Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
J Biol Chem ; 296: 100219, 2021.
Article in English | MEDLINE | ID: mdl-33839685

ABSTRACT

ADP-dependent kinases were first described in archaea, although their presence has also been reported in bacteria and eukaryotes (human and mouse). This enzyme family comprises three substrate specificities; specific phosphofructokinases (ADP-PFKs), specific glucokinases (ADP-GKs), and bifunctional enzymes (ADP-PFK/GK). Although many structures are available for members of this family, none exhibits fructose-6-phosphate (F6P) at the active site. Using an ancestral enzyme, we obtain the first structure of an ADP-dependent kinase (AncMsPFK) with F6P at its active site. Key residues for sugar binding and catalysis were identified by alanine scanning, D36 being a critical residue for F6P binding and catalysis. However, this residue hinders glucose binding because its mutation to alanine converts the AncMsPFK enzyme into a specific ADP-GK. Residue K179 is critical for F6P binding, while residues N181 and R212 are also important for this sugar binding, but to a lesser extent. This structure also provides evidence for the requirement of both substrates (sugar and nucleotide) to accomplish the conformational change leading to a closed conformation. This suggests that AncMsPFK mainly populates two states (open and closed) during the catalytic cycle, as reported for specific ADP-PFK. This situation differs from that described for specific ADP-GK enzymes, where each substrate independently causes a sequential domain closure, resulting in three conformational states (open, semiclosed, and closed).


Subject(s)
Archaeal Proteins/chemistry , Fructosephosphates/chemistry , Glucokinase/chemistry , Methanosarcinales/chemistry , Phosphofructokinases/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Fructosephosphates/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glucokinase/genetics , Glucokinase/metabolism , Kinetics , Ligands , Methanosarcinales/enzymology , Methanosarcinales/genetics , Models, Molecular , Phosphofructokinases/genetics , Phosphofructokinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
2.
FEBS Lett ; 595(11): 1525-1541, 2021 06.
Article in English | MEDLINE | ID: mdl-33792910

ABSTRACT

In the N-degron pathway of protein degradation of Escherichia coli, the N-recognin ClpS identifies substrates bearing N-terminal phenylalanine, tyrosine, tryptophan, or leucine and delivers them to the caseinolytic protease (Clp). Chloroplasts contain the Clp system, but whether chloroplastic ClpS1 adheres to the same constraints is unknown. Moreover, the structural underpinnings of substrate recognition are not completely defined. We show that ClpS1 recognizes canonical residues of the E. coli N-degron pathway. The residue in second position influences recognition (especially in N-terminal ends starting with leucine). N-terminal acetylation abrogates recognition. ClpF, a ClpS1-interacting partner, does not alter its specificity. Substrate binding provokes local remodeling of residues in the substrate-binding cavity of ClpS1. Our work strongly supports the existence of a chloroplastic N-degron pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Carrier Proteins/chemistry , Chloroplasts/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chloroplasts/genetics , Cloning, Molecular , Conserved Sequence , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Leucine/chemistry , Leucine/metabolism , Models, Molecular , Phenylalanine/chemistry , Phenylalanine/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Tryptophan/chemistry , Tryptophan/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
3.
Int J Biol Macromol ; 171: 82-88, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33418045

ABSTRACT

Translation engineering and bioinformatics have accelerated the rate at which gene sequences can be improved to generate multi-epitope proteins. Strong antigenic proteins for tuberculosis diagnosis include individual ESAT6 and CFP10 proteins or derived peptides. Obtention of heterologous multi-component antigens in E. coli without forming inclusion bodies remain a biotechnological challenge. The gene sequence for ESAT6-CFP10 fusion antigen was optimized by codon bias adjust for high-level expression as a soluble protein. The obtained fusion protein of 23.7 kDa was observed by SDS-PAGE and Western blot analysis after Ni-affinity chromatography and the yield of expressed soluble protein reached a concentration of approximately 67 mg/L in shake flask culture after IPTG induction. Antigenicity was evaluated at 4 µg/mL in whole blood cultures from bovines, and protein stimuli were assessed using a specific in vitro IFN-γ release assay. The hybrid protein was able to stimulate T-cell specific responses of bovine TB suspects. The results indicate that improved E. coli codon usage is a good and cost-effective strategy to potentialize large scale production of multi-epitope proteins with sustained antigenic properties for diagnostic purposes.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Mycobacterium bovis/immunology , Peptide Fragments/genetics , Recombinant Fusion Proteins/administration & dosage , Tuberculosis Vaccines/administration & dosage , Tuberculosis, Bovine/prevention & control , Amino Acid Sequence , Animals , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Cattle , Cloning, Molecular , Codon , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Histidine/genetics , Histidine/metabolism , Immunogenicity, Vaccine , Interferon-gamma/biosynthesis , Mycobacterium bovis/chemistry , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Oligopeptides/genetics , Oligopeptides/metabolism , Peptide Fragments/immunology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Sequence Alignment , Tuberculosis Vaccines/genetics , Tuberculosis Vaccines/immunology , Tuberculosis, Bovine/immunology , Tuberculosis, Bovine/microbiology , Vaccination/methods
4.
Int J Biol Macromol ; 173: 34-43, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33476618

