Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters











Publication year range
1.
J Biochem Mol Toxicol ; 38(8): e23773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39030868

ABSTRACT

Despite considerable advances in interventions and treatment, there is a high mortality rate in patients with myocardial infarction (MI). This is the first study to investigate the protective effects of 3, 4-dihydroxybenzoic acid against isoproterenol induced MI in rats. MI was induced by isoproterenol (100-mg/kg body weight) in rats. Then, rats were treated with 3, 4-dihydroxybenzoic acid (16-mg/kg body weight) for 2 weeks. Serum creatine kinase-MB, cardiac troponin-T, cardiac troponin-I, and heart thiobarbituric acid reactive substances were significantly (p < 0.05) increased and heart superoxide dismutase and catalase activities were significantly (p < 0.05) reduced in isoproterenol-induced myocardial infarcted rats. Isoproterenol induction significantly (p < 0.05) elevated the plasma homocysteine and serum high sensitivity-C-reactive protein levels. Furthermore, an enzyme-linked immunosorbent assay, reverse transcription polymerase chain study, and immunohistochemical (IHC) staining revealed significantly (p < 0.05) elevated levels and expression of serum/myocardial nuclear factor-κB, tumor necrosis factor-alpha, interleukin-1 beta, and Interleukin-6 and significantly (p < 0.05) reduced levels/expression of serum/myocardial interleukin-10 in myocardial infarcted rats. Nevertheless, isoproterenol-induced rats treated with 3, 4-dihydroxybenzoic acid considerably (p < 0.05) attenuated all the biochemical, molecular, and IHC parameters investigated and inhibited oxidative stress and inflammation and protected the heart, through its antioxidant and anti-inflammatory mechanisms.


Subject(s)
Isoproterenol , Myocardial Infarction , Animals , Isoproterenol/toxicity , Myocardial Infarction/chemically induced , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Rats , Male , Troponin I/metabolism , Troponin I/blood , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Gentisates/pharmacology , Gentisates/metabolism , Myocardium/metabolism , Myocardium/pathology , Hydroxybenzoates/pharmacology
2.
J Phys Chem B ; 128(28): 6797-6805, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38978492

ABSTRACT

Gentisate and salicylate 1,2-dioxygenases (GDO and SDO) facilitate aerobic degradation of aromatic rings by inserting both atoms of dioxygen into their substrates, thereby participating in global carbon cycling. The role of acid-base catalysts in the reaction cycles of these enzymes is debatable. We present evidence of the participation of a proton shuffler during catalysis by GDO and SDO. The pH dependence of Michaelis-Menten parameters demonstrates that a single proton transfer is mandatory for the catalysis. Measurements at variable temperatures and pHs were used to determine the standard enthalpy of ionization (ΔHion°) of 51 kJ/mol for the proton transfer event. Although the observed apparent pKa in the range of 6.0-7.0 for substrates of both enzymes is highly suggestive of a histidine residue, ΔHion° establishes an arginine residue as the likely proton source, providing phylogenetic relevance for this strictly conserved residue in the GDO family. We propose that the atypical 3-histidine ferrous binding scaffold of GDOs contributes to the suppression of arginine pKa and provides support for this argument by employing a 2-histidine-1-carboxylate variant of the enzyme that exhibits elevated pKa. A reaction mechanism considering the role of the proton source in stabilizing key reaction intermediates is proposed.


Subject(s)
Arginine , Protons , Arginine/chemistry , Arginine/metabolism , Hydrogen-Ion Concentration , Gentisates/chemistry , Gentisates/metabolism , Dioxygenases/metabolism , Dioxygenases/chemistry , Dioxygenases/genetics , Biocatalysis , Thermodynamics , Catalysis
3.
New Phytol ; 243(5): 2021-2036, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39014531

ABSTRACT

Phytohormones possess unique chemical structures, and their physiological effects are regulated through intricate interactions or crosstalk among multiple phytohormones. MALDI-MSI enables the simultaneous detection and imaging of multiple hormones. However, its application for tracing phytohormones is currently restricted by low abundance of hormone in plant and suboptimal matrix selection. 2,4-Dihydroxy-5-nitrobenzoic acid (DHNBA) was reported as a new MALDI matrix for the enhanced detection and imaging of multiple phytohormones in plant tissues. DHNBA demonstrates remarkable sensitivity improvement when compared to the commonly used matrix, 2,5-dihydroxybenzoic acid (DHB), in the detection of isoprenoid cytokinins (trans-zeatin (tZ), dihy-drozeatin (DHZ), meta-topolin (mT), and N6-(Δ2-isopentenyl) adenine (iP)), jasmonic acid (JA), abscisic acid (ABA), and 1-aminocyclo-propane-1-carboxylic acid (ACC) standards. The distinctive properties of DHNBA (i.e. robust UV absorption, uniform matrix deposition, negligible background interference, and high ionization efficiency of phytohormones) make it as an ideal matrix for enhanced detection and imaging of phytohormones, including tZ, DHZ, ABA, indole-3-acetic acid (IAA), and ACC, by MALDI-MSI in various plant tissues, for example germinating seeds, primary/lateral roots, and nodules. Employing DHNBA significantly enhances our capability to concurrently track complex phytohormone biosynthesis pathways while providing precise differentiation of the specific roles played by individual phytohormones within the same category. This will propel forward the comprehensive exploration of phytohormonal functions in plant science.


Subject(s)
Plant Growth Regulators , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Plant Growth Regulators/metabolism , Plant Growth Regulators/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Gentisates/metabolism , Gentisates/chemistry
4.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791185

ABSTRACT

Acetylsalicylic acid or aspirin is the most commonly used drug in the world and is taken daily by millions of people. There is increasing evidence that chronic administration of low-dose aspirin of about 75-100 mg/day can cause iron deficiency anaemia (IDA) in the absence of major gastric bleeding; this is found in a large number of about 20% otherwise healthy elderly (>65 years) individuals. The mechanisms of the cause of IDA in this category of individuals are still largely unknown. Evidence is presented suggesting that a likely cause of IDA in this category of aspirin users is the chelation activity and increased excretion of iron caused by aspirin chelating metabolites (ACMs). It is estimated that 90% of oral aspirin is metabolized into about 70% of the ACMs salicyluric acid, salicylic acid, 2,5-dihydroxybenzoic acid, and 2,3-dihydroxybenzoic acid. All ACMs have a high affinity for binding iron and ability to mobilize iron from different iron pools, causing an overall net increase in iron excretion and altering iron balance. Interestingly, 2,3-dihydroxybenzoic acid has been previously tested in iron-loaded thalassaemia patients, leading to substantial increases in iron excretion. The daily administration of low-dose aspirin for long-term periods is likely to enhance the overall iron excretion in small increments each time due to the combined iron mobilization effect of the ACM. In particular, IDA is likely to occur mainly in populations such as elderly vegetarian adults with meals low in iron content. Furthermore, IDA may be exacerbated by the combinations of ACM with other dietary components, which can prevent iron absorption and enhance iron excretion. Overall, aspirin is acting as a chelating pro-drug similar to dexrazoxane, and the ACM as combination chelation therapy. Iron balance, pharmacological, and other studies on the interaction of iron and aspirin, as well as ACM, are likely to shed more light on the mechanism of IDA. Similar mechanisms of iron chelation through ACM may also be implicated in patient improvements observed in cancer, neurodegenerative, and other disease categories when treated long-term with daily aspirin. In particular, the role of aspirin and ACM in iron metabolism and free radical pathology includes ferroptosis, and may identify other missing links in the therapeutic effects of aspirin in many more diseases. It is suggested that aspirin is the first non-chelating drug described to cause IDA through its ACM metabolites. The therapeutic, pharmacological, toxicological and other implications of aspirin are incomplete without taking into consideration the iron binding and other effects of the ACM.


Subject(s)
Anemia, Iron-Deficiency , Aspirin , Iron Chelating Agents , Iron , Humans , Aspirin/therapeutic use , Aspirin/metabolism , Anemia, Iron-Deficiency/metabolism , Anemia, Iron-Deficiency/drug therapy , Iron/metabolism , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/metabolism , Salicylic Acid/metabolism , Gentisates/metabolism , Hippurates/metabolism , Hydroxybenzoates
5.
J Hazard Mater ; 471: 134310, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640677

ABSTRACT

Microbial interactions, particularly metabolic cross-feeding, play important roles in removing recalcitrant environmental pollutants; however, the underlying mechanisms involved in this process remain unclear. Thus, this study aimed to elucidate the mechanism by which metabolic cross-feeding occurs during synergistic dibenzofuran degradation between a highly efficient degrader, Rhodococcus sp. strain p52, and a partner incapable of utilizing dibenzofuran. A bottom-up approach combined with pairwise coculturing was used to examine metabolic cross-feeding between strain p52 and Arthrobacter sp. W06 or Achromobacter sp. D10. Pairwise coculture not only promoted bacterial pair growth but also facilitated dibenzofuran degradation. Specifically, strain p52, acting as a donor, released dibenzofuran metabolic intermediates, including salicylic acid and gentisic acid, for utilization and growth, respectively, by the partner strains W06 and D10. Both salicylic acid and gentisic acid exhibited biotoxicity, and their accumulation inhibited dibenzofuran degradation. The transcriptional activity of the genes responsible for the catabolism of dibenzofuran and its metabolic intermediates was coordinately regulated in strain p52 and its cocultivated partners, thus achieving synergistic dibenzofuran degradation. This study provides insights into microbial metabolic cross-feeding during recalcitrant environmental pollutant removal.


Subject(s)
Biodegradation, Environmental , Rhodococcus , Salicylic Acid , Rhodococcus/metabolism , Salicylic Acid/metabolism , Dibenzofurans/metabolism , Benzofurans/metabolism , Gentisates/metabolism , Microbial Interactions
6.
Plant Cell Environ ; 47(8): 3111-3131, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38686847

ABSTRACT

In plants, salicylic acid (SA) hydroxylation regulates SA homoeostasis, playing an essential role during plant development and response to pathogens. This reaction is catalysed by SA hydroxylase enzymes, which hydroxylate SA producing 2,3-dihydroxybenzoic acid (2,3-DHBA) and/or 2,5-dihydroxybenzoic acid (2,5-DHBA). Several SA hydroxylases have recently been identified and characterised from different plant species, but no such activity has yet been reported in maize. In this work, we describe the identification and characterisation of a new SA hydroxylase in maize plants. This enzyme, with high sequence similarity to previously described SA hydroxylases from Arabidopsis and rice, converts SA into 2,5-DHBA; however, it has different kinetic properties to those of previously characterised enzymes, and it also catalysers the conversion of the flavonoid dihydroquercetin into quercetin in in vitro activity assays, suggesting that the maize enzyme may have different roles in vivo to those previously reported from other species. Despite this, ZmS5H can complement the pathogen resistance and the early senescence phenotypes of Arabidopsis s3h mutant plants. Finally, we characterised a maize mutant in the S5H gene (s5hMu) that has altered growth, senescence and increased resistance against Colletotrichum graminicola infection, showing not only alterations in SA and 2,5-DHBA but also in flavonol levels. Together, the results presented here provide evidence that SA hydroxylases in different plant species have evolved to show differences in catalytic properties that may be important to fine tune SA levels and other phenolic compounds such as flavonols, to regulate different aspects of plant development and pathogen defence.


Subject(s)
Colletotrichum , Disease Resistance , Plant Diseases , Plant Proteins , Salicylic Acid , Zea mays , Zea mays/genetics , Zea mays/enzymology , Zea mays/microbiology , Salicylic Acid/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Colletotrichum/physiology , Kinetics , Ketoglutaric Acids/metabolism , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/microbiology , Gentisates/metabolism , Phylogeny , Quercetin/metabolism , Hydroxybenzoates
7.
PLoS Genet ; 18(3): e1009815, 2022 03.
Article in English | MEDLINE | ID: mdl-35255079

ABSTRACT

Many fungal species utilize hydroxyderivatives of benzene and benzoic acid as carbon sources. The yeast Candida parapsilosis metabolizes these compounds via the 3-oxoadipate and gentisate pathways, whose components are encoded by two metabolic gene clusters. In this study, we determine the chromosome level assembly of the C. parapsilosis strain CLIB214 and use it for transcriptomic and proteomic investigation of cells cultivated on hydroxyaromatic substrates. We demonstrate that the genes coding for enzymes and plasma membrane transporters involved in the 3-oxoadipate and gentisate pathways are highly upregulated and their expression is controlled in a substrate-specific manner. However, regulatory proteins involved in this process are not known. Using the knockout mutants, we show that putative transcriptional factors encoded by the genes OTF1 and GTF1 located within these gene clusters function as transcriptional activators of the 3-oxoadipate and gentisate pathway, respectively. We also show that the activation of both pathways is accompanied by upregulation of genes for the enzymes involved in ß-oxidation of fatty acids, glyoxylate cycle, amino acid metabolism, and peroxisome biogenesis. Transcriptome and proteome profiles of the cells grown on 4-hydroxybenzoate and 3-hydroxybenzoate, which are metabolized via the 3-oxoadipate and gentisate pathway, respectively, reflect their different connection to central metabolism. Yet we find that the expression profiles differ also in the cells assimilating 4-hydroxybenzoate and hydroquinone, which are both metabolized in the same pathway. This finding is consistent with the phenotype of the Otf1p-lacking mutant, which exhibits impaired growth on hydroxybenzoates, but still utilizes hydroxybenzenes, thus indicating that additional, yet unidentified transcription factor could be involved in the 3-oxoadipate pathway regulation. Moreover, we propose that bicarbonate ions resulting from decarboxylation of hydroxybenzoates also contribute to differences in the cell responses to hydroxybenzoates and hydroxybenzenes. Finally, our phylogenetic analysis highlights evolutionary paths leading to metabolic adaptations of yeast cells assimilating hydroxyaromatic substrates.


Subject(s)
Candida parapsilosis , Gentisates , Candida parapsilosis/metabolism , Carbon , Gentisates/metabolism , Hydroxybenzoates/metabolism , Phylogeny , Proteome/genetics , Proteomics , Saccharomyces cerevisiae/metabolism , Transcriptome/genetics
8.
Appl Environ Microbiol ; 88(4): e0206021, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34936841

ABSTRACT

Previously, a LysR family transcriptional regulator, McbG, that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 was identified by us (Z. Ke, Y. Zhou, W. Jiang, M. Zhang, et al., Appl Environ Microbiol 87:e02970-20, 2021, https://doi.org/10.1128/AEM.02970-20). In this study, we identified McbH and McbN, which activate the mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and the mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to the mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of the LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study revealed the regulatory mechanisms for the midstream and downstream pathways of carbaryl degradation in strain XWY-1 and further our knowledge of (and the size of) the LysR transcription regulator family. IMPORTANCE The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF, mcbIJKLM, and mcbOPQ. Previous studies demonstrated that the mcbA gene, responsible for hydrolysis of carbaryl to 1-naphthol, is constitutively expressed and that the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster (responsible for the degradation of salicylate to gentisate) and the mcbOPQ cluster (responsible for the degradation of gentisate to pyruvate and fumarate), respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM, and 12-bp motif different from the typical characteristics of the LysR-type transcriptional regulator (LTTR) binding sequence affects the binding of McbN to the promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.


Subject(s)
Carbaryl , Pseudomonas , Bacterial Proteins/metabolism , Carbaryl/metabolism , Gene Expression Regulation, Bacterial , Gentisates/metabolism , Operon , Pseudomonas/genetics , Pseudomonas/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34215692

ABSTRACT

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Subject(s)
Disease Resistance/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Solanum lycopersicum/immunology , Arabidopsis Proteins/metabolism , Biocatalysis , Gene Expression Regulation, Plant , Gentisates/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Mutation/genetics , Phylogeny , Plant Immunity/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Salicylic Acid/metabolism , Transcriptome/genetics , Up-Regulation , Xanthomonas/physiology
10.
Mol Microbiol ; 116(3): 783-793, 2021 09.
Article in English | MEDLINE | ID: mdl-34121246

ABSTRACT

Salicylate is a typical aromatic compound widely distributed in nature. Microbial degradation of salicylate has been well studied and salicylate hydroxylases play essential roles in linking the peripheral and ring-cleavage catabolic pathways. The direct hydroxylation of salicylate catalyzed by salicylate-1-hydroxylase or salicylate-5-hydroxylase has been well studied. However, the CoA mediated salicylate 5-hydroxylation pathway has not been characterized in detail. Here, we elucidate the molecular mechanism of the reaction in the conversion of salicylate to gentisate in the carbaryl-degrading strain Rhizobium sp. X9. Three enzymes (salicylyl-CoA ligase CehG, salicylyl-CoA hydroxylase CehH and gentisyl-CoA thioesterase CehI) catalyzed the conversion of salicylate to gentisate via a route, including CoA thioester formation, hydroxylation and thioester hydrolysis. Further analysis indicated that genes cehGHI are also distributed in other bacteria from terrestrial environment and marine sediments. These genomic evidences highlight the role of this salicylate degradation pathway in the carbon cycle of soil organic compounds and marine sediments. Our findings of this three-step strategy enhanced the current understanding of CoA mediated degradation of salicylate.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Coenzyme A/metabolism , Rhizobium/enzymology , Rhizobium/genetics , Rhizobium/metabolism , Salicylates/metabolism , Genetic Complementation Test , Genome, Bacterial , Gentisates/metabolism , Ligases/genetics , Ligases/metabolism , Metabolic Networks and Pathways , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Soil Microbiology , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism
11.
Sci Rep ; 11(1): 12182, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108579

ABSTRACT

Stress caused by pathogens strongly damages plants. Developing products to control plant disease is an important challenge in sustainable agriculture. In this study, a heat-killed endophytic bacterium (HKEB), Bacillus aryabhattai, is used to induce plant defense against fungal and bacterial pathogens, and the main defense pathways used by the HKEB to activate plant defense are revealed. The HKEB induced high protection against different pathogens through the salicylic and jasmonic acid pathways. We report the presence of gentisic acid in the HKEB for the first time. These results show that HKEBs may be a useful tool for the management of plant diseases.


Subject(s)
Arabidopsis/metabolism , Bacillus/physiology , Gentisates/metabolism , Hot Temperature , Nicotiana/metabolism , Plant Diseases/immunology , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Bacillus/chemistry , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Oxylipins/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Salicylic Acid/metabolism , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/microbiology
12.
Plant Signal Behav ; 16(10): 1929732, 2021 10 03.
Article in English | MEDLINE | ID: mdl-34024248

ABSTRACT

Rice, a most salt-sensitive cereal plant, adopts diverse pathways to withstand sodium chloride-induced salinity-related adversities. During the present study, attempt was made to understand the role of calcium on metabolite profile of the leaves of salt tolerant rice seedlings of variety of Nonabokra under sodium chloride induced salinity, by Gas Chromatography-Mass Spectrometry-based metabolomics approach. Calcium availability in the seedlings was reduced or enhanced applying inhibitors (vanadyl sulfate, lanthanum chloride, and verapamil) or promoters of calcium influx (calcimycin also known as calcium ionophore A23187) in the sodium chloride (100 mM) supplemented growth medium. Growth medium of ten-day-old seedlings was replaced by sodium chloride supplemented hydroponic solution with promotor or inhibitors of calcium channel. Fifteen days old seedlings were harvested. It was observed that depletion of calcium availability increased the level of serotonin and gentisic acid whereas increased calcium level decreased these metabolites. It was concluded from the results that production of the signaling molecules serotonin and gentisic acids was elevated in calcium-deficient seedlings under salt stress the condition that was considered as control during the experiment. The two signaling molecules probably help this tolerant rice variety Nonabokra to withstand the salt-induced adversities.


Subject(s)
Calcium Channels/metabolism , Gentisates/metabolism , Oryza/metabolism , Phenols/metabolism , Plant Leaves/metabolism , Serotonin/metabolism , Calcium Channels/drug effects , Calcium Signaling/drug effects , Gas Chromatography-Mass Spectrometry , Lanthanum/pharmacology , Oryza/drug effects , Salt Tolerance , Seedlings/metabolism , Vanadium Compounds/pharmacology , Verapamil/pharmacology
13.
Molecules ; 26(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808152

ABSTRACT

Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.


Subject(s)
Fruit/chemistry , Gentisates/metabolism , Glycoside Hydrolase Inhibitors/metabolism , Hypoglycemic Agents/metabolism , alpha-Amylases , alpha-Glucosidases/metabolism , Humans , Molecular Docking Simulation , Protein Binding , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
14.
Int J Mol Sci ; 22(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572316

ABSTRACT

Pyomelanin mimics from homogentisic acid (HGA) and gentisic acid (GA) were biosynthesized by the oxidative enzyme T. versicolor laccase at physiological pH to obtain water soluble melanins. The pigments show brown-black color, broad band visible light absorption, a persistent paramagnetism and high antioxidant activity. The EPR approach shows that at least two different radical species are present in both cases, contributing to the paramagnetism of the samples. This achievement can also shed light on the composition of the ochronotic pigment in the Alkaptonuria disease. On the other hand, these soluble pyomelanin mimics, sharing physico-chemical properties with eumelanin, can represent a suitable alternative to replace the insoluble melanin pigment in biotechnological applications.


Subject(s)
Antioxidants/pharmacology , Gentisates/pharmacology , Homogentisic Acid/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/metabolism , Biotechnology/methods , Fungal Proteins/metabolism , Gentisates/chemistry , Gentisates/isolation & purification , Gentisates/metabolism , Homogentisic Acid/chemistry , Homogentisic Acid/isolation & purification , Homogentisic Acid/metabolism , Laccase/metabolism , Melanins/chemistry , Polyporaceae/enzymology
15.
J Agric Food Chem ; 68(35): 9287-9298, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32786824

ABSTRACT

3-Chlorogentisate is a key intermediate in the catabolism of the herbicide dicamba in R. dicambivorans Ndbn-20. In this study, we identified two gentisate 1,2-dioxygenases (GDOs), DsmD and GtdA, from Ndbn-20. The amino acid sequence similarity between DsmD and GtdA is 51%. Both of them are dimers and showed activities to gentisate and 3-chlorogentisate but not 3,6-dichlorogentisate (3,6-DCGA) or 6-chlorogentisate in vitro. The kcat/Km of DsmD for 3-chlorogentisate was 28.7 times higher than that of GtdA, whereas the kcat/Km of DsmD for gentisate was only one-fourth of that of GtdA. Transcription of dsmD was dramatically induced by 3-chlorogentisate but not gentisate, whereas gtdA was not induced. Disruption of dsmD resulted in a significant decline in the degradation rates of 3-chlorogentisate and dicamba but had no effect on the degradation of gentisate, whereas the result of disruption of gtdA was converse; the disruption of both dsmD and gtdA led to the inability to degrade 3-chlorogentisate and gentisate. This study revealed that 3-chlorogentisate but not gentisate or 3,6-DCGA is the ring-cleavage substrate in the dicamba degradation pathway in R. dicambivorans Ndbn-20; DsmD is specifically responsible for cleavage of 3-chlorogentisate, whereas GtdA is a general GDO involved in the catabolism of various natural aromatic compounds.


Subject(s)
Bacterial Proteins/metabolism , Dicamba/metabolism , Dioxygenases/metabolism , Gentisates/metabolism , Herbicides/metabolism , Sphingomonadaceae/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Dicamba/chemistry , Dioxygenases/chemistry , Dioxygenases/genetics , Gentisates/chemistry , Herbicides/chemistry , Kinetics , Sequence Alignment , Sphingomonadaceae/chemistry , Sphingomonadaceae/genetics , Sphingomonadaceae/metabolism , Substrate Specificity
16.
Molecules ; 25(9)2020 May 10.
Article in English | MEDLINE | ID: mdl-32397626

ABSTRACT

Despite decades of research to elucidate the cancer preventive mechanisms of aspirin and flavonoids, a consensus has not been reached on their specific modes of action. This inability to accurately pinpoint the mechanism involved is due to the failure to differentiate the primary targets from its associated downstream responses. This review is written in the context of the recent findings on the potential pathways involved in the prevention of colorectal cancers (CRC) by aspirin and flavonoids. Recent reports have demonstrated that the aspirin metabolites 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA) and the flavonoid metabolites 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) were effective in inhibiting cancer cell growth in vitro. Limited in vivo studies also provide evidence that some of these hydroxybenzoic acids (HBAs) inhibit tumor growth in animal models. This raises the possibility that a common pathway involving HBAs may be responsible for the observed cancer preventive actions of aspirin and flavonoids. Since substantial amounts of aspirin and flavonoids are left unabsorbed in the intestinal lumen upon oral consumption, they may be subjected to degradation by the host and bacterial enzymes, generating simpler phenolic acids contributing to the prevention of CRC. Interestingly, these HBAs are also abundantly present in fruits and vegetables. Therefore, we suggest that the HBAs produced through microbial degradation of aspirin and flavonoids or those consumed through the diet may be common mediators of CRC prevention.


Subject(s)
Aspirin/pharmacology , Cell Cycle Checkpoints/drug effects , Colorectal Neoplasms/prevention & control , Flavonoids/pharmacology , Fruit/metabolism , Hydroxybenzoates/pharmacology , MAP Kinase Signaling System/drug effects , Animals , Aspirin/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Flavonoids/metabolism , Fruit/chemistry , Gallic Acid/metabolism , Gentisates/metabolism , Humans , Hydroxybenzoates/metabolism , MAP Kinase Signaling System/genetics
17.
PLoS One ; 15(4): e0232263, 2020.
Article in English | MEDLINE | ID: mdl-32348369

ABSTRACT

Gentisic acid (GA), a metabolite of acetylsalicylic acid (ASA), and homogentisic acid (HGA), which is excreted at high levels in alkaptonuria, are divalent phenolic acids with very similar structures. Urine containing HGA is dark brown in color due to its oxidation. We recently reported a new oxidation method of HGA involving the addition of sodium hydroxide (NaOH) with sodium hypochlorite pentahydrate (NaOCl·5H2O), which is a strong oxidant. In the present study, we attempted to oxidize GA, which has a similar structure to HGA, using our method. We herein observed color changes in GA solution and analyzed the absorption spectra of GA after the addition of NaOH with NaOCl·5H2O. We also examined the oxidation reaction of GA using a liquid chromatography time-of-flight mass spectrometer (LC/TOF-MS). The results obtained indicated that GA solution had a unique absorption spectrum with a peak at approximately 500 nm through an oxidation reaction following the addition of NaOH with NaOCl·5H2O. This spectrophotometric method enables GA to be detected in sample solutions without expensive analytical instruments or a complex method.


Subject(s)
Gentisates/chemistry , Spectrophotometry/methods , Alkaptonuria/urine , Aspirin/metabolism , Chromatography, Liquid , Gentisates/metabolism , Gentisates/urine , Homogentisic Acid/chemistry , Humans , Mass Spectrometry , Oxidants , Oxidation-Reduction , Sodium Hydroxide , Sodium Hypochlorite
18.
Org Lett ; 22(6): 2256-2260, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32134669

ABSTRACT

The biosynthetic pathway of the prenylated salicylaldehyde flavoglaucin and congeners in Aspergillus ruber was elucidated by genome mining, heterologous expression, precursor feeding, and biochemical characterization. The polyketide skeleton was released as alkylated salicyl alcohols, which is a prerequisite for consecutive hydroxylation and prenylation, before reoxidation to the final aldehyde products. Our results provide an excellent example for a highly programmed machinery in natural product biosynthesis.


Subject(s)
Aldehydes/metabolism , Aspergillus/metabolism , Benzyl Alcohols/metabolism , Gentisates/metabolism , Prenylation , Aspergillus/genetics , Biosynthetic Pathways , Hydroxylation , Multigene Family , Oxidation-Reduction
19.
Phytother Res ; 34(4): 729-741, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31825145

ABSTRACT

Beneficial therapeutic effects of phenolic acids have been proven in various research projects including in vivo and in vitro studies. Gentisic acid (GA) is a phenolic acid that has been associated with useful effects on human health, such as antiinflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities. It is an important metabolite of aspirin and also widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms. This study was undertaken to review the pharmacological effects, pharmacokinetic properties as well as toxicity and pharmaceutical applications of GA.


Subject(s)
Gentisates/pharmacology , Gentisates/toxicity , Animals , Antioxidants/isolation & purification , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspirin/chemistry , Aspirin/metabolism , Fruit/chemistry , Gentisates/isolation & purification , Gentisates/metabolism , Hibiscus/chemistry , Humans , Hydroxybenzoates/metabolism , Hydroxybenzoates/pharmacology , Olea/chemistry , Phytotherapy/methods , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Vitis/chemistry
20.
Plant Sci ; 290: 110274, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31779908

ABSTRACT

Plants are exposed to a vast array of pathogens. The interaction between them may be classified in compatible and incompatible. Polyamines (PAs) are involved in defense responses, as well as salicylic acid (SA), gentisic acid (GA) and nitric oxide (NO), which can increase the content of reactive oxygen species (ROS), creating a harsh environment to the pathogen. ROS can also damage the host cell and they can be controlled by ascorbate and glutathione. Among phytopathogens, one of the major threats to tomato crops is tomato mottle mosaic virus (ToMMV). Resistance against this virus probably involves the Tm-22 gene. This work aimed to analyze signaling and antioxidant molecules in the defense response against ToMMV in Solanum pimpinellifolium and in S. lycopersicum 'VFNT'. In S. pimpinellifolium plants inoculated with ToMMV, an increase in NO, SA, GA, ascorbate and oxidized glutathione and a decrease in the content of PAs were observed. Characteristic symptoms of diseased plants and high absorbance values in PTA-ELISA indicated a compatible interaction. In VFNT-inoculated plants, less significant differences were noticed. Symptoms and viral concentration were not detected, indicating an incompatible interaction, possibly associated with the effector-triggered immunity (ETI) response.


Subject(s)
Antioxidants/metabolism , Plant Diseases/microbiology , Solanum/metabolism , Tobamovirus/physiology , Gentisates/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Nitric Oxide/metabolism , Polyamines/metabolism , Salicylic Acid/metabolism , Signal Transduction , Solanum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL