Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 250
1.
Neurobiol Dis ; 195: 106497, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583641

OBJECTIVES: To elucidate and compare the genetic, clinical, ancillary diagnostic, and pathological characteristics across different Gerstmann-Sträussler-Scheinker disease (GSS) phenotypes and explore the underlying causes of the phenotypic heterogeneities. METHODS: The genetic, clinical, ancillary diagnostic, and pathological profiles of GSS patients reported in the literature were obtained and analyzed. Additionally, 3 patients with genetically confirmed GSS from our unit were included. Based on clinical presentation, patients were classified into typical GSS, Creutzfeldt-Jakob disease (CJD)-like GSS, GSS with dementia, and other categories. RESULTS: A total of 329 GSS cases were included with a 1.13:1 female-to-male ratio, median onset age 44, and median duration 4 years. Of the 294 categorized patients, 50.7% had typical GSS, 24.8% showed CJD-like GSS, and 16.3% presented with GSS with dementia. Clinical classification varied significantly based on genotype, with P102L more common in typical GSS and A117V prevalent in CJD-like GSS. Polymorphism at codon 129 has no effect on GSS phenotype, but the 129 M allele acts as a protective factor in GSS patients in Asia and North America. Moderate to severe spongiform degeneration and the presence of PK-resistant small fragments migrating at <11 kDa on electrophoretic gels along with PrP27-30 fragments were more prevalent in CJD-like GSS phenotype, while hyperphosphorylated tau protein co-deposition tends to be characteristic of typical GSS and GSS with dementia. CONCLUSION: This study reveals GSS's intricate nature, showing significant variations in clinical presentations, diagnostic findings, and pathological features. Mutation sites and pathological changes play crucial roles in determining the GSS clinical heterogeneity.


Gerstmann-Straussler-Scheinker Disease , Phenotype , Humans , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/pathology , Male , Female , Middle Aged , Adult , Aged
2.
Nervenarzt ; 95(4): 376-384, 2024 Apr.
Article De | MEDLINE | ID: mdl-38503894

Human spongiform encephalopathies are rare transmissible neurodegenerative diseases of the brain and the nervous system that are caused by misfolding of the physiological prion protein into a pathological form and its deposition in the central nervous system (CNS). Prion diseases include Creutzfeldt-Jakob disease (CJD, sporadic or familial), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). Prion diseases can be differentiated into three etiological categories: spontaneous (sporadic CJD), inherited (familial CJD, FFI, and GSS) and acquired (variant CJD and iatrogenic CJD). Most cases occur sporadically. Prion diseases can lead to a variety of neurological symptoms and always have an inevitably fatal course. Cerebrospinal fluid analysis and magnetic resonance imaging (MRI) play a crucial role in the diagnostics of prion diseases and may facilitate an early and reliable clinical diagnosis. A causal treatment or specific therapeutic agents are not yet available. In general, a palliative therapeutic concept is indicated.


Creutzfeldt-Jakob Syndrome , Encephalopathy, Bovine Spongiform , Gerstmann-Straussler-Scheinker Disease , Prion Diseases , Animals , Cattle , Humans , Prion Diseases/diagnosis , Prion Diseases/pathology , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/pathology , Gerstmann-Straussler-Scheinker Disease/diagnosis , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/pathology , Brain/pathology , Encephalopathy, Bovine Spongiform/pathology
3.
Mol Biol Rep ; 50(11): 9715-9720, 2023 Nov.
Article En | MEDLINE | ID: mdl-37812352

BACKGROUND: Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.C305T:p.P102L. METHODS AND RESULTS: The Sanger sequencing method was performed on the PRNP gene for the detection of c.C305T:p.P102L mutations in a cohort of 10 subjects; moreover, a study was carried out, using Next Generation Sequencing (NGS), by sequencing a group of genes related to amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), movement disorders and dementia which show a phenotypic profile similar to that of GSS. The results obtained from the study using NGS indicate the potential role of other genetic variants which could contribute to the various GSS phenotypes. CONCLUSIONS: In conclusion, we highlight the large clinical variability in subjects presenting with GSS and p.P102L, as well as the hypothesis that the mutation in PrP codon 102 alone is not sufficient to trigger the cardinal clinical signs of the disease; furthermore, we do not exclude the possibility that further genetic variants play a decisive role in the aspects of the various phenotypes with which GSS manifests itself.


Gerstmann-Straussler-Scheinker Disease , Prions , Animals , Humans , Gerstmann-Straussler-Scheinker Disease/diagnosis , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Prions/genetics , Prion Proteins/genetics , Mutation/genetics , High-Throughput Nucleotide Sequencing
4.
Prion ; 17(1): 138-140, 2023 12.
Article En | MEDLINE | ID: mdl-37705331

Gerstmann-Sträussler-Scheinker disease with a Pro-to-Leu substitution at codon 105 in the prion protein gene (GSS-P105L) is a rare variant of human genetic prion disease. Herein, we report the case of a patient with GSS-P105L, who showed serial changes in regional cerebral blood flow (rCBF) on single-photon emission computed tomography (SPECT). A 42-year-old woman, with an affected father presenting with similar symptoms, had a 1-year history of progressive gait disturbance, lower-limb spasticity, and psychiatric symptoms. Genetic analysis confirmed the diagnosis of GSS-P105L. Eleven months after disease onset, brain magnetic resonance imaging (MRI) showed bilateral frontal lobe-dominant cerebral atrophy without hyperintensity on diffusion-weighted imaging (DWI) sequences; meanwhile, SPECT revealed non-specific mild hypoperfusion. Follow-up MRI at 52 months after onset demonstrated progressive frontal lobe-dominant cerebral atrophy without hyperintensity on DWI, while SPECT revealed a marked decrease in rCBF in the bilateral right-dominant frontal lobe. Patients with GSS with a Pro-to-Leu substitution at codon 102 (GSS-P102L) have been reported to exhibit hyperintensity on DWI-MRI and a diffuse decrease in CBF with a mosaic-like pattern on SPECT, which is absent in patients with GSS-P105L, thereby possibly reflecting the differences in pathophysiology between GSS-P102L and GSS-P105L.


Gerstmann-Straussler-Scheinker Disease , Prions , Female , Humans , Adult , Prion Proteins/genetics , Gerstmann-Straussler-Scheinker Disease/diagnostic imaging , Gerstmann-Straussler-Scheinker Disease/genetics , Cerebrovascular Circulation/genetics , Codon/genetics , Mutation
5.
Article Ru | MEDLINE | ID: mdl-36843471

Gerstmann-Sträussler disease (GSD) is a very rare autosomal dominant late-onset neurodegenerative disorder related to prion protein gene PRNP. Mutation p.Pro102Leu produces about 80% of cases, which are often named GSD-102. DNA testing provides exact diagnosis. In the presented Russian family there were 3 patients: a female index case, age 32 years, her brother, age 37 years (age of onset in both is 27 years) and their deceased father (onset in 35 years, death in 44 years). GSD was not suspected until whole exome sequencing in the female detected PRNP mutation p.Pro102Leu confirmed in her and in the brother by Sanger sequencing. Atypical features of the case are: early onset in siblings, absence of mental and behavioral problems in the female and in the father and mild disturbances in the brother; epilepsy in the brother; atypical onset with transient signs in the brother. Other intrafamilial differences are prevailing spastic paraparesis in the female in contrast to predominant ataxia in the brother and dysarthria absence in the female. The case illustrates GSD-102 variability, complicating clinical diagnostics.


Cerebellar Ataxia , Gerstmann-Straussler-Scheinker Disease , Prions , Humans , Male , Female , Adult , Gerstmann-Straussler-Scheinker Disease/diagnosis , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/complications , Prions/genetics , Prion Proteins/genetics , Mutation
6.
Prion ; 17(1): 37-43, 2023 Dec.
Article En | MEDLINE | ID: mdl-36847171

Gerstmann-Sträussler-Scheinker (GSS) disease is an autosomal dominant neurodegenerative disease, and it is characterized by progressive cerebellar ataxia. Up to now, GSS cases with the p.P102L mutation have mainly been reported in Caucasian, but rarely in Asian populations. A 54-year-old female patient presented with an unstable gait in the hospital. Last year, she was unable to walk steadily and occasionally choked, could not even walk independently gradually. After taking her medical history, we found that she was misdiagnosed with schizophrenia before the gait problems. The patient's father showed similar symptoms and was diagnosed with brain atrophy at the age of 56, but her daughter showed no similar symptoms at present. On arrival at the Neurology Department, the patient's vital signs and laboratory examinations showed no abnormality. As the proband presented with cerebellar ataxia and had an obvious family history, we were sure that she had hereditary cerebellar ataxia. Then, patient's brain MRI showed an abnormal signal in the right parietal cortex and bilateral small ischaemic lesions in the frontal lobe. A gene panel (including 142 ataxia-related genes) was performed, and a heterozygous mutation PRNP Exon2 c.305C>T p. (Pro102Leu) was identified. Her daughter had the same heterozygous mutation. The patient was diagnosed with GSS with mental disorders as initial symptoms. After 2 months of TCM treatment, the patient's walking instability decreased, and her emotional fluctuations were less than before. In conclusion, we have reported a rare case of GSS in Sichuan, China, and the family with mental disorder as the first symptom was finally confirmed with GSS PRNP P102L mutation.


Cerebellar Ataxia , Gerstmann-Straussler-Scheinker Disease , Mental Disorders , Neurodegenerative Diseases , Humans , Female , Middle Aged , Gerstmann-Straussler-Scheinker Disease/diagnosis , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/pathology , Cerebellar Ataxia/genetics , Mutation , Prion Proteins/genetics
7.
J Neuropathol Exp Neurol ; 82(1): 38-48, 2022 12 19.
Article En | MEDLINE | ID: mdl-36331509

GPI anchorless prion diseases (GPIALPs) show numerous coarse prion protein (PrP) deposits in the CNS but neuropil spongiform changes are mild and the incidence of dementia is low. Here, we examined differences in resident microglial phenotypes between GPIALP (D178fs25) and the other prion diseases Gerstmann-Sträussler-Scheinker (GSS) disease and sporadic Creutzfeldt-Jakob disease (sCJD) with respect to homeostasis and activation. Immunohistochemistry was performed on 2 GPIALP (D178fs25), 4 GSS (P102L), and 4 sCJD cases. Homeostatic microglia expressing TMEM119 and P2RY12 were preserved in GPIALP compared to GSS and sCJD. Microglia/macrophage activation in GSS and sCJD was associated with the extent of spongiform change. Immunoelectron microscopy revealed TMEM119 and P2RY12 in PrP plaque cores. Activated microglia/macrophages expressing HLA-DR and CD68 were predominant in GSS and sCJD whereas in GPIALP, homeostatic microglia were retained and activated microglia/macrophages were rarely observed. These data suggest that PrP deposition in GPIALP is less toxic and that microglia may be immune-tolerant to PrP deposition. This may be associated with milder tissue damage and a low incidence of dementia. Whereas microglia/macrophage activation is considered to be a reaction to tissue injury, this study shows that the degree of microglia/macrophage activity might influence the extent of tissue damage.


Creutzfeldt-Jakob Syndrome , Gerstmann-Straussler-Scheinker Disease , Membrane Proteins , Microglia , Receptors, Purinergic P2Y12 , Humans , Creutzfeldt-Jakob Syndrome/metabolism , Gerstmann-Straussler-Scheinker Disease/genetics , Microglia/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
8.
Biomolecules ; 12(10)2022 Oct 21.
Article En | MEDLINE | ID: mdl-36291746

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare genetic prion disease. A large GSS kindred linked to the serine-for-phenylalanine substitution at codon 198 of the prion protein gene (GSS-F198S) is characterized by conspicuous accumulation of prion protein (PrP)-amyloid deposits and neurofibrillary tangles. Recently, we demonstrated the transmissibility of GSS-F198S prions to bank vole carrying isoleucine at 109 PrP codon (BvI). Here we investigated: (i) the transmissibility of GSS-F198S prions to voles carrying methionine at codon 109 (BvM); (ii) the induction of hyperphosphorylated Tau (pTau) in two vole lines, and (iii) compared the phenotype of GSS-F198S-induced pTau with pTau induced in BvM following intracerebral inoculation of a familial Alzheimer's disease case carrying Presenilin 1 mutation (fAD-PS1). We did not detect prion transmission to BvM, despite the high susceptibility of BvI previously observed. Immunohistochemistry established the presence of induced pTau depositions in vole brains that were not affected by prions. Furthermore, the phenotype of pTau deposits in vole brains was similar in GSS-F198S and fAD-PS1. Overall, results suggest that, regardless of the cause of pTau deposition and its relationship with PrPSc in GSS-F198S human-affected brains, the two components possess their own seeding properties, and that pTau deposition is similarly induced by GSS-F198S and fAD-PS1.


Gerstmann-Straussler-Scheinker Disease , Prions , Animals , Humans , Arvicolinae/genetics , Codon , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Isoleucine/genetics , Methionine/genetics , Mutation , Phenylalanine , Presenilin-1/genetics , Prion Proteins/genetics , Prions/genetics , Serine
9.
Neurology ; 99(21): 957-961, 2022 11 22.
Article En | MEDLINE | ID: mdl-36127142

A 58-year-old previously healthy woman presents with 3 years of rapidly progressive ataxia, parkinsonism, dysautonomia, peripheral neuropathy, leg weakness, spasticity, hyperreflexia, and mild vertical-gaze palsy. She has a matrilineal family history of neurodegenerative diseases. She was initially postulated to have spinocerebellar ataxia or atypical parkinsonism with cerebellar features. However, on closer inspection, her abnormal extraocular eye movements suggested rare mimicking disorders such as prion disease as part of the differential diagnosis, requiring further evaluation. This case highlights how deep phenotyping can open new diagnostic considerations, inform additional workup, and yield the precise diagnosis of Gerstmann-Sträussler-Scheinker syndrome (GSS).


Cerebellar Ataxia , Gerstmann-Straussler-Scheinker Disease , Ocular Motility Disorders , Humans , Female , Middle Aged , Gerstmann-Straussler-Scheinker Disease/diagnosis , Gerstmann-Straussler-Scheinker Disease/genetics , Eye Movements , Ocular Motility Disorders/diagnosis , Ataxia
10.
J Neurol ; 269(8): 4253-4263, 2022 Aug.
Article En | MEDLINE | ID: mdl-35294616

Gerstmann-Sträussler-Scheinker disease (GSS) is a rare neurodegenerative illness that belongs to the group of hereditary or familial Transmissible Spongiform Encephalopathies (TSE). Due to the presence of different pathogenic alterations in the prion protein (PrP) coding gene, it shows an enhanced proneness to misfolding into its pathogenic isoform, leading to prion formation and propagation. This aberrantly folded protein is able to induce its conformation to the native counterparts forming amyloid fibrils and plaques partially resistant to protease degradation and showing neurotoxic properties. PrP with A117V pathogenic variant is the second most common genetic alteration leading to GSS and despite common phenotypic and neuropathological traits can be defined for each specific variant, strikingly heterogeneous manifestations have been reported for inter-familial cases bearing the same pathogenic variant or even within the same family. Given the scarcity of cases and their clinical, neuropathological, and biochemical variability, it is important to characterize thoroughly each reported case to establish potential correlations between clinical, neuropathological and biochemical hallmarks that could help to define disease subtypes. With that purpose in mind, this manuscript aims to provide a detailed report of the first Spanish GSS case associated with A117V variant including clinical, genetic, neuropathological and biochemical data, which could help define in the future potential disease subtypes and thus, explain the high heterogeneity observed in patients suffering from these maladies.


Gerstmann-Straussler-Scheinker Disease , Prions , Amyloid/genetics , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Humans , Mutation , Plaque, Amyloid , Prions/genetics , Prions/metabolism
11.
Neurol Sci ; 43(5): 3419-3422, 2022 May.
Article En | MEDLINE | ID: mdl-35129726

INTRODUCTION: Gerstmann-Sträussler-Scheinker disease (GSS) is a rare genetic prion disease. Unlike sporadic Creutzfeldt-Jakob disease, GSS has diverse clinical phenotypes, including slowly progressive cerebellar ataxia. Due to this clinical feature and the extreme rarity of GSS, the disease can be misdiagnosed as hereditary cerebellar ataxia. CASE REPORT: We present the first familial cases of GSS in South Korea. Previously affected family members were misdiagnosed with hereditary cerebellar ataxia. Two siblings (patients #1 and #2) of this family were genetically diagnosed with P102L mutation GSS. Another sibling (patient #3) was not genetically confirmed, but based on the clinical course and diffusion-weighted imaging (DWI), the diagnosis of GSS will be certain. Despite the same genetic mutation, these siblings showed different clinical phenotypes of GSS. CONCLUSIONS: We genetically confirmed familial cases of GSS in South Korea. Although the disease is extremely rare, the PRNP gene test should be considered in undiagnosed autosomal dominant hereditary cerebellar ataxia. Phenotypical variability of GSS may be reflected in DWI of the early phase of the disease.


Cerebellar Ataxia , Creutzfeldt-Jakob Syndrome , Gerstmann-Straussler-Scheinker Disease , Biological Variation, Population , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/genetics , Gerstmann-Straussler-Scheinker Disease/diagnostic imaging , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Mutation , Prion Proteins/genetics
12.
Int J Mol Sci ; 24(1)2022 Dec 30.
Article En | MEDLINE | ID: mdl-36614069

Prion gene (PRNP) mutations are associated with diverse disease phenotypes, including familiar Creutzfeldt-Jakob Disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and fatal familial insomnia (FFI). Interestingly, PRNP mutations have been reported in patients diagnosed with Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and frontotemporal dementia. In this review, we describe prion mutations in Asian countries, including Republic of Republic of Korea, China, and Japan. Clinical phenotypes and imaging data related to these mutations have also been introduced in detail. Several prion mutations are specific to Asians and have rarely been reported in countries outside Asia. For example, PRNP V180I and M232R, which are rare in other countries, are frequently detected in Republic of Korea and Japan. PRNP T188K is common in China, and E200K is significantly more common among Libyan Jews in Israel. The A117V mutation has not been detected in any Asian population, although it is commonly reported among European GSS patients. In addition, V210I or octapeptide insertion is common among European CJD patients, but relatively rare among Asian patients. The reason for these differences may be geographical or ethical isolation. In terms of clinical phenotypes, V180I, P102L, and E200K present diverse clinical symptoms with disease duration, which could be due to other genetic and environmental influences. For example, rs189305274 in the ACO1 gene may be associated with neuroprotective effects in cases of V180I mutation, leading to longer disease survival. Additional neuroprotective variants may be possible in cases featuring the E200K mutation, such as KLKB1, KARS, NRXN2, LAMA3, or CYP4X1. E219K has been suggested to modify the disease course in cases featuring the P102L mutation, as it may result in the absence of prion protein-positive plaques in tissue stained with Congo red. However, these studies analyzed only a few patients and may be too preliminary. The findings need to be verified in studies with larger sample sizes or in other populations. It would be interesting to probe additional genetic factors that cause disease progression or act as neuroprotective factors. Further studies are needed on genetic modifiers working with prions and alterations from mutations.


Creutzfeldt-Jakob Syndrome , Gerstmann-Straussler-Scheinker Disease , Prion Diseases , Prions , Humans , Prions/genetics , Prion Diseases/genetics , Prion Diseases/diagnosis , Japan/epidemiology , Prion Proteins/genetics , Gerstmann-Straussler-Scheinker Disease/genetics , Creutzfeldt-Jakob Syndrome/genetics , Mutation
13.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article En | MEDLINE | ID: mdl-34948096

Gerstmann-Sträussler-Scheinker syndrome (GSS) is a hereditary neurodegenerative disease characterized by extracellular aggregations of pathological prion protein (PrP) forming characteristic plaques. Our study aimed to evaluate the micromorphology and protein composition of these plaques in relation to age, disease duration, and co-expression of other pathogenic proteins related to other neurodegenerations. Hippocampal regions of nine clinically, neuropathologically, and genetically confirmed GSS subjects were investigated using immunohistochemistry and multichannel confocal fluorescent microscopy. Most pathognomic prion protein plaques were small (2-10 µm), condensed, globous, and did not contain any of the other investigated proteinaceous components, particularly dystrophic neurites. Equally rare (in two cases out of nine) were plaques over 50 µm having predominantly fibrillar structure and exhibit the presence of dystrophic neuritic structures; in one case, the plaques also included bulbous dystrophic neurites. Co-expression with hyperphosphorylated protein tau protein or amyloid beta-peptide (Aß) in GSS PrP plaques is generally a rare observation, even in cases with comorbid neuropathology. The dominant picture of the GSS brain is small, condensed plaques, often multicentric, while presence of dystrophic neuritic changes accumulating hyperphosphorylated protein tau or Aß in the PrP plaques are rare and, thus, their presence probably constitutes a trivial observation without any relationship to GSS development and progression.


Gerstmann-Straussler-Scheinker Disease , Mutation, Missense , Prion Proteins , Protein Aggregation, Pathological , Adult , Aged , Female , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Humans , Male , Middle Aged , Prion Proteins/genetics , Prion Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology
14.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article En | MEDLINE | ID: mdl-34830321

Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.


Creutzfeldt-Jakob Syndrome/genetics , Gerstmann-Straussler-Scheinker Disease/genetics , Influenza, Human/genetics , Insomnia, Fatal Familial/genetics , PrPC Proteins/genetics , PrPSc Proteins/genetics , Prion Proteins/genetics , Animals , Cell Line, Tumor , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Creutzfeldt-Jakob Syndrome/virology , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Gerstmann-Straussler-Scheinker Disease/virology , Humans , Influenza A virus/genetics , Influenza A virus/growth & development , Influenza A virus/pathogenicity , Influenza, Human/metabolism , Influenza, Human/pathology , Influenza, Human/virology , Insomnia, Fatal Familial/metabolism , Insomnia, Fatal Familial/pathology , Insomnia, Fatal Familial/virology , Mice , Mice, Transgenic , Mutation , Neurons/metabolism , Neurons/pathology , Neurons/virology , PrPC Proteins/chemistry , PrPC Proteins/metabolism , PrPSc Proteins/chemistry , PrPSc Proteins/metabolism , Prion Proteins/chemistry , Prion Proteins/metabolism , Protein Conformation , Reverse Genetics/methods
15.
Alzheimers Res Ther ; 13(1): 176, 2021 10 18.
Article En | MEDLINE | ID: mdl-34663460

BACKGROUND: More than 40 pathogenic heterozygous PRNP mutations causing inherited prion diseases have been identified to date. Recessive inherited prion disease has not been described to date. METHODS: We describe the clinical and neuropathological data of inherited early-onset prion disease caused by the rare PRNP homozygous mutation R136S. In vitro PrPSc propagation studies were performed using recombinant-adapted protein misfolding cyclic amplification technique. Brain material from two R136S homozygous patients was intracranially inoculated in TgMet129 and TgVal129 transgenic mice to assess the transmissibility of this rare inherited form of prion disease. RESULTS: The index case presented symptoms of early-onset dementia beginning at the age of 49 and died at the age of 53. Neuropathological evaluation of the proband revealed abundant multicentric PrP plaques and Western blotting revealed a ~ 8 kDa protease-resistant, unglycosylated PrPSc fragment, consistent with a Gerstmann-Sträussler-Scheinker phenotype. Her youngest sibling suffered from progressive cognitive decline, motor impairment, and myoclonus with onset in her late 30s and died at the age of 48. Genetic analysis revealed the presence of the R136S mutation in homozygosis in the two affected subjects linked to homozygous methionine at codon 129. One sibling carrying the heterozygous R136S mutation, linked to homozygous methionine at codon 129, is still asymptomatic at the age of 74. The inoculation of human brain homogenates from our index case and an independent case from a Portuguese family with the same mutation in transgenic mice expressing human PrP and in vitro propagation of PrPSc studies failed to show disease transmissibility. CONCLUSION: In conclusion, biallelic R136S substitution is a rare variant that produces inherited early-onset human prion disease with a Gerstmann-Sträussler-Scheinker neuropathological and molecular signature. Even if the R136S variant is predicted to be "probably damaging", heterozygous carriers are protected, at least from an early onset providing evidence for a potentially recessive pattern of inheritance in human prion diseases.


Gerstmann-Straussler-Scheinker Disease , Prion Diseases , Prions , Animals , Brain/diagnostic imaging , Brain/metabolism , Female , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Mice , Mutation/genetics , Prion Diseases/genetics , Prion Proteins/genetics , Prions/metabolism , Recombinant Proteins
16.
Int J Mol Sci ; 22(9)2021 May 04.
Article En | MEDLINE | ID: mdl-34064393

Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aß peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.


Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Prion Proteins/genetics , Scrapie/genetics , alpha-Synuclein/genetics , tau Proteins/genetics , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Animals , Creutzfeldt-Jakob Syndrome/etiology , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Frontotemporal Dementia/etiology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Gene Expression , Gerstmann-Straussler-Scheinker Disease/etiology , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Humans , Mice , Mutation , Parkinson Disease/etiology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Prion Proteins/chemistry , Prion Proteins/metabolism , Prions , Protein Folding , Scrapie/etiology , Scrapie/metabolism , Scrapie/pathology , Sheep , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , tau Proteins/chemistry , tau Proteins/metabolism
17.
Medicine (Baltimore) ; 100(16): e25687, 2021 Apr 23.
Article En | MEDLINE | ID: mdl-33879752

RATIONALE: Gerstmann-Sträussler-Scheinker syndrome (GSS) is a rare autosomal dominant disease caused by a mutation in the prion protein gene (PRNP) that is not well known among neurologists and is therefore easily misdiagnosed. PATIENT CONCERNS: : A 49-year-old man was admitted for the first time because of an unsteady walk with mogilalia for 1 year. He underwent a cervical discectomy and a plate-screw fixation 6 months prior, although postoperative gait instability did not improve. DIAGNOSIS: Whole exome sequencing identified a pathogenic and heterozygous mutation in the PRNP 4 years after onset. The patient was eventually diagnosed with GSS. INTERVENTIONS: Symptomatic treatment to improve cerebrocirculation and cerebrometabolism was provided. OUTCOMES: The neurological decline continued. The Mini-Mental State Examination and modified Rankin Scale scores changed from 19 to 11 and 2 to 5, respectively. Progressive cerebral and cerebellar atrophy on magnetic resonance imaging was observed. LESSONS: Cerebral and cerebellar atrophy are neuroimaging features symptomatic of GSS that become more apparent as the disease progresses. This atrophy is positively correlated with the severity of symptoms and reduced quality of life. Neurologists treating middle-aged patients with progressive ataxia, cognitive impairment or dysarthria, and brain atrophy need to consider the possibility of GSS.


Diagnostic Errors , Gerstmann-Straussler-Scheinker Disease/diagnosis , Spinal Cord Diseases/diagnosis , Spondylosis/diagnosis , Brain/pathology , Cervical Vertebrae/pathology , Follow-Up Studies , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Male , Middle Aged , Mutation , Prion Proteins/genetics , Syndrome
18.
J Biol Chem ; 296: 100490, 2021.
Article En | MEDLINE | ID: mdl-33662396

Fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and Gerstmann-Sträussler-Scheinker (GSS) syndrome are neurodegenerative disorders linked to prion protein (PrP) mutations. The pathogenic mechanisms are not known, but increasing evidence points to mutant PrP misfolding and retention in the secretory pathway. We previously found that the D178N/M129 mutation associated with FFI accumulates in the Golgi of neuronal cells, impairing post-Golgi trafficking. In this study we further characterized the trafficking defect induced by the FFI mutation and tested the 178N/V129 variant linked to gCJD and a nine-octapeptide repeat insertion associated with GSS. We used transfected HeLa cells, embryonic fibroblasts and primary neurons from transgenic mice, and fibroblasts from carriers of the FFI mutation. In all these cell types, the mutant PrPs showed abnormal intracellular localizations, accumulating in the endoplasmic reticulum (ER) and Golgi. To test the efficiency of the membrane trafficking system, we monitored the intracellular transport of the temperature-sensitive vesicular stomatite virus glycoprotein (VSV-G), a well-established cargo reporter, and of endogenous procollagen I (PC-I). We observed marked alterations in secretory trafficking, with VSV-G accumulating mainly in the Golgi complex and PC-I in the ER and Golgi. A redacted version of mutant PrP with reduced propensity to misfold did not impair VSV-G trafficking, nor did artificial ER or Golgi retention of wild-type PrP; this indicates that both misfolding and intracellular retention were required to induce the transport defect. Pharmacological activation of Src family kinase (SFK) improved intracellular transport, suggesting that mutant PrP impairs secretory trafficking through corruption of SFK-mediated signaling.


Mutation , Prion Proteins/metabolism , src-Family Kinases/metabolism , Animals , Cells, Cultured , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Enzyme Activation , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/metabolism , Gerstmann-Straussler-Scheinker Disease/pathology , Golgi Apparatus/metabolism , Humans , Insomnia, Fatal Familial/genetics , Insomnia, Fatal Familial/metabolism , Insomnia, Fatal Familial/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Prion Proteins/genetics , Protein Folding , Secretory Pathway , src-Family Kinases/chemistry
19.
Mol Neurobiol ; 58(1): 21-33, 2021 Jan.
Article En | MEDLINE | ID: mdl-32889654

Alteration in cellular prion protein (PrPC) localization on the cell surface through mediation of the glycosylphosphatidylinositol (GPI) anchor has been reported to dramatically affect the formation and infectivity of its pathological isoform (PrPSc). A patient with Gerstmann-Sträussler-Scheinker (GSS) syndrome was previously found to have a nonsense heterozygous PrP-Q227X mutation resulting in an anchorless PrP. However, the allelic origin of this anchorless PrPSc and cellular trafficking of PrPQ227X remain to be determined. Here, we show that PrPSc in the brain of this GSS patient is mainly composed of the mutant but not wild-type PrP (PrPWt), suggesting pathological PrPQ227X is incapable of recruiting PrPWt in vivo. This mutant anchorless protein, however, is able to recruit PrPWt from humanized transgenic mouse brain but not from autopsied human brain homogenates to produce a protease-resistant PrPSc-like form in vitro by protein misfolding cyclic amplification (PMCA). To further investigate the characteristics of this mutation, constructs expressing human PrPQ227X or PrPWt were transfected into neuroblastoma cells (M17). Fractionation of the M17 cells demonstrated that most PrPWt is recovered in the cell lysate fraction, while most of the mutant PrPQ227X is recovered in the medium fraction, consistent with the results obtained by immunofluorescence microscopy. Two-dimensional gel-electrophoresis and Western blotting showed that cellular PrPQ227X spots clustered at molecular weights of 22-25 kDa with an isoelectric point (pI) of 3.5-5.5, whereas protein spots from the medium are at 18-26 kDa with a pI of 7-10. Our findings suggest that the role of GPI anchor in prion propagation between the anchorless mutant PrP and wild-type PrP relies on the cellular distribution of the protein.


Codon, Nonsense/genetics , Gerstmann-Straussler-Scheinker Disease/genetics , Prions/genetics , Adult , Animals , Antibodies/metabolism , Autopsy , Brain/metabolism , Brain/pathology , Cell Line, Tumor , Cell Membrane/metabolism , Centrifugation, Density Gradient , Female , Glycosylation , Humans , Mice, Transgenic , Prions/chemistry , Protein Aggregates , Protein Folding
20.
Eur J Neurol ; 28(2): 377-380, 2021 02.
Article En | MEDLINE | ID: mdl-32986314

BACKGROUND: Gerstmann-Struassler-Scheinker disease is one of the familial prion diseases secondary to mutations in the prion protein gene (PRNP). The clinical phenotype has a diverse spectrum and might show variation among cases with the same genotype. We report a patient with G131V mutation in the PRNP gene, who was initially considered to harbor familial Alzheimer's disease, based on the family history, clinical presentation and imaging findings. METHODS: A case with a G131V mutation in the PRNP gene is described, and the literature is reviewed. RESULTS: A 35-year-old man presented with personality changes, behavioral disturbances and cognitive complaints. A similar clinical phenotype was reported in the patient's father, a paternal uncle and a paternal aunt. In conjunction with the observation of mild cerebral atrophy on magnetic resonance imaging and hypometabolism in bilateral temporal and parietal lobes on positron-emission tomography studies, the diagnosis was initially considered as familial Alzheimer's disease. However, whole-exome sequencing of the index patient, confirmed with Sanger sequencing in his father and uncle, revealed the presence of a heterozygous G131V variant in the PRNP gene. CONCLUSION: To the best of our knowledge, this is the third report of a G131V mutation in the PRNP gene in the literature. Although ataxia and extrapyramidal findings accompanied dementia in patients reported in the previous literature, the members of the family in the present case primarily reported cognitive impairment, underscoring the importance of genetic evaluation in familial early-onset dementia patients, regardless of clinical and imaging features suggestive of alternative pathologies.


Dementia , Gerstmann-Straussler-Scheinker Disease , Prions , Adult , Brain/diagnostic imaging , Brain/metabolism , Dementia/diagnostic imaging , Dementia/genetics , Gerstmann-Straussler-Scheinker Disease/diagnostic imaging , Gerstmann-Straussler-Scheinker Disease/genetics , Humans , Male , Mutation , Prion Proteins/genetics , Prions/genetics
...