorbents for PYRs. The results indicated that COF-SiO2@Fe3O4 was an efficient and rapid selective adsorbent for PYRs. This method holds promise for the determination of PYRs in real samples.


Pesticides , Pyrethrins , Silicon Dioxide , Solid Phase Extraction , Vegetables , Solid Phase Extraction/methods , Silicon Dioxide/chemistry , Vegetables/chemistry , Pyrethrins/isolation & purification , Pyrethrins/analysis , Pyrethrins/chemistry , Pesticides/isolation & purification , Pesticides/chemistry , Pesticides/analysis , Gas Chromatography-Mass Spectrometry , Adsorption , Food Contamination/analysis , Limit of Detection , Pesticide Residues/analysis , Pesticide Residues/isolation & purification , Ferric Compounds/chemistry , Cobalt
9.
Molecules ; 29(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38792226

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Allelopathy , Hordeum , Plant Extracts , Hordeum/chemistry , Hordeum/growth & development , Hordeum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Introduced Species , Trifolium/chemistry , Trifolium/growth & development , Trifolium/drug effects , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Festuca/drug effects , Festuca/growth & development , Festuca/chemistry
10.
Molecules ; 29(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38792265

In this investigation, the chemical composition of the hydro-distilled essential oil (HD-EO), obtained from the fresh aerial parts (inflorescence heads (Inf), leaves (L), and stems (St)) of Conyza canadensis growing wild in Jordan was determined by GC/MS. Additionally, the methanolic extract obtained from the whole aerial parts of C. canadensis (CCM) was examined for its total phenolic content (TPC), total flavonoids content (TFC), DPPH radical scavenging activity, iron chelating activity and was then analyzed with LC-MS/MS for the presence of certain selected phenolic compounds and flavonoids. The GC/MS analysis of CCHD-EOs obtained from the different aerial parts revealed the presence of (2E, 8Z)-matricaria ester as the main component, amounting to 15.4% (Inf), 60.7% (L), and 31.6% (St) of the total content. Oxygenated monoterpenes were the main class of volatile compounds detected in the Inf-CCHD-EO. However, oils obtained from the leaves and stems were rich in polyacetylene derivatives. The evaluation of the CCM extract showed a richness in phenolic content (95.59 ± 0.40 mg GAE/g extract), flavonoids contents (467.0 ± 10.5 mg QE/ g extract), moderate DPPH radical scavenging power (IC50 of 23.75 ± 0.86 µg/mL) and low iron chelating activity (IC50 = 5396.07 ± 15.05 µg/mL). The LC-MS/MS profiling of the CCM extract allowed for the detection of twenty-five phenolic compounds and flavonoids. Results revealed that the CCM extract contained high concentration levels of rosmarinic acid (1441.1 mg/kg plant), in addition to caffeic acid phenethyl ester (231.8 mg/kg plant). An antimicrobial activity assessment of the CCM extract against a set of Gram-positive and Gram-negative bacteria, in addition to two other fungal species including Candida and Cryptococcus, showed significant antibacterial activity of the extract against S. aureus with MIC value of 3.125 µg/mL. The current study is the first phytochemical screening for the essential oil and methanolic extract composition of C. canadensis growing in Jordan, its antioxidant and antimicrobial activity.


Antioxidants , Conyza , Flavonoids , Oils, Volatile , Phytochemicals , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Jordan , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Conyza/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Gas Chromatography-Mass Spectrometry , Phenols/chemistry , Phenols/analysis , Microbial Sensitivity Tests , Plant Leaves/chemistry , Tandem Mass Spectrometry
11.
Biomolecules ; 14(5)2024 May 06.
Article En | MEDLINE | ID: mdl-38785966

INTRODUCTION: Urine free cortisol measurements are routinely performed to evaluate hypercortisolism. Despite their analytical inaccuracy, immunoassay-based methods are frequently used. Advances in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) facilitate the incorporation of powerful diagnostic tools into clinical laboratories. In addition to its high analytical specificity and simultaneous analysis of different metabolites, accurate mass measurement allows for untargeted compound identification, which may help to identify clinically relevant metabolites or drugs. METHODS: The present study aimed to validate a simple routine LC-HRMS method to quantify cortisol, cortisone, 6ß-hydroxycortisol, and 18-hydroxycortisol simultaneously in human urine. Additionally, the study also validated a GC-MS method for the same steroids, evaluated their cross-reactivity with commercial cortisol immunoassays, and quantified the 24 h urine excretion in patients under clinical suspicion or follow-up for hypercortisolism. RESULTS: The LC-HRMS method involved liquid-liquid extraction using dichloromethane, micro-LC for chromatographic separation and detection using the accurate masses of the steroids, and simultaneous high-resolution full scan acquisition. The method presented acceptable linearity, precision, and accuracy. Significant interference from 6ß-hydroxycortisol and cortisone was demonstrated in the cortisol immunoassays, which impacted their reliability in the follow-up of patients with hypercortisolism and significant changes in these cortisol metabolites (i.e., due to drug-induced changes in CYP3A4 activity). CONCLUSION: A rapid and accurate routine LC-HRMS method was validated, which is useful for the evaluation of hypercortisolism and other disorders of glucocorticoid and mineralocorticoid metabolism.


Cortisone , Gas Chromatography-Mass Spectrometry , Hydrocortisone , Humans , Hydrocortisone/urine , Hydrocortisone/analogs & derivatives , Cortisone/urine , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Glucocorticoids/urine , Cushing Syndrome/urine , Cushing Syndrome/diagnosis , Male , Female
12.
Mar Drugs ; 22(5)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38786583

Glycosidic linkage analysis was conducted on the unfractionated polysaccharides in alcohol-insoluble residues (AIRs) prepared from six red seaweeds (Gracilariopsis sp., Prionitis sp., Mastocarpus papillatus, Callophyllis sp., Mazzaella splendens, and Palmaria palmata) using GC-MS/FID analysis of partially methylated alditol acetates (PMAAs). The cell walls of P. palmata primarily contained mixed-linkage xylans and small amounts of sulfated galactans and cellulose. In contrast, the unfractionated polysaccharides of the other five species were rich in galactans displaying diverse 3,6-anhydro-galactose and galactose linkages with varied sulfation patterns. Different levels of cellulose were also observed. This glycosidic linkage method offers advantages for cellulose analysis over traditional monosaccharide analysis that is known for underrepresenting glucose in crystalline cellulose. Relative linkage compositions calculated from GC-MS and GC-FID measurements showed that anhydro sugar linkages generated more responses in the latter detection method. This improved linkage workflow presents a useful tool for studying polysaccharide structural variations across red seaweed species. Furthermore, for the first time, relative linkage compositions from GC-MS and GC-FID measurements, along with normalized FID and total ion current (TIC) chromatograms without peak assignments, were analyzed using principal component analysis (PCA) as a proof-of-concept demonstration of the technique's potential to differentiate various red seaweed species.


Gas Chromatography-Mass Spectrometry , Polysaccharides , Rhodophyta , Seaweed , Polysaccharides/chemistry , Seaweed/chemistry , Gas Chromatography-Mass Spectrometry/methods , Rhodophyta/chemistry , Methylation , Glycosides/chemistry
13.
Medicine (Baltimore) ; 103(21): e38126, 2024 May 24.
Article En | MEDLINE | ID: mdl-38788004

The burgeoning field of metabolomics has piqued the interest of researchers in the context of benign gallbladder diseases, which include conditions such as gallbladder polyps, gallstones, and cholecystitis, which are common digestive system disorders. As metabolomics continues to advance, researchers have increasingly focused their attention on its applicability in the study of benign gallbladder diseases to provide new perspectives for diagnostic, therapeutic, and prognostic evaluation. This comprehensive review primarily describes the techniques of liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance and their respective applications in the study of benign gallbladder disease. Metabolomics has made remarkable progress in various aspects of these diseases, ranging from early diagnosis, etiological research, assessment of disease progression and prognosis, and optimization of therapeutic strategies. However, challenges remain in the field of metabolomics in the study of benign gallbladder diseases. These include issues related to data processing and analysis, biomarker discovery and validation, interdisciplinary research integration, and the advancement of personalized medicine. This article attempts to summarize research findings to date, highlight future research directions, and provide a reference point for metabolomics research in benign gallbladder disease.


Gallbladder Diseases , Metabolomics , Humans , Metabolomics/methods , Gallbladder Diseases/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Magnetic Resonance Spectroscopy/methods , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid , Mass Spectrometry/methods
14.
J Agric Food Chem ; 72(20): 11617-11628, 2024 May 22.
Article En | MEDLINE | ID: mdl-38728580

When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.


Fruit , Gas Chromatography-Mass Spectrometry , Glycoside Hydrolases , Glycosides , Phenols , Smoke , Vitis , Hydrolysis , Glycosides/chemistry , Glycosides/metabolism , Glycosides/analysis , Smoke/analysis , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Phenols/chemistry , Phenols/metabolism , Vitis/chemistry , Fruit/chemistry , Fruit/enzymology , Wine/analysis , Wildfires , Biocatalysis
15.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791240

Propafenone (PPF) belongs to the class 1C antiarrhythmics and can cause electrocardiogram-associated adverse/toxic effects. Cases of PPF intoxication are rarely investigated. We developed a novel and selective GC-MS/MS method for the determination of PPF and its tissue distribution in an intentional fatal poisoning case, which is applicable to PPF quantification in the range of therapeutic to lethal concentrations in complex post-mortem samples. A simple and effective sample pretreatment was applied to all analyzed samples. PPF was determined without the need for dilution, even in highly complex samples containing a wide range of analyte concentrations. Quantification was performed using the standard addition method, developed and validated according to the ICH M10 guidelines. The obtained results indicated that the PPF concentration in the serum from blood taken while alive, before therapy, was the highest ever reported in the literature. Despite the intensive therapy after the patients' admission, the PPF concentrations in the lungs, spleen, femoral blood and cardiac blood were fatal or abnormally high. On the other hand, the concentrations in the liver and skeletal muscle were lower or approximately the same as observed in cases with therapeutic doses. To the best of our knowledge, the distribution of PPF has not been investigated in fatal intoxication cases and can be helpful in clinical or forensic toxicology.


Propafenone , Humans , Tissue Distribution , Propafenone/poisoning , Male , Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Anti-Arrhythmia Agents/poisoning , Fatal Outcome , Adult
16.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791403

Nowadays, there is an increasing interest in the study of medicinal and aromatic plants, due to their therapeutic properties that correlate with the presence of different active compounds. Agastache species (sp.) are aromatic plants that belong to the Lamiaceae family, originating from North America and East Asia. The present study aimed to evaluate the composition of essential oils (EOs) obtained from different Romanian cultivated Agastache sp. and to investigate their antibacterial and cytotoxic activities. The gas chromatography-mass spectrometry (GC-MS) screening revealed that menthone was the dominant constituent of A. foeniculum (31.58%), A. rugosa (39.60%) and A. rugosa 'After Eight' (39.76%) EOs, while estragole was the major constituent of A. foeniculum "Aromat de Buzau" (63.27%) and A. mexicana (41.66%) EOs. The investigation of the antiproliferative effect showed that A. rugosa and A. foeniculum "Aromat de Buzau" EOs had significant cytotoxic activity on MDA-MB-231 and HEPG2 tumour cell lines, with the most promising effect on the MDA-MB-231 breast cancer cell line for A. foeniculum "Aromat de Buzau" EO (IC50 = 203.70 ± 0.24 µg/mL). Regarding the antibacterial activity, A. rugosa EO was most active against E. coli (8.91 ± 3.27 µL/mL) and S. aureus (10.80 ± 0.00 µL/mL). To the best of our knowledge, this is the first report on the cytotoxic effect of Agastache sp. EOs on MDA-MB-231, HCT116 and HEPG2 tumour cell lines. The results of our study provide new and promising information for the subsequent in vivo study of the pharmacological properties of Agastache sp. essential oils.


Agastache , Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Agastache/chemistry , Cell Line, Tumor , Hep G2 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Microbial Sensitivity Tests , Cell Proliferation/drug effects , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
17.
Diagn Microbiol Infect Dis ; 109(3): 116309, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692202

BACKGROUND: The COVID-19 pandemic had profound global impacts on daily lives, economic stability, and healthcare systems. Diagnosis of COVID-19 infection via RT-PCR was crucial in reducing spread of disease and informing treatment management. While RT-PCR is a key diagnostic test, there is room for improvement in the development of diagnostic criteria. Identification of volatile organic compounds (VOCs) in exhaled breath provides a fast, reliable, and economically favorable alternative for disease detection. METHODS: This meta-analysis analyzed the diagnostic performance of VOC-based breath analysis in detection of COVID-19 infection. A systematic review of twenty-nine papers using the grading criteria from Newcastle-Ottawa Scale (NOS) and PRISMA guidelines was conducted. RESULTS: The cumulative results showed a sensitivity of 0.92 (95 % CI, 90 %-95 %) and a specificity of 0.90 (95 % CI 87 %-93 %). Subgroup analysis by variant demonstrated strong sensitivity to the original strain compared to the Omicron and Delta variant in detection of SARS-CoV-2 infection. An additional subgroup analysis of detection methods showed eNose technology had the highest sensitivity when compared to GC-MS, GC-IMS, and high sensitivity-MS. CONCLUSION: Overall, these results support the use of breath analysis as a new detection method of COVID-19 infection.


Breath Tests , COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Humans , COVID-19/diagnosis , Breath Tests/methods , SARS-CoV-2/isolation & purification , COVID-19 Testing/methods , Gas Chromatography-Mass Spectrometry
18.
Int J Food Microbiol ; 418: 110731, 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38733637

Alicyclobacillus spp. is the cause of great concern for the food industry due to their spores' resistance (thermal and chemical) and the spoilage potential of some species. Despite this, not all Alicyclobacillus strains can spoil fruit juices. Thus, this study aimed to identify Alicyclobacillus spp. strains isolated from fruit-based products produced in Argentina, Brazil, and Italy by DNA sequencing. All Alicyclobacillus isolates were tested for guaiacol production by the peroxidase method. Positive strains for guaiacol production were individually inoculated at concentration of 103 CFU/mL in 10 mL of orange (pH 3.90) and apple (pH 3.50) juices adjusted to 11°Brix, following incubation at 45 °C for at least 5 days to induce the production of the following spoilage compounds: Guaiacol, 2,6-dichlorophenol (2,6-DCP) and 2,6-dibromophenol (2,6-DBP). The techniques of micro-solid phase extraction by headspace (HS-SPME) and gas-chromatography with mass spectrometry (GC-MS) were used to identify and quantify the spoilage compounds. All GC-MS data was analyzed by principal component analysis (PCA). The effects of different thermal shock conditions on the recovery of Alicyclobacillus spores inoculated in orange and apple juice (11°Brix) were also tested. A total of 484 strains were isolated from 48 brands, and the species A. acidocaldarius and A. acidoterrestris were the most found among all samples analyzed. In some samples from Argentina, the species A. vulcanalis and A. mali were also identified. The incidence of these two main species of Alicyclobacillus in this study was mainly in products from pear (n = 108; 22.3 %), peach (n = 99; 20.5 %), apple (n = 86; 17.8 %), and tomato (n = 63; 13 %). The results indicated that from the total isolates from Argentina (n = 414), Brazil (n = 54) and Italy (n = 16) were able to produce guaiacol: 107 (25.8 %), 33 (61.1 %) and 13 (81.2 %) isolates from each country, respectively. The PCA score plot indicated that the Argentina and Brazil isolates correlate with higher production of guaiacol and 2,6-DCP/2,6-DBP, respectively. Heatmaps of cell survival after heat shock demonstrated that strains with different levels of guaiacol production present different resistances according to spoilage ability. None of the Alicyclobacillus isolates survived heat shocks at 120 °C for 3 min. This work provides insights into the incidence, spoilage potential, and thermal shock resistance of Alicyclobacillus strains isolated from fruit-based products.


Alicyclobacillus , Fruit and Vegetable Juices , Fruit , Gas Chromatography-Mass Spectrometry , Guaiacol , Spores, Bacterial , Alicyclobacillus/isolation & purification , Alicyclobacillus/genetics , Alicyclobacillus/classification , Alicyclobacillus/growth & development , Fruit and Vegetable Juices/microbiology , Guaiacol/analogs & derivatives , Guaiacol/metabolism , Guaiacol/pharmacology , Fruit/microbiology , Spores, Bacterial/growth & development , Spores, Bacterial/isolation & purification , Food Microbiology , Food Contamination/analysis , Brazil , Solid Phase Microextraction , Argentina , Malus/microbiology , Italy , Hot Temperature , Citrus sinensis/microbiology
19.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38733636

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Aspergillus flavus , Tea Tree Oil , Terpenes , Triticum , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Tea Tree Oil/pharmacology , Terpenes/pharmacology , Triticum/microbiology , Antifungal Agents/pharmacology , Volatile Organic Compounds/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Edible Grain/microbiology , Food Preservation/methods
20.
J Ethnopharmacol ; 331: 118344, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38754641

ETHNOPHARMACOLOGICAL RELEVANCE: Dermatophytes are notorious pathogens capable of infecting various mammals skin, posing serious threats to human health and overall life quality worldwide. Artemisia argyi has been recorded and applied for over a thousand years to treat skin itching. Although it has the potential to be developed as a plant-based antifungal agent, it's antifungal activity and action mechanism of active ingredients are still unclear. AIM OF THE STUDY: The aim of this study was to investigate the chemical composition, antifungal activity against skin fungi, and potential mechanisms of Artemisia argyi essential oil (AEO). MATERIALS AND METHODS: The chemical composition of AEO was analyzed by gas chromatography-mass spectrometry (GC-MS) firstly. Flat growth restraint and double half dilution tests was performed to evaluate AEO antifungal activity against Microsporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum. And then, the physiological mechanism of AEO inhibiting dermatophytes was systematically explored through scanning electron microscopy, relative conductivity, membrane leakage, ROS content, and antioxidant enzyme activity. Finally, the main pathways were screened through transcriptome sequencing, while the related genes expression levels and enzyme activity were validated. RESULTS: Monoterpenes and sesquiterpenoids were the most highly representative class of AEO. AEO had powerful antifungal activity against M. gypseum, T. mentagrophytes, and T. rubrum, with minimum inhibitory concentration (MIC) values of 0.6, 1.2, and 1.2 µL/mL, respectively. Moreover, AEO can also damage the cell membrane integrity of T. mentagrophytes, resulting in cellular extravasation of intracellular substances. Transcriptome analysis revealed that the main target of AEO is to inhibit electron transfer and oxidative phosphorylation during respiration, ultimately leading to obstruction of normal ATP synthesis and energy metabolism in mitochondria. And a large amount of ROS will generate due to the incompletely catalysis of oxygen under mitochondrial complexes. Coupled with the decrease of antioxidant enzyme (SOD, POD) activity, excessive accumulation of ROS will cause serious oxidative damage to cells and eventually exhibiting antifungal activity against dermatophytes. CONCLUSIONS: The present study demonstrated that Artemisia argyi was a valuable source of active compounds with antifungal activity. These findings support AEO as a potential agent to inhibit dermatophytes and prevent related dermatophytoses.


Antifungal Agents , Artemisia , Arthrodermataceae , Oils, Volatile , Oxidative Phosphorylation , Oxidative Stress , Artemisia/chemistry , Antifungal Agents/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Arthrodermataceae/drug effects , Oxidative Stress/drug effects , Oxidative Phosphorylation/drug effects , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry
...