Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 724
1.
Sci Rep ; 14(1): 12109, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802411

Chronic Heart Failure (CHF) is a significant global public health issue, with high mortality and morbidity rates and associated costs. Disease modules, which are collections of disease-related genes, offer an effective approach to understanding diseases from a biological network perspective. We employed the multi-Steiner tree algorithm within the NeDRex platform to extract CHF disease modules, and subsequently utilized the Trustrank algorithm to rank potential drugs for repurposing. The constructed disease module was then used to investigate the mechanism by which Panax ginseng ameliorates CHF. The active constituents of Panax ginseng were identified through a comprehensive review of the TCMSP database and relevant literature. The Swiss target prediction database was utilized to determine the action targets of these components. These targets were then cross-referenced with the CHF disease module in the STRING database to establish protein-protein interaction (PPI) relationships. Potential action pathways were uncovered through Gene Ontology (GO) and KEGG pathway enrichment analyses on the DAVID platform. Molecular docking, the determination of the interaction of biological macromolecules with their ligands, and visualization were conducted using Autodock Vina, PLIP, and PyMOL, respectively. The findings suggest that drugs such as dasatinib and mitoxantrone, which have low docking scores with key disease proteins and are reported in the literature as effective against CHF, could be promising. Key components of Panax ginseng, including ginsenoside rh4 and ginsenoside rg5, may exert their effects by targeting key proteins such as AKT1, TNF, NFKB1, among others, thereby influencing the PI3K-Akt and calcium signaling pathways. In conclusion, drugs like dasatinib and midostaurin may be suitable for CHF treatment, and Panax ginseng could potentially mitigate the progression of CHF through a multi-component-multi-target-multi-pathway approach. Disease module analysis emerges as an effective strategy for exploring drug repurposing and the mechanisms of traditional Chinese medicine in disease treatment.


Drug Repositioning , Heart Failure , Molecular Docking Simulation , Panax , Panax/chemistry , Panax/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Humans , Drug Repositioning/methods , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Chronic Disease/drug therapy , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
2.
Front Immunol ; 15: 1353614, 2024.
Article En | MEDLINE | ID: mdl-38698858

Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.


Gastrointestinal Microbiome , Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Panax/chemistry , Humans , Animals , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Immune System/drug effects , Immune System/metabolism , Immune System/immunology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
J Nat Med ; 78(3): 722-731, 2024 Jun.
Article En | MEDLINE | ID: mdl-38683298

We previously demonstrated that ginsenoside Re (G-Re) has protective effects on acute kidney injury. However, the underlying mechanism is still unclear. In this study, we conducted a meta-analysis and pathway enrichment analysis of all published transcriptome data to identify differentially expressed genes (DEGs) and pathways of G-Re treatment. We then performed in vitro studies to measure the identified autophagy and fibrosis markers in HK2 cells. In vivo studies were conducted using ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) models to evaluate the effects of G-Re on autophagy and kidney fibrosis. Our informatics analysis identified autophagy-related pathways enriched for G-Re treatment. Treatment with G-Re in HK2 cells reduced autophagy and mRNA levels of profibrosis markers with TGF-ß stimulation. In addition, induction of autophagy with PP242 neutralized the anti-fibrotic effects of G-Re. In murine models with UUO and AAN, treatment with G-Re significantly improved renal function and reduced the upregulation of autophagy and profibrotic markers. A combination of informatics analysis and biological experiments confirmed that ginsenoside Re could improve renal fibrosis and kidney function through the regulation of autophagy. These findings provide important insights into the mechanisms of G-Re's protective effects in kidney injuries.


Autophagy , Fibrosis , Ginsenosides , Kidney , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Autophagy/drug effects , Animals , Fibrosis/drug therapy , Mice , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Humans , Kidney Diseases/drug therapy , Male , Cell Line , Acute Kidney Injury/drug therapy , Mice, Inbred C57BL , Disease Models, Animal , Ureteral Obstruction/drug therapy
4.
Biomolecules ; 14(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38672468

So Shiho Tang (SSHT) is a traditional herbal medicine commonly used in Asian countries. This study evaluated the anti-inflammatory effect of SSHT and the associated mechanism using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and murine dextran sodium sulfate (DSS)-induced ulcerative colitis models. Pre-treatment of RAW 264.7 macrophages with SSHT significantly reduced LPS-induced inflammation by decreasing nitrite production and regulating the mitogen-activated protein kinase pathway. Meanwhile, in mice, DSS-induced colitis symptoms, including colon shortening and body weight loss, were attenuated by SSHT. Moreover, representative compounds of SSHT, including glycyrrhizic acid, ginsenoside Rb1, baicalin, saikosaponin A, and saikosaponin B2, were quantified, and their effects on nitrite production were measured. A potential anti-inflammatory effect was detected in LPS-induced RAW 264.7 cells. Our findings suggest that SSHT is a promising anti-inflammatory agent. Its representative components, including saikosaponin B2, ginsenoside Rb1, and baicalin, may represent the key active compounds responsible for eliciting the anti-inflammatory effects and can, therefore, serve as quality control markers in SSHT preparations.


Anti-Inflammatory Agents , Dextran Sulfate , Lipopolysaccharides , Macrophages , Animals , Mice , Lipopolysaccharides/pharmacology , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammation/drug therapy , Inflammation/chemically induced , Inflammation/pathology , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Male , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology
5.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658096

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Ubiquitin Thiolesterase , Wnt Signaling Pathway , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , CD8-Positive T-Lymphocytes/drug effects , Mice , Humans , Wnt Signaling Pathway/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Cell Line, Tumor , Signal Transduction/drug effects , beta Catenin/metabolism , Mice, Inbred BALB C
6.
Pharmacol Res ; 203: 107175, 2024 May.
Article En | MEDLINE | ID: mdl-38582357

Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy.


Cisplatin , Ginsenosides , Neoplasms , Cisplatin/therapeutic use , Cisplatin/adverse effects , Cisplatin/administration & dosage , Ginsenosides/therapeutic use , Ginsenosides/pharmacology , Ginsenosides/administration & dosage , Humans , Animals , Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage
7.
J Ethnopharmacol ; 329: 118134, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38574777

ETHNOPHARMACOLOGICAL RELEVANCE: The nature of Chinese medicine is a unique index to measure its efficacy. Generally, treating the hot syndrome with cold nature medicine and vice versa. Ginseng medicines, a renowned Chinese medicine known for its qi tonifying action, encompasses various herbal materials such as ginseng, red ginseng, and black ginseng (GS, RG, and BG, respectively), ginseng leaves (GL), and American ginseng (AG), which exhibited different natures, thought contained similar ginsenosides. This traditional effect of GS and RG "reinvigorate the pulse for relieving qi depletion". It is closely linked to anti-heart failure (HF), HF is a clinical manifestation of deficiency of "heart-qi". However, the elucidation of the mechanism underlying the anti-HF effects of ginseng medicines with different natures remains a significant challenge. AIM OF THE STUDY: To elucidate pharmacological mechanisms underlying the effect of ginseng medicines on HF, and to identify biomarkers associated with their various natures. Furthermore, it provides the basis for the different applications of ginseng medicines with various natures. MATERIALS AND METHODS: This study established a rat model of HF induced by isoproterenol (ISO) combined with a specific diet. Four representative hot/cold herbs were selected as compared references for the medicine natures. The divergent effects of these herbs on the HF model were investigated by analyzing RNA-seq data to identify genes expressed differentially. Additionally, pathways associated with medicine natures were obtained using KEGG. Furthermore, UPLC-QqQ-MS/MS, as well as ELISA, were used to measure indexes associated with the nervous system, energy metabolisms, and endocrinology systems, such as BNP, CK, IL-1, T3, T4, cAMP, cGMP, AD, adrenal hormones (DOC, CORT, and COR), progestogens (pregnenolone, P, 17-OH-PR, and 17-OH-P), androgens (DHEA, A4, and T), and estrogens hormones (E2). RESULTS: All ginseng medicines demonstrated varying levels of efficacy in alleviating HF and GS exhibited a significant protective effect on HF. The ginseng medicines with qi tonifying primarily achieve their effect by enhancing the levels of adrenal hormones (DOC, CORT, and COR), T4, elevation of cAMP/cGMP, and activation of AchE. Warm nature qi tonifying ginseng medicines increased the levels of 17-OH-PR and P while decreasing 17-OH-P and the ratio of E2/T. On the other hand, cold nature qi tonifying ginseng medicines decreased the levels of A4 and T while increasing the ratio of E2/T. CONCLUSION: Overall, the effects of warm nature ginseng medicines are stronger on HF compared to cold nature ginseng medicines. Our research firstly reported that the E2/T ratio, progestogens (17-OH-PR, 17-OH-P, and P), and androgens (A4 and T) have been identified as significant biomarkers for discerning the mechanism differences of ginseng medicines with differences natures in treatment of HF.


Biomarkers , Heart Failure , Panax , Rats, Sprague-Dawley , Panax/chemistry , Animals , Heart Failure/drug therapy , Male , Rats , Plant Extracts/pharmacology , Isoproterenol , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Disease Models, Animal
8.
Eur J Pharmacol ; 974: 176604, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38649090

Osteoporosis (OP) is a metabolic bone disease with a high incidence rate worldwide. Its main features are decreased bone mass, increased bone fragility and deterioration of bone microstructure. It is caused by an imbalance between bone formation and bone resorption. Ginsenoside is a safe and effective traditional Chinese medicine (TCM) usually extracted from ginseng plants, having various therapeutic effects, of which the effect against osteoporosis has been extensively studied. We searched a total of 44 relevant articles with using keywords including osteoporosis, ginsenosides, bone mesenchymal cells, osteoblasts, osteoclasts and bone remodeling, all of which investigated the cellular mechanisms of different types of ginsenosides affecting the activity of bone remodeling by mesenchymal stem cells, osteoblasts and osteoclasts to counteract osteoporosis. This review describes the different types of ginsenosides used to treat osteoporosis from different perspectives, providing a solid theoretical basis for future clinical applications.


Ginsenosides , Osteoporosis , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Osteoporosis/drug therapy , Humans , Animals , Bone Remodeling/drug effects , Osteoblasts/drug effects , Osteoclasts/drug effects
9.
Mol Med ; 30(1): 56, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671369

BACKGROUND: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD: We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT: Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION: G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.


Carcinoma, Non-Small-Cell Lung , Ginsenosides , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Oxidative Phosphorylation , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , Cell Line, Tumor , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mitochondria/metabolism , Mitochondria/drug effects , Mice, Nude , Cell Movement/drug effects , Apoptosis/drug effects , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
10.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 95-101, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650149

Osteoporosis is a common chronic bone disorder in postmenopausal women. Ginsenosides are primary active components in ginseng and the effects of various ginsenoside variants in osteoporosis treatment have been widely revealed. We planned to explore the impact of ginsenoside Rc on bone resorption in an osteoporosis rat model. We used ovariectomized rats to assess the potential impact of ginsenoside Rc on osteoporosis. µ-CT was implemented for analyzing the microstructure of the distal left femur in rats. H&E staining together with Masson staining were applied for bone histomorphometry evaluation. ELISA kits were implemented to detect serum concentrations of TRACP-5b, OCN, CTX, as well as PINP. Ginsenoside Rc treatment lessened the serum levels of TRACP-5b as well as CTX, while increasing serum levels of OCN, and PINP of OVX rats. Moreover, we found that ginsenoside Rc contributed to the synthesis of type I collagen via increasing Col1a1 and Col1a2 levels in femur tissues of ovariectomized rats. Our findings also revealed that ginsenoside Rc activated the TGF-ß/Smad pathway by increasing TGF-ß as well as phosphorylated Smad2/3 protein levels. Ginsenoside Rc alleviates osteoporosis in rats through promoting the TGF-ß/Smad pathway.


Ginsenosides , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Animals , Female , Osteoporosis/drug therapy , Osteoporosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Femur/drug effects , Femur/metabolism , Femur/pathology , Smad Proteins/metabolism , Rats , Collagen Type I/metabolism , X-Ray Microtomography , Tartrate-Resistant Acid Phosphatase/metabolism , Osteocalcin/metabolism , Osteocalcin/blood , Disease Models, Animal , Procollagen/metabolism , Procollagen/blood
11.
Eur J Pharmacol ; 974: 176609, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38677536

PURPOSE: Diabetic cardiomyopathy is a prevalent cardiovascular complication of diabetes mellitus. This study aimed to investigate the effects of ginsenoside Rb1 (GRb1) on the diabetic myocardium. METHODS: Leptin receptor-deficient db/db mice and palmitic acid (PA)-treated cardiomyocyte models were utilized. Cardiac systolic and diastolic function, mitochondrial morphology, and respiratory chain function were determined. The expression of mitochondrial dynamics proteins was measured. Mitofusin 2 (Mfn2) overexpression and inhibition were achieved by lentiviral infection and small interfering RNA (siRNA) transfection. RESULTS: In comparison to non-diabetic mice, db/db mice exhibited significant increases in body weight, blood glucose, blood lipids, and cardiac free fatty acid levels. This was accompanied by myocardial hypertrophy and left ventricular diastolic dysfunction, which were significantly ameliorated by GRb1 intervention. Stimulation with PA increased oxidative stress and apoptosis, and decreased viability in H9c2 cardiomyocytes. PA also reduced sarcomere contractility and relaxation in adult mice ventricular myocytes. PA-induced cellular and mitochondrial damage were reversed with GRb1 treatment. The cardiac tissue of db/db mice and PA-treated cardiomyocytes exhibited a decrease in Mfn2 expression, which was markedly improved by GRb1. Mfn2 overexpression reversed PA-induced mitochondrial fragmentation and functional damage in cardiomyocytes, while inhibition of Mfn2 expression by siRNA transfection blocked the protective effects of GRb1. CONCLUSION: GRb1 alleviated myocardial lipid accumulation and mitochondrial injury, and attenuated ventricular diastolic dysfunction in diabetic mice. The regulation of Mfn2 was involved in the protective effects of GRb1 against lipotoxic myocardial injury.


Diabetic Cardiomyopathies , GTP Phosphohydrolases , Ginsenosides , Myocytes, Cardiac , Animals , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Male , Palmitic Acid/pharmacology , Apoptosis/drug effects , Oxidative Stress/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Rats , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/deficiency , Cell Line , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism
12.
Pharmacol Rep ; 76(2): 287-306, 2024 Apr.
Article En | MEDLINE | ID: mdl-38526651

Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.


Antineoplastic Agents , Ginsenosides , Neoplasms , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Structure-Activity Relationship
13.
Basic Clin Pharmacol Toxicol ; 134(5): 737-749, 2024 May.
Article En | MEDLINE | ID: mdl-38477401

Cantharidin (CTD) is a widely used anticancer compound, but its clinical use is mainly limited due to hepatotoxicity. Ginsenoside Rb1 (GRb1) shows potential hepatoprotective effects. Nonetheless, the protective effect and underlying mechanism of GRb1 against CTD-induced hepatotoxicity in mice have not been investigated. This study aims to elucidate the effect and mechanism of GRb1 on CTD-induced hepatotoxicity using network pharmacology and in vivo experiments. Network pharmacology studies have shown that 263 targets were the main mechanisms by which GRb1 alleviates CTD-induced hepatotoxicity. KEGG enrichment analysis revealed that 75 hub genes were mainly enriched in TNF, IL-17 and apoptosis signalling pathways. Molecular docking analysis showed that GRb1 exhibited high affinity with Akt1, Tnf, Il6, Bcl2 and Caspase3. In addition, results from animal studies demonstrated that GRb1 could ameliorate CTD-induced hepatotoxicity by inhibiting protein expression of Caspase-3, Caspase-8, Bcl-2/Bax, GRP78, ATF6, ATF4, CHOP, IRE1α and PERK. This research revealed the mechanism of GRb1 against CTD-induced hepatotoxicity by inhibiting apoptosis and endoplasmic reticulum stress (ERS) and it may provide a scientific rationale for the potential use of GRb1 in the treatment of hepatotoxicity induced by CTD.


Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Ginsenosides , Mice , Animals , Cantharidin/toxicity , Endoribonucleases , Molecular Docking Simulation , Network Pharmacology , Protein Serine-Threonine Kinases , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control
14.
Phytomedicine ; 127: 155474, 2024 May.
Article En | MEDLINE | ID: mdl-38471369

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Ginsenosides , Inflammatory Bowel Diseases , Panax , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Quality of Life , Inflammatory Bowel Diseases/drug therapy , Inflammation/drug therapy
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 111-117, 2024 Jan 20.
Article Zh | MEDLINE | ID: mdl-38322531

Objective: To evaluate the inhibitory effect of ginsenoside Rg3 combined with 5-fluorouracil (5-FU) on tumor angiogenesis and tumor growth in colon cancer in mice. Methods: CT26 mouse model of colon cancer was established and the mice were randomly assigned to the control group, the ginsenoside Rg3 group, the 5-FU group, and the Rg3 combined with 5-FU group. The 5-FU group was injected intraperitoneally at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 10 days. Treatment for the Rg3 group was given at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 21 days via gastric gavage. The dose and the mode of treatment for the Rg3+5-FU combination group were the same as those for the 5-FU and the Rg3 group. The control group was intraperitoneally injected with 0.2 mL/d of normal saline for 10 days. The expression of vascular endothelial growth factor (VEGF) and CD31 and the microvascular density (MVD) of the tumor tissues were examined by immunohistochemistry. The blood flow signals and tumor necrosis were examined by color Doppler flow imaging (CDFI). The quality of life, survival rate, tumor volume, tumor mass, and tumor inhibition rate of the mice were monitored. Results: After 21 days of treatment, the tumor volume and the tumor mass of all treatment groups were significantly decreased compared with those the control group, with the combination treatment group exhibiting the most significant decrease. The tumor inhibition rates of the Rg3 group, the 5-FU group, and the combination group were 29.96%, 68.78%, and 73.42%, respectively. Rg3 treatment alone had inhibitory effect on tumor growth to a certain degree, while 5-FU treatment alone or 5-FU combined with Rg3 had a stronger inhibitory effect on tumor growth. The tumor inhibition rate of the combination group was higher than that of the 5-FU group, but the difference was not statistically significant (P>0.05). Color Doppler ultrasound showed that there were multiple localized and large tumor necrotic areas that were obvious and observable in the Rg3 group and the combination group, and that there were only small tumor necrotic areas in the 5-FU group and the control group. The tumor necrosis rate of the combination group was (55.63±3.12)%, which was significantly higher than those of the other groups (P<0.05). CDFI examination of the blood flow inside of the tumor of the mice showed that the blood flow signals in the combination group were mostly grade 0-Ⅰ, and that the blood flow signals in the control group were the most abundant, being mostly grade Ⅱ-Ⅲ. The abundance of the blood flow signals in the Rg3 and 5-FU groups were between those of the control group and the combination group. Compared with those of the control group, the expression levels of MVD and VEGF in the tumor tissues of the Rg3 group, the 5-FU group, and the combination group were significantly decreased, with the combination group showing the most significant decrease (P<0.05). HE staining results indicated that there was significant tumor necrosis in mice in the control group and that there were more blood vessels. In contrast, in the tumor of the Rg3 group and the 5-FU group, there were fewer blood vessels and necrotic gaps appeared within the tumors. In the combination group, the tumor tissues had the fewest blood vessels and rope-like necrosis was observed. The mice started dying on the 18th day after treatment started, and all the mice in the control group died on the 42nd day. By this time, there were 3, 5, and 7 mice still alive in the Rg3 group, the 5-FU group, and the combination group, respectively, presenting a survival rate of 30%, 50%, and 70%, respectively. All mice in all the groups died on day 60 after treatment started. Conclusion: Ginsenoside Rg3 combined with 5-FU can significantly inhibit tumor angiogenesis and tumor growth of colon cancer in mice and improve the survival and quality of life of tumor-bearing mice.


Colonic Neoplasms , Ginsenosides , Mice , Animals , Fluorouracil/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis , Quality of Life , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Neovascularization, Pathologic/drug therapy , Necrosis/drug therapy , Cell Line, Tumor
16.
J Oleo Sci ; 73(2): 219-230, 2024.
Article En | MEDLINE | ID: mdl-38311411

Ginsenosides Rg3 and Rg5 obtained from Panax (ginseng) have shown significant anticancer activity via the PI3K-Akt signaling pathway. This study evaluated the anticancer and antimetastatic effects of a combination of Rg3 and Rg5 on lung cancer cells. A combination of Rg3 and Rg5 was treated for lung cancer cell line A549 and human lung tumor xenograft mouse model, and anti-metastatic effects on Matrigel plug implantation in mice. The combination of Rg3 and Rg5 showed potent antiproliferative effects on A549 cells with IC50 values of 44.6 and 36.0 µM for Rg3 and Rg5 respectively. The combination of Rg3 and Rg5 (30 µM each) showed 48% cell viability as compared to Rg3 (72% viability) and Rg5 (64% viability) at 30 µM concentrations. The combination of Rg3 and Rg5 induced apoptosis in A549 cells characterized by activation of caspase-9 and caspase-3 and cleavage of PARP, as well as suppression of the autophagic marker LC3A/B. The antitumoral potentials of the combination of Rg3 and Rg5 were ascertained in a lung tumor xenograft mouse model with high efficacy as compared to individual ginsenosides. The metastasislimiting properties of the combination of Rg3 and Rg5 were assessed in Matrigel plug implantation in mice which showed the potent efficacy of the combination as compared to individual ginsenoside. Mechanistically, the combination of Rg3 and Rg5 inhibited the expression of PI3K/Akt/mTOR and EGFR/VEGF signaling pathways in lung cancer cells. Results suggest that the combination of Rg3 and Rg5 suppressed the tumor cell proliferation in lung cancer cells and limited the rate of metastasis which further suggest that the combination has a significant effect as compared to the administration of single ginsenoside.


Ginsenosides , Lung Neoplasms , Humans , Mice , Animals , Lung Neoplasms/drug therapy , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Vascular Endothelial Growth Factor A/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Cell Line, Tumor , Apoptosis , Cell Proliferation , ErbB Receptors/metabolism , ErbB Receptors/pharmacology
17.
J Ethnopharmacol ; 326: 117944, 2024 May 23.
Article En | MEDLINE | ID: mdl-38382656

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Mey., one of the most used herbs in the world, shows effective treatment in reproductive injury. Recent studies have proven that the processed product, red ginseng, which is more active than ginseng itself. Therefore, it is speculated that its main functional component, rare ginsenosides (heat-transformed saponin, HTS), may be effective in treating premature ovarian failure (POF), but its efficacy has not yet been experimentally confirmed. AIM OF THE STUDY: To evaluate whether HTS could attenuate cyclophosphamide-induced inflammation and oxidative damage in POF model rats and the human granulosa-like KGN cell line and protect granulosa cell proliferation. MATERIAL AND METHODS: HTS were isolated from ginsenosides and high performance liquid chromatography (HPLC) analysis was used to analyze the HTS components. Cyclophosphamide (CP) was used to establish a POF rat model and KGN cell injury model. Reactive oxygen species (ROS) and antioxidant enzyme production was determined using specific assays, while inflammatory cytokine secretion was measured by enzyme-linked immunosorbent assay (ELISA). The proliferative function of granulosa cells was assessed using high-content screening and immunohistochemistry to determine the Ki67 protein level. Protein expression in ovarian tissues and KGN cells was analyzed by Western blotting, quantitative real-time PCR (qRT-PCR) was used to determine the transcriptional changes in ovarian tissues and KGN cells. RESULTS: In CP-treated POF model rats, HTS significantly decreased malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels, increased glutathione oxidase (GSH) levels, and upregulated Ki67 expression in ovarian granulosa cells. In addition, HTS significantly increased cell survival and Ki67 expression levels in CP-treated cells, and superoxide dismutase (SOD) levels were significantly increased. HTS significantly downregulated IL-6, TNF-α, and interleukin-1ß (IL-1ß) mRNA expression and significantly inhibited nuclear factor kappa-B p65 (NF-κB p65) and p38 mitogen activated protein kinase (p38 MAPK) phosphorylation in POF model rats and KGN cells. Moreover, NF-κB p65 and p38 MAPK levels were significantly increased in ovarian granulosa cells. p65 and p38 protein and gene expression was significantly downregulated. CONCLUSION: HTS ameliorated CP-induced POF and human granulosa cell injury, possibly by inhibiting inflammation and oxidative damage mediated by the p38 MAPK/NF-κB p65 signaling pathway.


Ginsenosides , Primary Ovarian Insufficiency , Rats , Humans , Animals , Female , NF-kappa B/metabolism , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Ki-67 Antigen/metabolism , MAP Kinase Signaling System , Inflammation/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Am J Chin Med ; 52(1): 35-55, 2024.
Article En | MEDLINE | ID: mdl-38353635

Asian ginseng, the root of Panax ginseng C.A. Meyer, occupies a prominent position in the list of best-selling natural products in the world. There are two major types of ginseng roots: white ginseng and red ginseng, each with numerous preparations. White ginseng is prepared by air-drying fresh Asian ginseng roots after harvest. Red ginseng is prepared by steaming roots in controlled conditions using fresh or raw Asian ginseng. Red ginseng is commonly used in Asian countries due to its unique chemical profile, different therapeutic efficacy, and increased stability. Compared with the widespread research on white ginseng, the study of red ginseng is relatively limited. In this paper, after a botanical feature description, the structures of different types of constituents in red ginseng are systematically described, including naturally occurring compounds and those resulting from the steam processing. In red ginseng phytochemical studies, the number of published reports on ginsenosides is significantly higher than that for other constituents. Up to now, 57 ginsenosides have been isolated and characterized in red ginseng. The structural transformation pathways during steaming have been summarized. In comparison with white ginseng, red ginseng also contains other constituents, including polyacetylenes, Maillard reaction products, other types of glycosides, lignans, amino acids, fatty acids, and polysaccharides, which have also been presented. Appropriate analytical methods are necessary for differentiating between unprocessed white ginseng and processed red ginseng. Specific marker compounds and chemical profiles have been used to discriminate red ginseng from white ginseng and adulterated commercial products. Additionally, a brief phytochemical profile comparison has been made between white ginseng and black ginseng, and the latter is another type of processed ginseng prepared from white or red ginseng by steaming several times. In conclusion, to ensure the safe and effective use of red ginseng, phytochemical and analytical studies of its constituents are necessary and even crucial.


Complementary Therapies , Ginsenosides , Panax , Ginsenosides/therapeutic use , Steam , Panax/chemistry , Phytochemicals
19.
Food Funct ; 15(4): 1825-1839, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38315542

Ginsenosides are a class of natural products with hormone-like activity of triterpenoid saponins and have a variety of pharmacological activities such as anti-aging, immune regulation and cognitive improvement. With the great research interest in alternative medicine and natural products, they are gradually becoming research hotspots. Ginsenosides have a four-ring rigid steroid backbone similar to steroid hormones, and a series of experimental studies have shown that they can exhibit hormone-like activity by binding to nuclear receptors or affecting hormone levels, thereby affecting a wide range of inflammatory conditions, cancers, and menopause-related diseases. This review summarizes the mechanisms and potential health effects of ginsenosides exhibiting estrogen-like, glucocorticoid-like and androgen-like activities, providing an important reference for the exploration of safe phytohormone replacement therapy.


Biological Products , Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Estrogens , Receptors, Cytoplasmic and Nuclear , Steroids
20.
Bioorg Chem ; 144: 107131, 2024 Mar.
Article En | MEDLINE | ID: mdl-38271824

Ginsenoside 20 (R)-25-methoxy-dammarane-3 ß, twelve ß, 20 triol (AD-1) is a promising new drug for the treatment of prostate cancer, but its bioavailability is low. This study investigated the effects of the main metabolites PD and M6 of AD-1 on prostate cancer cell PC3. The in vitro experimental results showed that the IC50 values of PC3 cells treated with PD and M6 were 65.61 and 11.72, respectively. Both PD and M6 inhibited the migration of PC3 cells, and the cell cycle was blocked in the G1 phase. The apoptosis rates of cells following M6 treatment at concentrations of 7.5, 15, and 30 µM were 13.4 %, 17.5 %, and 41.4 %, respectively, which stimulated the expression of apoptosis protein and significantly increased intracellular ROS levels. In xenograft models, PD and M6 have been reported to significantly inhibit tumor growth. We used a genome-wide mRNA expression profile to study the effects of PD and M6 on gene expression in PC3 cancer cells. PD and M6 induced downregulation of HSP70 subtypes HSPA1A and HSPA1B. RT-PCR confirmed that the significant down-regulation of HSP70 subtype expressions was consistent with the results of Transcriptome analysis. Moreover, M6 significantly downregulated the expression of AR, which was further proved by Western blot analysis. In summary, our research findings provide a scientific basis for interpreting the significant activity of AD-1 in prostate cancer, and for the research and development of PD and M6 as novel HSP70 inhibitors.


Ginsenosides , Prostatic Neoplasms , Male , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Cell Proliferation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Cycle , Apoptosis , Cell Line, Tumor
...