Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Immunol ; 126: 153-164, 2020 10.
Article in English | MEDLINE | ID: mdl-32853878

ABSTRACT

Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.


Subject(s)
Crassostrea/virology , DNA Viruses/pathogenicity , Host-Pathogen Interactions/genetics , MicroRNAs/metabolism , RNA, Viral/metabolism , Animals , Aquaculture , Computational Biology , Crassostrea/genetics , Crassostrea/immunology , DNA Viruses/genetics , DNA Viruses/immunology , Gene Expression Regulation/immunology , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Host-Pathogen Interactions/immunology , MicroRNAs/genetics , MicroRNAs/isolation & purification , RNA, Viral/genetics , RNA, Viral/isolation & purification
2.
Clin Exp Immunol ; 200(1): 73-86, 2020 04.
Article in English | MEDLINE | ID: mdl-31859362

ABSTRACT

B cells orchestrate pro-survival and pro-apoptotic inputs during unfolded protein response (UPR) to translate, fold, sort, secrete and recycle immunoglobulins. In common variable immunodeficiency (CVID) patients, activated B cells are predisposed to an overload of abnormally processed, misfolded immunoglobulins. Using highly accurate transcript measurements, we show that expression of UPR genes and immunoglobulin chains differs qualitatively and quantitatively during the first 4 h of chemically induced UPR in B cells from CVID patients and a healthy subject. We tested thapsigargin or tunicamycin as stressors and 4-phenylbutyrate, dimethyl sulfoxide and tauroursodeoxycholic acid as chemical chaperones. We found an early and robust decrease of the UPR upon endoplasmic reticulum (ER) stress in CVID patient cells compared to the healthy control consistent with the disease phenotype. The chemical chaperones increased the UPR in the CVID patient cells in response to the stressors, suggesting that misfolded immunoglobulins were stabilized. We suggest that the AMP-dependent transcription factor alpha branch of the UPR is disturbed in CVID patients, underlying the observed expression behavior.


Subject(s)
B-Lymphocytes/drug effects , Common Variable Immunodeficiency/genetics , Dimethyl Sulfoxide/pharmacology , Phenylbutyrates/pharmacology , Taurochenodeoxycholic Acid/pharmacology , Unfolded Protein Response/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Common Variable Immunodeficiency/metabolism , Common Variable Immunodeficiency/pathology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/immunology , Humans , Immunoglobulins/genetics , Immunoglobulins/metabolism , Thapsigargin/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Tunicamycin/pharmacology , Unfolded Protein Response/genetics
3.
PLoS One ; 14(8): e0221358, 2019.
Article in English | MEDLINE | ID: mdl-31437216

ABSTRACT

Plant defense responses to biotic stresses are complex biological processes, all governed by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered by an infection, allowing a better allocation of plant resources. Our group recently described that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection. Nevertheless, the molecular networks governing this beneficial interaction remain unknown. To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inoculated plants before and after being infected with Pst DC3000. These data were used to perform a gene network analysis to identify highly connected transcription factors. Before the pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional response at 1-hour post infection (hpi) compared with the non-inoculated plants, which presented the highest transcriptional changes at 24 hpi. A principal component analysis showed that PsJN-induced plant responses to the pathogen could be differentiated from those induced by the pathogen itself. Forty-eight transcription factors were regulated by PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription factors, which could act as hub regulators in this interaction. Concordantly with our previous results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways. These results indicate that a rapid and specific response of PsJN-inoculated plants to the virulent DC3000 strain could be the pivotal element in the protection mechanism.


Subject(s)
Arabidopsis/genetics , Burkholderiaceae/physiology , Gene Expression Regulation, Plant/immunology , Plant Diseases/genetics , Pseudomonas syringae/pathogenicity , Transcription Factors/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Cyclopentanes/immunology , Cyclopentanes/metabolism , Disease Resistance/genetics , Ethylenes/immunology , Ethylenes/metabolism , Gene Expression Profiling , Gene Regulatory Networks/immunology , Oxylipins/immunology , Oxylipins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Growth Regulators/immunology , Plant Growth Regulators/metabolism , Plant Immunity/genetics , Principal Component Analysis , Pseudomonas syringae/growth & development , Salicylic Acid/immunology , Salicylic Acid/metabolism , Transcription Factors/immunology , Transcriptome/immunology
4.
PLoS One ; 14(5): e0217421, 2019.
Article in English | MEDLINE | ID: mdl-31150430

ABSTRACT

Despite progress in treatment strategies, only ~24% of pancreatic ductal adenocarcinoma (PDAC) patients survive >1 year. Our goal was to elucidate deregulated pathways modulated by microRNAs (miRNAs) in PDAC and Vater ampulla (AMP) cancers. Global miRNA expression was identified in 19 PDAC, 6 AMP and 25 paired, histologically normal pancreatic tissues using the GeneChip 4.0 miRNA arrays. Computational approaches were used for miRNA target prediction/identification of miRNA-regulated pathways. Target gene expression was validated in 178 pancreatic cancer and 4 pancreatic normal tissues from The Cancer Genome Atlas (TCGA). 20 miRNAs were significantly deregulated (FC≥2 and p<0.05) (15 down- and 5 up-regulated) in PDAC. miR-216 family (miR-216a-3p, miR-216a-5p, miR-216b-3p and miR-216b-5p) was consistently down-regulated in PDAC. miRNA-modulated pathways are associated with innate and adaptive immune system responses in PDAC. AMP cancers showed 8 down- and 1 up-regulated miRNAs (FDR p<0.05). Most enriched pathways (p<0.01) were RAS and Nerve Growth Factor signaling. PDAC and AMP display different global miRNA expression profiles and miRNA regulated networks/tumorigenesis pathways. The immune response was enriched in PDAC, suggesting the existence of immune checkpoint pathways more relevant to PDAC than AMP.


Subject(s)
Adaptive Immunity/genetics , Carcinoma, Pancreatic Ductal/genetics , Immunity, Innate/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/genetics , Adult , Aged , Ampulla of Vater/pathology , Carcinoma, Pancreatic Ductal/pathology , Computational Biology , Down-Regulation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/immunology , Gene Regulatory Networks/immunology , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Pancreatic Neoplasms/pathology , Retrospective Studies , Up-Regulation
5.
Immunobiology ; 216(5): 591-603, 2011 May.
Article in English | MEDLINE | ID: mdl-21168240

ABSTRACT

Considering that imbalance of central tolerance in the thymus contributes to aggressive autoimmunity, we compared the expression of peripheral tissue autoantigens (PTA) genes, which are involved in self-representation in the thymic stroma, of two mouse strains; DBA-1/J (MHC-H2(q)) susceptible and DBA-2/J (MHC-H2(d)) resistant to collagen induced arthritis (CIA). We evaluate whether these strains differ in their thymic gene expression, allowing identification of genes that might play a role in susceptibility/resistance to CIA. Microarray profiling showed that 1093 PTA genes were differentially modulated between collagen immunized DBA-1/J and DBA-2/J mice. These genes were assigned to 17 different tissues/organs, including joints/bone, characterizing the promiscuous gene expression (PGE), which is implicated in self-representation. Hierarchical clustering of microarray data and quantitative RT-PCR analysis showed that Aire (autoimmune regulator), an important regulator of the PGE process, Aire-dependent (insulin), Aire-independent (Col2A1 and Gad67), and other 22 joint/bone autoantigen genes were down-regulated in DBA-1/J compared with DBA-2/J in the thymus. Considering the importance of MHC-H2 in peptide-self presentation and autoimmunity susceptibility, we reconstructed transcriptional networks of both strains based on actual microarray data. The networks clearly demonstrated different MHC-H2 transcriptional interactions with PTAs genes. DBA-1/J strain featured MHC-H2 as a node influencing downstream genes. Differently, in DBA-2/J strain network MHC-H2 was exclusively self-regulated and does not control other genes. These findings provide evidence that CIA susceptibility in mice may be a reflex of a cascade-like transcriptional control connecting different genes to MHC-H2 in the thymus.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Autoantigens/metabolism , Gene Regulatory Networks , Thymus Gland/metabolism , Animals , Arthritis, Experimental/metabolism , Autoantigens/genetics , Autoantigens/immunology , Cells, Cultured , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks/immunology , Histocompatibility Antigens/metabolism , Mice , Mice, Inbred DBA , Microarray Analysis , Self Tolerance , Species Specificity , Thymus Gland/immunology , Thymus Gland/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL