Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.608
1.
Environ Microbiol ; 26(5): e16624, 2024 May.
Article En | MEDLINE | ID: mdl-38757353

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Bacterial Proteins , Glucans , Phytoplankton , Glucans/metabolism , Phytoplankton/metabolism , Phytoplankton/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacteroidetes/metabolism , Bacteroidetes/genetics , Eutrophication , Diatoms/metabolism , Diatoms/genetics , Receptors, Cell Surface
2.
Nat Commun ; 15(1): 4048, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744821

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Bacteria , Carbon Cycle , Glucans , Glucans/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Phytoplankton/metabolism , Biomass , Diatoms/metabolism , Eutrophication , Carbon/metabolism , Zooplankton/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Bacterial Proteins/metabolism
3.
Mar Drugs ; 22(5)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38786594

Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.


Phaeophyceae , Polysaccharides , Seaweed , Seaweed/metabolism , Phaeophyceae/metabolism , Polysaccharides/metabolism , Hydrolysis , Biomass , Glucans/metabolism , Flavobacteriaceae/metabolism , Kelp/metabolism
4.
BMC Genomics ; 25(1): 495, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769483

Bacteria of the genera Xylanibacter and Segatella are among the most dominant groups in the rumen microbiota. They are characterized by the ability to utilize different hemicelluloses and pectin of plant cell-wall as well as plant energy storage polysaccharides. The degradation is possible with the use of cell envelope bound multiprotein apparatuses coded in polysaccharide utilization loci (PULs), which have been shown to be substrate specific. The knowledge of PUL presence in rumen Xylanibacter and Segatella based on bioinformatic analyses is already established and transcriptomic and genetic approaches confirmed predicted PULs for a limited number of substrates. In this study, we transcriptomically identified additional different PULs in Xylanibacter ruminicola KHP1 and Segatella bryantii TF1-3. We also identified substrate preferences and found that specific growth rate and extent of growth impacted the choice of substrates preferentially used for degradation. These preferred substrates were used by both strains simultaneously as judged by their PUL upregulation. Lastly, ß-glucan and xyloglucan were used by these strains in the absence of bioinformatically and transcriptomically identifiable PUL systems.


Gene Expression Profiling , Polysaccharides , Rumen , Xylans , Animals , Xylans/metabolism , Polysaccharides/metabolism , Rumen/microbiology , Rumen/metabolism , Glucans/metabolism , beta-Glucans/metabolism , Substrate Specificity , Bacteroidetes/genetics , Bacteroidetes/metabolism , Transcriptome
5.
Proc Natl Acad Sci U S A ; 121(21): e2319707121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743622

Glycogen is a glucose storage molecule composed of branched α-1,4-glucan chains, best known as an energy reserve that can be broken down to fuel central metabolism. Because fungal cells have a specialized need for glucose in building cell wall glucans, we investigated whether glycogen is used for this process. For these studies, we focused on the pathogenic yeast Cryptococcus neoformans, which causes ~150,000 deaths per year worldwide. We identified two proteins that influence formation of both glycogen and the cell wall: glycogenin (Glg1), which initiates glycogen synthesis, and a protein that we call Glucan organizing enzyme 1 (Goe1). We found that cells missing Glg1 lack α-1,4-glucan in their walls, indicating that this material is derived from glycogen. Without Goe1, glycogen rosettes are mislocalized and ß-1,3-glucan in the cell wall is reduced. Altogether, our results provide mechanisms for a close association between glycogen and cell wall.


Cell Wall , Cryptococcus neoformans , Fungal Proteins , Glucans , Glycogen , Cell Wall/metabolism , Glycogen/metabolism , Glucans/metabolism , Fungal Proteins/metabolism , Cryptococcus neoformans/metabolism , Glucosyltransferases/metabolism , beta-Glucans/metabolism
6.
J Agric Food Chem ; 72(19): 11041-11050, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700846

The function of polysaccharides is intimately associated with their size, which is largely determined by the processivity of transferases responsible for their synthesis. A tunnel active center architecture has been recognized as a key factor that governs processivity of several glycoside hydrolases (GHs), e.g., cellulases and chitinases. Similar tunnel architecture is also observed in the Limosilactobacillus reuteri 121 GtfB (Lr121 GtfB) α-glucanotransferase from the GH70 family. The molecular element underpinning processivity of these transglucosylases remains underexplored. Here, we report the synthesis of the smallest (α1 → 4)-α-glucan interspersed with linear and branched (α1 → 6) linkages by a novel 4,6-α-glucanotransferase from L. reuteri N1 (LrN1 GtfB) with an open-clefted active center instead of the tunnel structure. Notably, the loop swapping engineering of LrN1 GtfB and Lr121 GtfB based on their crystal structures clarified the impact of the loop-mediated tunnel/cleft structure at the donor subsites -2 to -3 on processivity of these α-glucanotransferases, enabling the tailoring of both product sizes and substrate preferences. This study provides unprecedented insights into the processivity determinants and evolutionary diversification of GH70 α-glucanotransferases and offers a simple route for engineering starch-converting α-glucanotransferases to generate diverse α-glucans for different biotechnological applications.


Bacterial Proteins , Glucans , Limosilactobacillus reuteri , Glucans/chemistry , Glucans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Limosilactobacillus reuteri/enzymology , Limosilactobacillus reuteri/genetics , Limosilactobacillus reuteri/chemistry , Catalytic Domain , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Protein Engineering , Glycogen Debranching Enzyme System/genetics , Glycogen Debranching Enzyme System/metabolism , Glycogen Debranching Enzyme System/chemistry
7.
Int J Biol Macromol ; 270(Pt 2): 132404, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754672

To understand the role of the X25 domains of the amylopullulanase enzyme from Thermoanaerobacter brockii brockii (T. brockii brockii), four truncated variants that are TbbApuΔX25-1-SH3 (S130-A1484), TbbApuΔX25-2-SH3 (T235-A1484), TbbApuΔX25-1-CBM20 (S130-P1254), and TbbApuΔX25-2-CBM20 (T235-P1254) were constructed, expressed and characterized together with the SH3 and CBM20 domain truncated variants (TbbApuΔSH3 (V1-A1484) and TbbApuΔCBM20 (V1-P1254). TbbApuΔSH3 showed improved affinity and specificity for both pullulan and soluble starch than full-length TbbApu with lower Km and higher kcat/Km values. It indicates that SH3 is a disposable domain without any effect on the activity and stability of the enzyme. However, TbbApuΔX25-1-SH3, TbbApuΔX25-2-SH3, TbbApuΔX25-1-CBM20, TbbApuΔX25-2-CBM20 (T235-P1254) and TbbApuΔCBM20 showed higher Km and lower kcat/Km values than TbbApuΔSH3 to both soluble starch and pullulan. It specifies that the X25 domains and CBM20 play an important role in both α-amylase and pullulanase activity. Also, it is revealed that while truncation of the CBM20 domain as starch binding domain (SBD) did not affect on raw starch binding ability of the enzyme, truncation of both X25 domains caused almost complete loss of the raw starch binding ability of the enzyme. All these results enlightened the function of the X25 domains that play a more crucial role than CBM20 in the enzyme's binding to raw starch and also play a crucial role in its activity.


Glycoside Hydrolases , Protein Domains , Thermoanaerobacter , Thermoanaerobacter/enzymology , Thermoanaerobacter/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Starch/metabolism , Substrate Specificity , Kinetics , Enzyme Stability , Glucans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
8.
Life Sci Space Res (Amst) ; 41: 110-118, 2024 May.
Article En | MEDLINE | ID: mdl-38670637

Over the course of more than a decade, space biology investigations have consistently indicated that cell wall remodeling occurs in a variety of spaceflight-grown plants. Here, we describe a mass spectrometric method to study the fundamental composition of xyloglucan, the most abundant hemicellulose in dicot cell walls, in space-grown plants. Four representative Arabidopsis root samples, from a previously conducted spaceflight experiment - Advanced Plant EXperiment - 04 (APEX-04), were used to investigate changes in xyloglucan oligosaccharides abundances in spaceflight-grown plants compared to ground controls. In situ localized enzymatic digestions and surface sampling mass spectrometry analysis provided spatial resolution of the changes in xyloglucan oligosaccharides abundances. Overall, the results showed that oligosaccharide XXLG/XLXG and XXFG branching patterns were more abundant in the lateral roots of spaceflight-grown plants, while XXXG, XLFG, and XLFG/XLFG were more abundant in the lateral roots of ground control plants. In the primary roots, XXFG had a higher abundance in ground controls than in spaceflight plants. This methodology of analyzing the basic components of the cell wall in this paper highlights two important findings. First, that are differences in the composition of xyloglucan oligosaccharides in spaceflight root cell walls compared to ground controls and, second, most of these differences are observed in the lateral roots. Thus, the methodology described in this paper provides insights into spaceflight cell wall modifications for future investigations.


Arabidopsis , Cell Wall , Glucans , Oligosaccharides , Plant Roots , Space Flight , Xylans , Arabidopsis/metabolism , Cell Wall/metabolism , Glucans/analysis , Glucans/metabolism , Xylans/analysis , Xylans/metabolism , Plant Roots/metabolism , Oligosaccharides/analysis , Oligosaccharides/metabolism , Mass Spectrometry
9.
J Hazard Mater ; 470: 134172, 2024 May 15.
Article En | MEDLINE | ID: mdl-38569340

Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.


Boehmeria , Cadmium , Cell Wall , Vacuoles , Cadmium/toxicity , Cadmium/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , Boehmeria/metabolism , Boehmeria/drug effects , Vacuoles/metabolism , Vacuoles/drug effects , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Polysaccharides/metabolism , Oxylipins/metabolism , Gene Expression Regulation, Plant/drug effects , Glucans/metabolism , Xylans/metabolism , Stress, Physiological/drug effects
10.
Biochemistry ; 63(9): 1194-1205, 2024 May 07.
Article En | MEDLINE | ID: mdl-38598309

Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.


Hordeum , Hordeum/enzymology , Hordeum/genetics , Substrate Specificity , Mutagenesis, Site-Directed , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Glucans/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Isoenzymes/chemistry , Mutagenesis , beta-Glucans/metabolism
11.
Chem Rev ; 124(8): 4863-4934, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38606812

Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.


Bacteria , Glucans , Glucans/metabolism , Glucans/chemistry , Bacteria/enzymology , Bacteria/metabolism , Evolution, Molecular
12.
Food Funct ; 15(9): 4832-4851, 2024 May 07.
Article En | MEDLINE | ID: mdl-38623620

This study aimed to assess the impact of Lactobacillaceae (L or H represents a low or high dose), inulin (I), and polydextrose (P) combined with aerobic exercise (A) on the composition of the gut microbiota and metabolic profiles in db/db mice. After a 12-week intervention, LIP, LIPA, and HIPA groups exhibited significant improvements in hyperglycemia, glucose tolerance, insulin resistance, inflammatory response, and short-chain fatty acid (SCFA) and blood lipid levels compared to type 2 diabetes mice (MC). After treatment, the gut microbiota composition shifted favorably in the treatment groups which significantly increased the abundance of beneficial bacteria, such as Bacteroides, Blautia, Akkermansia, and Faecalibaculum, and significantly decreased the abundance of Proteus. Metabolomics analysis showed that compared to the MC group, the contents of 5-hydroxyindoleacetic acid, 3-hydroxysebacic acid, adenosine monophosphate (AMP), xanthine and hypoxanthine were significantly decreased, while 3-ketosphinganine, sphinganine, and sphingosine were significantly increased in the LIP and LIPA groups, respectively. Additionally, LIP and LIPA not only improved sphingolipid metabolism and purine metabolism pathways but also activated AMP-activated protein kinase to promote ß-oxidation by increasing the levels of SCFAs. Faecalibaculum, Blautia, Bacteroides, and Akkermansia exhibited positive correlations with sphingosine, 3-ketosphinganine, and sphinganine, and exhibited negative correlations with hypoxanthine, xanthine and AMP. Faecalibaculum, Blautia, Bacteroides, and Akkermansia may have the potential to improve sphingolipid metabolism and purine metabolism pathways. These findings suggest that the synergism of Lactobacillaceae, inulin, polydextrose, and aerobic exercise provides a promising strategy for the prevention and management of type 2 diabetes.


Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hyperglycemia , Inulin , Lactobacillaceae , Physical Conditioning, Animal , Animals , Gastrointestinal Microbiome/drug effects , Mice , Inulin/pharmacology , Hyperglycemia/metabolism , Male , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Lactobacillaceae/metabolism , Glucans/metabolism , Metabolome , Mice, Inbred C57BL , Fatty Acids, Volatile/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification
13.
BMC Plant Biol ; 24(1): 339, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671375

BACKGROUND: Many phytopathogens secrete a large number of cell wall degrading enzymes (CWDEs) to decompose host cell walls in order to penetrate the host, obtain nutrients and accelerate colonization. There is a wide variety of CWDEs produced by plant pathogens, including glycoside hydrolases (GHs), which determine the virulence, pathogenicity, and host specificity of phytopathogens. The specific molecular mechanisms by which pathogens suppress host immunity remain obscure. RESULT: In this study, we found that CgEC124 encodes a glycosyl hydrolase with a signal peptide and a conserved Glyco_hydro_cc domain which belongs to glycoside hydrolase 128 family. The expression of CgEC124 was significantly induced in the early stage of Colletotrichum graminicola infection, especially at 12 hpi. Furthermore, CgEC124 positively regulated the pathogenicity, but it did not impact the vegetative growth of mycelia. Ecotopic transient expression of CgEC124 decreased the disease resistance and callose deposition in maize. Moreover, CgEC124 exhibited the ß-1,3-glucanase activity and suppresses glucan-induced ROS burst in maize leaves. CONCLUSIONS: Our results indicate that CgEC124 is required for full virulence of C. graminicola but not for vegetative growth. CgEC124 increases maize susceptibility by inhibiting host reactive oxygen species burst as well as callose deposition. Meanwhile, our data suggests that CgEC124 explores its ß-1,3-glucanase activity to prevent induction of host defenses.


Colletotrichum , Plant Diseases , Plant Immunity , Zea mays , Colletotrichum/pathogenicity , Disease Resistance , Fungal Proteins/metabolism , Fungal Proteins/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/genetics , Glucans/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Reactive Oxygen Species/metabolism , Zea mays/immunology , Zea mays/microbiology
14.
Enzyme Microb Technol ; 178: 110441, 2024 Aug.
Article En | MEDLINE | ID: mdl-38574421

Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.


Citrus , Computational Biology , Fungal Proteins , Glucans , Glycoside Hydrolases , Penicillium , Xylans , Penicillium/enzymology , Penicillium/genetics , Citrus/microbiology , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/isolation & purification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Xylans/metabolism , Glucans/metabolism , Hydrogen-Ion Concentration , Kinetics , Substrate Specificity , Amino Acid Sequence , Enzyme Stability , Temperature , Hydrolysis
15.
Int J Biol Macromol ; 268(Pt 1): 131820, 2024 May.
Article En | MEDLINE | ID: mdl-38670184

In this study, an NSDD gene, which encoded a GATA-type transcription factor involved in the regulation and biosynthesis of melanin, pullulan, and polymalate (PMA) in Aureobasidium melanogenum, was characterized. After the NSDD gene was completely removed, melanin production by the Δnsd mutants was enhanced, while pullulan and polymalate production was significantly reduced. Transcription levels of the genes involved in melanin biosynthesis were up-regulated while expression levels of the genes responsible for pullulan and PMA biosynthesis were down-regulated in the Δnsdd mutants. In contrast, the complementation of the NSDD gene in the Δnsdd mutants made the overexpressing mutants restore melanin production and transcription levels of the genes responsible for melanin biosynthesis. Inversely, the complementation strains, compared to the wild type strains, showed enhanced pullulan and PMA yields. These results demonstrated that the NsdD was not only a negative regulator for melanin biosynthesis, but also a key positive regulator for pullulan and PMA biosynthesis in A. melanogenum. It was proposed how the same transcriptional factor could play a negative role in melanin biosynthesis and a positive role in pullulan and PMA biosynthesis. This study provided novel insights into the regulatory mechanisms of multiple A. melanogenum metabolites and the possibility for improving its yields of some industrial products through genetic approaches.


Aureobasidium , Gene Expression Regulation, Fungal , Glucans , Melanins , Glucans/biosynthesis , Glucans/metabolism , Melanins/biosynthesis , Aureobasidium/metabolism , Aureobasidium/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , GATA Transcription Factors/metabolism , GATA Transcription Factors/genetics , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Curr Biol ; 34(10): 2094-2106.e6, 2024 05 20.
Article En | MEDLINE | ID: mdl-38677280

Xyloglucan is believed to play a significant role in cell wall mechanics of dicot plants. Surprisingly, Arabidopsis plants defective in xyloglucan biosynthesis exhibit nearly normal growth and development. We investigated a mutant line, cslc-Δ5, lacking activity in all five Arabidopsis cellulose synthase like-C (CSLC) genes responsible for xyloglucan backbone biosynthesis. We observed that this xyloglucan-deficient line exhibited reduced cellulose crystallinity and increased pectin levels, suggesting the existence of feedback mechanisms that regulate wall composition to compensate for the absence of xyloglucan. These alterations in cell wall composition in the xyloglucan-absent plants were further linked to a decrease in cell wall elastic modulus and rupture stress, as observed through atomic force microscopy (AFM) and extensometer-based techniques. This raised questions about how plants with such modified cell wall properties can maintain normal growth. Our investigation revealed two key factors contributing to this phenomenon. First, measurements of turgor pressure, a primary driver of plant growth, revealed that cslc-Δ5 plants have reduced turgor, preventing the compromised walls from bursting while still allowing growth to occur. Second, we discovered the conservation of elastic asymmetry (ratio of axial to transverse wall elasticity) in the mutant, suggesting an additional mechanism contributing to the maintenance of normal growth. This novel feedback mechanism between cell wall composition and mechanical properties, coupled with turgor pressure regulation, plays a central role in the control of plant growth and is critical for seedling establishment in a mechanically challenging environment by affecting shoot emergence and root penetration.


Arabidopsis Proteins , Arabidopsis , Cell Wall , Glucans , Seedlings , Xylans , Cell Wall/metabolism , Glucans/metabolism , Xylans/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Cellulose/metabolism
17.
Int J Biol Macromol ; 268(Pt 2): 131680, 2024 May.
Article En | MEDLINE | ID: mdl-38641282

The subfamily GH13_16 trehalose synthase (TreS) converts maltose to trehalose and vice versa. Typically, it consists of three domains, but it may contain a C-terminal extension exhibiting clear sequence features of a maltokinase (MaK). The present in silico study was focused on collection of naturally fused TreS-MaKs and their subsequent detailed bioinformatics analysis. Hence a set of total 3354 unique sequences was compared consisting of 1900 single TreSs, 1426 fused TreS-MaKs and 28 single MaKs. Fused TreS-MaKs were divided into five groups, namely with a standard MaK, with mutations in the maltose-binding site, of the catalytic nucleophile, of the general acid/base and of both catalytic residues. Sequence logos bearing the best conserved sequence regions were prepared for both TreSs and MaKs in an effort to find unique sequence features. In addition, linkers connecting the TreS and MaK parts in the fused enzymes were analysed. This analysis revealed that MaKs in fused enzymes have an extended N-terminal regions compared to single MaKs. Finally, the evolutionary relationships were demonstrated by phylogenetic trees of TreS parts from single TreSs and fused TreS-MaKs from the same organism as well as of single TreSs existing in multiple isoforms in the same organism.


Glucosyltransferases , Phylogeny , Glucosyltransferases/genetics , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Glucans/biosynthesis , Glucans/metabolism , Protein Domains , Amino Acid Sequence
18.
J Exp Bot ; 75(10): 2829-2847, 2024 May 20.
Article En | MEDLINE | ID: mdl-38436428

Cell plate formation during cytokinesis entails multiple stages occurring concurrently and requiring orchestrated vesicle delivery, membrane remodelling, and timely deposition of polysaccharides, such as callose. Understanding such a dynamic process requires dissection in time and space; this has been a major hurdle in studying cytokinesis. Using lattice light sheet microscopy (LLSM), we studied cell plate development in four dimensions, through the behavior of yellow fluorescent protein (YFP)-tagged cytokinesis-specific GTPase RABA2a vesicles. We monitored the entire duration of cell plate development, from its first emergence, with the aid of YFP-RABA2a, in both the presence and absence of cytokinetic callose. By developing a robust cytokinetic vesicle volume analysis pipeline, we identified distinct behavioral patterns, allowing the identification of three easily trackable cell plate developmental phases. Notably, the phase transition between phase I and phase II is striking, indicating a switch from membrane accumulation to the recycling of excess membrane material. We interrogated the role of callose using pharmacological inhibition with LLSM and electron microscopy. Loss of callose inhibited the phase transitions, establishing the critical role and timing of the polysaccharide deposition in cell plate expansion and maturation. This study exemplifies the power of combining LLSM with quantitative analysis to decode and untangle such a complex process.


Arabidopsis , Cytokinesis , Glucans , Arabidopsis/growth & development , Arabidopsis/metabolism , Glucans/metabolism , Microscopy
19.
Plant J ; 118(5): 1528-1549, 2024 Jun.
Article En | MEDLINE | ID: mdl-38507319

Rapid alkalinization factors (RALFs), belonging to a family of small secreted peptides, have been considered as important signaling molecules in diverse biological processes, including immunity. Current studies on RALF-modulated immunity mainly focus on Arabidopsis, but little is reported in crop plants. The rice immune receptor XA21 confers immunity to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Here, we pursued functional characterization of rice RALF26 (OsRALF26) up-regulated by Xoo during XA21-mediated immune response. When applied exogenously as a recombinant peptide, OsRALF26 induced a series of immune responses, including pathogenesis-related genes (PRs) induction, reactive oxygen species (ROS) production, and callose deposition in rice and/or Arabidopsis. Transgenic rice and Arabidopsis overexpressing OsRALF26 exhibited significantly enhanced resistance to Xoo and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), respectively. In yeast two-hybrid, pull-down assays, and co-immunoprecipitation analyses, rice FER-like receptor 1 (OsFLR1) was identified as a receptor of OsRALF26. Transient expression of OsFLR1 in Nicotiana benthamiana leaves displayed significantly increased ROS production and callose deposition after OsRALF26 treatment. Together, we propose that OsRALF26 induced by Xoo in an XA21-dependent manner is perceived by OsFLR1 and may play a novel role in the enforcement of XA21-mediated immunity.


Arabidopsis , Gene Expression Regulation, Plant , Oryza , Plant Diseases , Plant Immunity , Plant Proteins , Plants, Genetically Modified , Reactive Oxygen Species , Xanthomonas , Oryza/genetics , Oryza/microbiology , Oryza/immunology , Oryza/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Xanthomonas/physiology , Xanthomonas/pathogenicity , Plant Diseases/microbiology , Plant Diseases/immunology , Reactive Oxygen Species/metabolism , Disease Resistance/genetics , Glucans/metabolism , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology
20.
Plant Cell Environ ; 47(7): 2362-2376, 2024 Jul.
Article En | MEDLINE | ID: mdl-38515393

Powdery mildew-resistant barley (Hordeum vulgare) and Arabidopsis thaliana mlo mutant plants exhibit pleiotropic phenotypes such as the spontaneous formation of callose-rich cell wall appositions and early leaf chlorosis and necrosis, indicative of premature leaf senescence. The exogenous factors governing the occurrence of these undesired side effects remain poorly understood. Here, we characterised the formation of these symptoms in detail. Ultrastructural analysis revealed that the callose-rich cell wall depositions spontaneously formed in A. thaliana mlo mutants are indistinguishable from those induced by the bacterial pattern epitope, flagellin 22 (flg22). We further found that increased plant densities during culturing enhance the extent of the leaf senescence syndrome in A. thaliana mlo mutants. Application of a liquid fertiliser rescued the occurrence of leaf chlorosis and necrosis in both A. thaliana and barley mlo mutant plants. Controlled fertilisation experiments uncovered nitrogen as the macronutrient whose deficiency promotes the extent of pleiotropic phenotypes in A. thaliana mlo mutants. Light intensity and temperature had a modulatory impact on the incidence of leaf necrosis in the case of barley mlo mutant plants. Collectively, our data indicate that the development of pleiotropic phenotypes associated with mlo mutants is governed by various exogenous factors.


Arabidopsis , Hordeum , Mutation , Nitrogen , Phenotype , Plant Diseases , Plant Leaves , Hordeum/microbiology , Hordeum/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Nitrogen/metabolism , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Leaves/genetics , Ascomycota/physiology , Disease Resistance/genetics , Genetic Pleiotropy , Glucans/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Light , Fertilizers
...