ABSTRACT

The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.


Subject(s)
Copper/chemistry , Oligonucleotides/chemistry , Pregnancy Proteins/chemistry , Protein Aggregates , Animals , Cations, Divalent , Cloning, Molecular , Copper/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Mice , Oligonucleotides/genetics , Oligonucleotides/metabolism , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140538, 2021 01.
Article in English | MEDLINE | ID: mdl-32916301

ABSTRACT

Ribosome biogenesis in eukaryotes requires the participation of several transactivation factors that are involved in the modification, assembly, transport and quality control of the ribosomal subunits. One of these factors is the Large subunit GTPase 1 (Lsg1), a protein that acts as the release factor for the export adaptor named Nonsense-mediated mRNA decay 3 protein (Nmd3) and facilitates the incorporation of the last structural protein uL16 into the 60S subunit. Here, we characterised the recombinant yeast Lsg1 and studied its catalysis and binding properties for guanine nucleotides. We described the interaction of Lsg1 with guanine nucleotides alone and in the presence of the complex Nmd3•60S using fluorescence spectroscopy. Lsg1 has a greater affinity for GTP than for GDP suggesting that in the cell cytoplasm it exists mainly bound to the former. In the presence of 60S subunits loaded with Nmd3, the affinity of Lsg1 for both nucleotides increases but to a larger extent towards GTP. From this observation together with the excess of GTP present in the cytoplasm of exponentially growing cells over that of GDP, we can infer that the pre-ribosomal particle composed by Nmd3•60S acts as a GTP Stabilising Factor for Lsg1. Additionally, Lsg1 undergoes different conformational changes depending on its binding partner or the guanine nucleotides it interacts with. Steady-state kinetic analysis of free Lsg1 indicated slow GTP hydrolysis with values of kcat 1 min-1 and Km of 34 µM.


Subject(s)
GTP-Binding Proteins/metabolism , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , Kinetics , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/enzymology , Ribosome Subunits, Large, Eukaryotic/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Thermodynamics
6.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140541, 2021 01.
Article in English | MEDLINE | ID: mdl-32947025

ABSTRACT

Phytocystatins are a family of plant cysteine-protease inhibitors of great interest due to their biotechnological application in culture improvement. It was shown that their expression in plants increases resistance to herbivory by insects and improves tolerance to both biotic and abiotic stress factors. In this work, owing to the economical relevance of the source organism, a phytocystatin from hop (Humulus lupulus), Hop1, was produced by heterologous expression in E. coli Lemo21 (DE3) cultivated in auto-inducing ZYM-5052 medium and purified by immobilized metal ion affinity and size exclusion chromatography. Thermal denaturation assays by circular dichroism showed that Hop1 exhibited high melting temperatures ranging from 82 °C to 85 °C and high thermal stability at a wide pH range, with ΔG25's higher than 12 kcal/mol. At 20 °C and pH 7.6, the dimeric conformation of the protein is favored according to size exclusion chromatography and analytical ultracentrifugation data, although monomers and higher order oligomers could still be detected in a lesser extent. The crystal structure of Hop1 was solved in the space groups P 2 21 21 and C 2 2 21 at resolutions of 1.80 Å and 1.68 Å, respectively. In both models, Hop1 is folded as a domain-swapped dimer where the first inhibitory loop undergoes a significant structural change and interacts with their equivalent from the other monomer forming a long antiparallel beta strand, leading to loss of inhibitory activity.


Subject(s)
Cystatins/chemistry , Cysteine Proteinase Inhibitors/chemistry , Humulus/chemistry , Plant Proteins/chemistry , Cloning, Molecular , Crystallography, X-Ray , Cystatins/genetics , Cystatins/metabolism , Cysteine Proteinase Inhibitors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Models, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics
7.
Protein J ; 39(3): 224-231, 2020 06.
Article in English | MEDLINE | ID: mdl-32300914

ABSTRACT

Class-I restricted T cell-associated molecule (CRTAM) is a member of the immunoglobulin superfamily, and it is closely related to nectin-like protein. CRTAM is expressed in activated CD8 T cells, NKT cells, NK cells and in a subpopulation CD4 T cells. In this study, we produce as recombinant proteins, the Ig-domains of CRTAM (IgV-IgC), the IgV, and the IgC. These proteins were successfully purified in the soluble fraction only if the stalk region was included. The recombinant CRTAM recognizes its ligand nectin-like 2 in a cell-free system. We also demonstrate that the IgC domain of CRTAM is recognized by the anti-hCRTAM monoclonal antibody C8 with a 0.62 nM affinity. In conclusion, the stalk region of CRTAM provides solubility for the expression of its Ig-domains as recombinant proteins.


Subject(s)
Cell Adhesion Molecule-1/genetics , Cell-Free System/chemistry , Immunoglobulin Domains/genetics , Immunoglobulins/genetics , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , Binding Sites , Cell Adhesion Molecule-1/immunology , Cell Adhesion Molecule-1/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hybridomas/chemistry , Immunoglobulins/immunology , Immunoglobulins/metabolism , Jurkat Cells , Mice , Mice, Inbred BALB C , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
8.
Protein Expr Purif ; 170: 105596, 2020 06.
Article in English | MEDLINE | ID: mdl-32036001

ABSTRACT

Antibodies that block interaction of immune checkpoint receptors with its ligands have revolutionized the treatment of several cancers. Despite the success of this approach, the high cost has been restricted the use of this class of drugs. In this context, the development of biosimilar can be an important strategy for reducing prices and expanding access after patent has been dropped. Here, we evaluated the use of HEK293 cells for transient expression of an immune checkpoint-blocking antibody as a first step for biosimilar development. Antibody light and heavy chain genes were cloned into pCI-neo vector and transiently expressed in HEK293 cells. The culture supernatant was then subjected to protein A affinity chromatography, which allowed to obtain the antibody with high homogeneity. For physicochemical comparability, biosimilar antibody and reference drug were analyzed by SDS-PAGE, isoelectric focusing, circular dichroism and fluorescence spectroscopy. The results indicated that the both antibodies have a high degree of structural similarity. Lastly, the biosimilar antibody binding capacity to target receptor was shown to be similar to reference product in ELISA and flow cytometry assays. These data demonstrate that the HEK293 system can be used as an important tool for candidate selection and early development of biosimilar antibodies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Biosimilar Pharmaceuticals/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Proteins/genetics , Immunoglobulin Heavy Chains/pharmacology , Immunoglobulin Light Chains/pharmacology , Antibodies, Monoclonal/biosynthesis , Antibody Affinity , Antibody Specificity , Biosimilar Pharmaceuticals/metabolism , Chromatography, Affinity , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Proteins/immunology , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Light Chains/biosynthesis , Isoelectric Focusing
9.
FEBS J ; 287(4): 749-762, 2020 02.
Article in English | MEDLINE | ID: mdl-31348612

ABSTRACT

The assembly of the CuA site in Cytochrome c Oxidase (COX) is a critical step for aerobic respiration in COX-dependent organisms. Several gene products have been associated with the assembly of this copper site, the most conserved of them belonging to the Sco family of proteins, which have been shown to perform different roles in different organisms. Plants express two orthologs of Sco proteins: Hcc1 and Hcc2. Hcc1 is known to be essential for plant development and for COX maturation, but its precise function has not been addressed until now. Here, we report the biochemical, structural and functional characterization of Arabidopsis thaliana Hcc1 protein (here renamed Sco1). We solved the crystal structure of the Cu+1 -bound soluble domain of this protein, revealing a tri coordinated environment involving a CxxxCxn H motif. We show that AtSco1 is able to work as a copper metallochaperone, inserting two Cu+1 ions into the CuA site in a model of CoxII. We also show that AtSco1 does not act as a thiol-disulfide oxido-reductase. Overall, this information sheds new light on the biochemistry of Sco proteins, highlighting the diversity of functions among them despite their high structural similarities. DATABASE: PDB entry 6N5U (Crystal structure of Arabidopsis thaliana ScoI with copper bound).


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Copper Transport Proteins/chemistry , Copper/chemistry , Electron Transport Complex IV/chemistry , Mitochondrial Proteins/chemistry , Molecular Chaperones/chemistry , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Cloning, Molecular , Copper/metabolism , Copper Transport Proteins/genetics , Copper Transport Proteins/metabolism , Crystallography, X-Ray , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Molecular , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Thermus thermophilus/chemistry
10.
Sci Rep ; 9(1): 16850, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727948

ABSTRACT

Recombinant protein expression for structural and therapeutic applications requires the use of systems with high expression yields. Escherichia coli is considered the workhorse for this purpose, given its fast growth rate and feasible manipulation. However, bacterial inclusion body formation remains a challenge for further protein purification. We analyzed and optimized the expression conditions for three different proteins: an anti-MICA scFv, MICA, and p19 subunit of IL-23. We used a response surface methodology based on a three-level Box-Behnken design, which included three factors: post-induction temperature, post-induction time and IPTG concentration. Comparing this information with soluble protein data in a principal component analysis revealed that insoluble and soluble proteins have different optimal conditions for post-induction temperature, post-induction time, IPTG concentration and in amino acid sequence features. Finally, we optimized the refolding conditions of the least expressed protein, anti-MICA scFv, using a fast dilution protocol with different additives, obtaining soluble and active scFv for binding assays. These results allowed us to obtain higher yields of proteins expressed in inclusion bodies. Further studies using the system proposed in this study may lead to the identification of optimal environmental factors for a given protein sequence, favoring the acceleration of bioprocess development and structural studies.


Subject(s)
Cloning, Molecular/methods , Escherichia coli/genetics , Histocompatibility Antigens Class I/genetics , Interleukin-23/genetics , Single-Chain Antibodies/genetics , Amino Acid Sequence , Escherichia coli/drug effects , Escherichia coli/metabolism , Factor Analysis, Statistical , Gene Expression/drug effects , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/isolation & purification , Humans , Inclusion Bodies/chemistry , Interleukin-23/chemistry , Interleukin-23/isolation & purification , Isopropyl Thiogalactoside/pharmacology , Principal Component Analysis , Protein Refolding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/isolation & purification , Solubility
11.
Macromol Biosci ; 19(10): e1900117, 2019 10.
Article in English | MEDLINE | ID: mdl-31402631

ABSTRACT

The development of polymers with low toxicity and efficient gene delivery remains a significant barrier of nonviral gene therapy. Modification and tuning of chemical structures of carriers is an attractive strategy for efficient nucleic acid delivery. Here, polyplexes consisting of plasmid DNA (pDNA) and dodecylated or non-dodecylated polysuccinimide (PSI)-based polycations are designed, and their transfection ability into HeLa cells is investigated by green fluorescent protein (GFP) expressing cells quantification. All cationic polymers show lower cytotoxicity than those of branched polyethyleneimine (bPEI). PSI and bPEI-based polyplexes have comparable physicochemical properties such as size and charge. Interestingly, a strong interaction between dodecylated polycations and pDNA caused by the hydrophobic moiety is observed in dodecylated PSI derivatives. Moreover, the decrease of GFP expression is associated with lower dissociation of pDNA from polyplexes according to the heparin displacement assay. Besides, a hydrophobization of PSI cationic derivatives with dodecyl side chains can modulate the integrity of polyplexes by hydrophobic interactions, increasing the binding between the polymer and the DNA. These results provide useful information for designing polyplexes with lower toxicity and greater stability and transfection performance.


Subject(s)
Aspartic Acid/analogs & derivatives , DNA , Genetic Vectors , Plasmids , Transfection , Aspartic Acid/chemistry , Aspartic Acid/pharmacology , DNA/chemistry , DNA/pharmacology , Genetic Vectors/chemistry , Genetic Vectors/pharmacology , HeLa Cells , Humans , Plasmids/chemistry , Plasmids/pharmacology
12.
Mol Biotechnol ; 61(9): 633-649, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31177409

ABSTRACT

Galactose oxidase catalyzes a two-electron oxidation, mainly from the C6 hydroxyl group of D-galactose, with the concomitant reduction of water to hydrogen peroxide. This enzyme is secreted by Fusarium species and has several biotechnological applications. In this study, a screening of galactose oxidase production among species of the Fusarium fujikuroi species complex demonstrated Fusarium subglutinans to be the main producer. The truncated F. subglutinans gaoA gene coding for the mature galactose oxidase was expressed from the prokaryotic vector pTrcHis2B in the E. coli Rosetta™ (DE3) strain. The purified recombinant enzyme presented temperature and pH optima of 30 °C and 7.0, respectively, KM of 132.6 ± 18.18 mM, Vmax of 3.2 ± 0.18 µmol of H2O2/min, kcat of 12,243 s-1, and a catalytic efficiency (kcat/KM) of 9.2 × 104 M-1 s-1. In the presence of 50% glycerol, the enzyme showed a T50 of 59.77 °C and was stable for several hours at pH 8.0 and 4 °C. Besides D-(+)-galactose, the purified enzyme also acted against D-(+)-raffinose, α-D-(+)-melibiose, and methyl-α-D-galactopyranoside, and was strongly inhibited by SDS. Although the F. subglutinans gaoA gene was successfully expressed in E. coli, its endogenous transcription was not confirmed by RT-PCR.


Subject(s)
Fusarium/enzymology , Galactose Oxidase/metabolism , Galactose/chemistry , Recombinant Proteins/metabolism , Amino Acid Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Fusarium/chemistry , Galactose/metabolism , Galactose Oxidase/chemistry , Galactose Oxidase/genetics , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrogen-Ion Concentration , Melibiose/chemistry , Melibiose/metabolism , Methylgalactosides/chemistry , Methylgalactosides/metabolism , Models, Molecular , Oxidation-Reduction , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Raffinose/chemistry , Raffinose/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Temperature
13.
Mol Biotechnol ; 61(6): 427-431, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30941576

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARγ) is involved in the regulation of lipid and glucose homeostasis and inflammation. PPARγ expression level has been widely studied in multiple tissues; however, there are few reports of preceding attempts to produce full-length human PPARγ (hPPARγ) in cellular models, and generally, expression level is not known or measurable. We propose an alternative strategy to express recombinant hPPARγ1, using a transient transfection with an inducible Tet-On 3G system where target and reporter gene were cloned in the same open reading frame. We transiently co-transfected human embryonic kidney 293T (HEK293T) cells with pTRE-ZsGreen1-IRES2-hPPARγ1 and pCMV-TET3G for inducible expression of hPPARγ1. Relative expression of the transcript was evaluated by RT-qPCR 48 h after transfection, obtaining a high expression level of hPPARγ (530-fold change, p < 0.002) in co-transfected HEK293T cells in the presence of doxycycline (1 µg/mL); also a significantly increased production of the reporter protein ZsGreen1 (3.6-fold change, p < 0.05) was determined by fluorescence analysis. These data indicated that HEK293T cells were successfully co-transfected and it could be an alternative model for hPPARγ expression in vitro. Additionally, this model will help to validate the quantification of inducible hPPARγ expression in vivo models for future research.


Subject(s)
Cloning, Molecular/methods , Genetic Vectors/metabolism , PPAR gamma/genetics , Recombinant Fusion Proteins/genetics , Doxycycline/pharmacology , Gene Expression/drug effects , Genes, Reporter , Genetic Vectors/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Open Reading Frames , PPAR gamma/biosynthesis , Promoter Regions, Genetic/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Recombinant Fusion Proteins/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transfection
14.
Mol Biotechnol ; 61(6): 400-409, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30945164

ABSTRACT

Transgenic chickens are of great interest for the production of recombinant proteins in their eggs. However, the use of constitutive strong promoters or the tissue-specific ovalbumin promoter for the generation of the transgenic chickens have different drawbacks that have to be overcome in order to make chicken bioreactor an efficient production system. This prompted us to investigate the use of an alternative tissue-specific promoter, the vitellogenin promoter, which could overcome the difficulties currently found in the generation of chicken bioreactors. In the present work we establish and characterize a DNA construct consisting of a fragment of the 5´-flanking region of the chicken vitellogenin II gene cloned in a reporter vector. This construct is capable of showing the ability of the promoter to drive expression of a reporting gene in a tissue-specific manner and in a way that closely resembles physiologic regulation of vitellogenin, making it an ideal candidate to be used in the future for generation of avian bioreactors. Besides, we validate an in vitro culture system to test the performance of the DNA construct under study that could be used as a practical tool before generating any transgenic chicken. These results are important since they provide the proof of concept for the use of the vitellogenin promoter for future genetic modification of chickens bioreactors with improved characteristics in terms of quality of the recombinant protein produced.


Subject(s)
Avian Proteins/genetics , Chickens/genetics , Genetic Vectors/chemistry , Recombinant Fusion Proteins/genetics , Vitellogenins/genetics , 5' Flanking Region , Animals , Animals, Genetically Modified , Avian Proteins/metabolism , Bioreactors , Chick Embryo , Chickens/metabolism , Cloning, Molecular , Estradiol/pharmacology , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation , Genes, Reporter , Genetic Vectors/metabolism , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Luciferases/genetics , Luciferases/metabolism , Primary Cell Culture , Promoter Regions, Genetic , Receptors, Estrogen , Recombinant Fusion Proteins/metabolism , Transfection/methods , Vitellogenins/metabolism , Zygote/drug effects , Zygote/growth & development , Zygote/metabolism
15.
Mol Biotechnol ; 61(6): 451-460, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30997666

ABSTRACT

We have previously shown that the small metal-binding protein (SmbP) extracted from the gram-negative bacterium Nitrosomonas europaea can be employed as a fusion protein for the expression and purification of recombinant proteins in Escherichia coli. With the goal of increasing the amounts of SmbP-tagged proteins produced in the E. coli periplasm, we replaced the native SmbP signal peptide with three different signal sequences: two were from the proteins CusF and PelB, for transport via the Sec pathway, and one was the signal peptide from TorA, for transport via the Tat pathway. Expression of SmbP-tagged Red Fluorescent Protein (RFP) using these three alternative signal peptides individually showed a considerable increase in protein levels in the periplasm of E. coli as compared to its level using the SmbP signal sequence. Therefore, for routine periplasmic expression and purification of recombinant proteins in E. coli, we highly recommend the use of the fusion proteins PelB-SmbP or CusF-SmbP, since these signal sequences increase periplasmic production considerably as compared to the wild-type. Our work, finally, demonstrates that periplasmic expression for SmbP-tagged proteins is not limited to the Sec pathway, in that the TorA-SmbP construct can export reasonable quantities of folded proteins to the periplasm. Although the Sec route has been the most widely used, sometimes, depending on the nature of the protein of interest, for example, if it contains cofactors, it is more appropriate to consider using the Tat route over the Sec. SmbP therefore can be recommended in terms of its particular versatility when combined with signal peptides for the two different routes.


Subject(s)
Bacterial Proteins/genetics , Cloning, Molecular/methods , Nitrosomonas europaea/genetics , Periplasm/metabolism , Recombinant Fusion Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Copper Transport Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Iron-Binding Proteins/genetics , Iron-Binding Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Nitrosomonas europaea/metabolism , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism , Periplasm/chemistry , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Protein Sorting Signals , Protein Transport , Recombinant Fusion Proteins/metabolism , Red Fluorescent Protein
16.
Mol Biotechnol ; 61(6): 461-468, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30997667

ABSTRACT

Synthetic biology and genetic engineering in algae offer an unprecedented opportunity to develop species with traits that can help solve the problems associated with food and energy supply in the 21st century. In the green alga Chlamydomonas reinhardtii, foreign genes can be expressed from the chloroplast genome for molecular farming and metabolic engineering to obtain commodities and high-value molecules. To introduce these genes, selectable markers, which rely mostly on the use of antibiotics, are needed. This has risen social concern associated with the potential risk of horizontal gene transfer across life kingdoms, which has led to a quest for antibiotic-free selectable markers. Phosphorus (P) is a scarce nutrient element that most organisms can only assimilate in its most oxidized form as phosphate (Pi); however, some organisms are able to oxidize phosphite (Phi) to Pi prior to incorporation into the central metabolism of P. As an alternative to the use of the two positive selectable makers already available for chloroplast transformation in C. reinhardtii, the aadA and the aphA-6 genes, that require the use of antibiotics, we investigated if a phosphite-based selection method could be used for the direct recovery of chloroplast transformed lines in this alga. Here we show that following bombardment with a vector carrying the ptxD gene from Pseudomonas stutzeri WM88, only cells that integrate and express the gene proliferate and form colonies using Phi as the sole P source. Our results demonstrate that a selectable marker based on the assimilation of Phi can be used for chloroplasts transformation in a biotechnologically relevant organism. The portable selectable marker we have developed is, in more than 18 years, the latest addition to the markers available for selection of chloroplast transformed cells in C. reinhardtii. The ptxD gene will contribute to the repertoire of tools available for synthetic biology and genetic engineering in the chloroplast of C. reinhardtii.


Subject(s)
Bacterial Proteins/genetics , Chlamydomonas reinhardtii/genetics , Chloroplasts/genetics , NADH, NADPH Oxidoreductases/genetics , Phosphites/metabolism , Phosphorus/metabolism , Algal Proteins/genetics , Algal Proteins/metabolism , Bacterial Proteins/metabolism , Chlamydomonas reinhardtii/metabolism , Chloroplasts/metabolism , Genetic Engineering/methods , Genetic Markers , Genetic Vectors/chemistry , Genetic Vectors/metabolism , NADH, NADPH Oxidoreductases/metabolism , Phosphites/pharmacology , Pseudomonas stutzeri/chemistry , Pseudomonas stutzeri/genetics , Selection, Genetic , Transformation, Genetic
17.
Mol Biotechnol ; 61(6): 385-399, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30919326

ABSTRACT

D-Tagatose is a ketohexose, which presents unique properties as a low-calorie functional sweetener possessing a sweet flavor profile similar to D-sucrose and having no aftertaste. Considered a generally recognized as safe (GRAS) substance by FAO/WHO, D-tagatose can be used as an intermediate for the synthesis of other optically active compounds as well as an additive in detergent, cosmetic, and pharmaceutical formulations. This study reports important features for L-arabinose isomerase (EC 5.3.1.4) (L-AI) use in industry. We describe arabinose (araA) gene virulence analysis, gene isolation, sequencing, cloning, and heterologous overexpression of L-AI from the food-grade GRAS bacterium Enterococcus faecium DBFIQ E36 in Escherichia coli and assess biochemical properties of this recombinant enzyme. Recombinant L-AI (rL-AI) was one-step purified to homogeneity by Ni2+-agarose resin affinity chromatography and biochemical characterization revealed low identity with both thermophilic and mesophilic L-AIs but high degree of conservation in residues involved in substrate recognition. Optimal conditions for rL-AI activity were 50 °C, pH 5.5, and 0.3 mM Mn2+, exhibiting a low cofactor concentration requirement and an acidic optimum pH. Half-life at 45 °C and 50 °C were 1427 h and 11 h, respectively, and 21.5 h and 39.5 h at pH 4.5 and 5.6, respectively, showing the high stability of the enzyme in the presence of a metallic cofactor. Bioconversion yield for D-tagatose biosynthesis was 45% at 50 °C after 48 h. These properties highlight the technological potential of E. faecium rL-AI as biocatalyst for D-tagatose production.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Bacterial Proteins/metabolism , Enterococcus faecium/enzymology , Galactose/metabolism , Hexoses/biosynthesis , Aldose-Ketose Isomerases/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Cations, Divalent , Cloning, Molecular , Coenzymes/metabolism , Enterococcus faecium/genetics , Enzyme Assays , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Kinetics , Manganese/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
18.
Article in English | MEDLINE | ID: mdl-30348667

ABSTRACT

Carbapenems are "last resort" ß-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-ß-lactamases (MßLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all ß-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MßLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MßLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different ß-lactams in all MßLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MßLs.


Subject(s)
Anti-Bacterial Agents/chemistry , Ceftazidime/chemistry , Imipenem/chemistry , Meropenem/chemistry , Zinc/chemistry , beta-Lactamases/chemistry , Amino Acid Sequence , Anti-Bacterial Agents/metabolism , Catalytic Domain , Cefepime/chemistry , Cefepime/metabolism , Cefotaxime/chemistry , Cefotaxime/metabolism , Ceftazidime/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Imipenem/metabolism , Kinetics , Meropenem/metabolism , Models, Molecular , Piperacillin/chemistry , Piperacillin/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Engineering , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Zinc/metabolism , beta-Lactam Resistance , beta-Lactamases/genetics , beta-Lactamases/metabolism
19.
Protein Expr Purif ; 153: 18-25, 2019 01.
Article in English | MEDLINE | ID: mdl-30125621

ABSTRACT

Saint Louis encephalitis virus (SLEV) and West Nile virus (WNV) are two of the major causes of arboviral encephalitis in the Americas. The co-circulation of related flaviviruses in the Americas and prior vaccination against flaviviruses pose problems to the diagnostic specificity of serological assays due to the development of cross-reactive antibodies. An accurate diagnosis method capable of differentiating these related viruses is needed. NS1 is a glycosylated, nonstructural protein, of about 46 kDa which has a highly conserved structure. Anti-NS1 antibodies can be detected within 4-8 days after the initial exposure and NS1 is the least cross-reactive of the flaviviral antigens. This study was aimed to generate SLEV and WNV NS1 recombinants proteins for the development of a flavivirus diagnostic test. Local Argentinian isolates were used as the source of NS1 gene cloning, expression, and purification. The protein was expressed in Escherichia coli as inclusion bodies and further purified by metal-chelating affinity chromatography (IMAC) under denaturing conditions. Human sera from SLEV and WNV positive cases showed reactivity to the recombinant NS1 proteins by western blot. The unfolded NS1 proteins were also used as immunogens. The polyclonal antibodies elicited in immunized mice recognized the two recombinant proteins with differential reactivity.


Subject(s)
Antibodies, Viral/biosynthesis , Antigens, Viral/immunology , Encephalitis Virus, St. Louis/immunology , Encephalitis, St. Louis/diagnosis , Viral Nonstructural Proteins/immunology , West Nile Fever/diagnosis , West Nile virus/immunology , Animals , Antibody Specificity , Antigens, Viral/biosynthesis , Antigens, Viral/genetics , Argentina , Blotting, Western , Chromatography, Affinity , Cloning, Molecular , Cross Reactions , Diagnosis, Differential , Encephalitis Virus, St. Louis/chemistry , Encephalitis Virus, St. Louis/genetics , Encephalitis, St. Louis/immunology , Encephalitis, St. Louis/virology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Inclusion Bodies/chemistry , Mice , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Solubility , Viral Nonstructural Proteins/biosynthesis , Viral Nonstructural Proteins/genetics , West Nile Fever/immunology , West Nile Fever/virology , West Nile virus/chemistry , West Nile virus/genetics
20.
Colloids Surf B Biointerfaces ; 173: 769-775, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30384274

ABSTRACT

Bacterial inclusion bodies (IBs) were historically considered one of the major obstacles in protein production through recombinant DNA techniques and conceived as amorphous deposits formed by passive and rather unspecific structures of unfolded proteins aggregates. Subsequent studies demonstrated that IBs contained an important quantity of active protein. In this work, we proved that recombinant ß-galactosidase inclusion bodies (IBß-Gal) are functional aggregates. Moreover, they exhibit particular features distinct to the soluble version of the enzyme. The particulate enzyme was highly active against lactose in physiological and in acid pH and also retained its activity upon a pre-incubation at high temperature. IBß-Gal washing or dilution induced the spontaneous release of active enzymes from the supramolecular aggregates. Along this process, we observed a continuous change in the values of several kinetic parameters, including specific activity and Michaelis-Menten constant, measured in the IBß-Gal suspensions. Simultaneously, IBß-Gal turned into a more heterogeneous population where smaller particles appeared. The released protein exhibited secondary structure features more similar to those of the soluble species than to the aggregated enzyme. Concluding, IBß-Gal represents a reservoir and packed source of highly active and stable enzyme.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Inclusion Bodies/enzymology , Lactose/chemistry , beta-Galactosidase/chemistry , Cloning, Molecular , Enzyme Stability , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Inclusion Bodies/chemistry , Kinetics , Lactose/metabolism , Protein Aggregates , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility , Structure-Activity Relationship , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL