Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 529
1.
J Orthop Surg Res ; 19(1): 294, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745231

BACKGROUND: Osteonecrosis of the femoral head caused by glucocorticoids (GIONFH) is a significant issue resulting from prolonged or excessive clinical glucocorticoid use. Astaxanthin, an orange-red carotenoid present in marine organisms, has been the focus of this study to explore its impact and mechanism on osteoblast apoptosis induced by dexamethasone (Dex) and GIONFH. METHODS: In this experiment, bioinformatic prediction, molecular docking and dynamics simulation, cytotoxicity assay, osteogenic differentiation, qRT-PCR analysis, terminal uridine nickend labeling (TUNEL) assay, determination of intracellular ROS, mitochondrial function assay, immunofluorescence, GIONFH rat model construction, micro-computed tomography (micro-CT) scans were performed. RESULTS: Our research demonstrated that a low dose of astaxanthin was non-toxic to healthy osteoblasts and restored the osteogenic function of Dex-treated osteoblasts by reducing oxidative stress, mitochondrial dysfunction, and apoptosis. Furthermore, astaxanthin rescued the dysfunction in poor bone quality, bone metabolism and angiogenesis of GIONFH rats. The mechanism behind this involves astaxanthin counteracting Dex-induced osteogenic damage by activating the Nrf2 pathway. CONCLUSION: Astaxanthin shields osteoblasts from glucocorticoid-induced oxidative stress and mitochondrial dysfunction via Nrf2 pathway activation, making it a potential therapeutic agent for GIONFH treatment.


Femur Head Necrosis , Glucocorticoids , Mitochondria , NF-E2-Related Factor 2 , Osteoblasts , Osteogenesis , Oxidative Stress , Xanthophylls , Animals , Xanthophylls/pharmacology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/toxicity , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Osteogenesis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Osteoblasts/drug effects , Osteoblasts/metabolism , Male , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Rats, Sprague-Dawley , Apoptosis/drug effects , Disease Models, Animal
2.
Arch Toxicol ; 98(6): 1891-1908, 2024 Jun.
Article En | MEDLINE | ID: mdl-38522057

Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.


Dexamethasone , Dose-Response Relationship, Drug , Fetal Development , Animals , Female , Pregnancy , Dexamethasone/toxicity , Dexamethasone/administration & dosage , Male , Fetal Development/drug effects , Mice , Fetal Growth Retardation/chemically induced , Insulin-Like Growth Factor I/metabolism , Glucocorticoids/toxicity , Glucocorticoids/administration & dosage , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced
3.
Toxicol Sci ; 199(1): 63-80, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38439560

Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid ß-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.


Liver , Prednisone , Animals , Female , Pregnancy , Liver/drug effects , Liver/metabolism , Liver/embryology , Male , Prednisone/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Mice , Cell Proliferation/drug effects , Glucocorticoids/toxicity , Maternal Exposure/adverse effects , Fetal Development/drug effects , Cell Differentiation/drug effects , Apoptosis/drug effects , Insulin-Like Growth Factor I/metabolism , Signal Transduction/drug effects , Lipid Metabolism/drug effects
4.
Commun Biol ; 7(1): 132, 2024 01 26.
Article En | MEDLINE | ID: mdl-38278996

Long-term use of glucocorticoids (GCs) is known to be a predominant cause of osteonecrosis of the femoral head (ONFH). Moreover, GCs can mediate apoptosis of various cell types by exaggerating oxidative stress. We have previously found that Cortistatin (CST) antagonizes oxidative stress and improves cell apoptosis in several conditions. In this study, we detected that the CST expression levels were diminished in patients with ONFH compared with femoral neck fracture (FNF). In addition, a GC-induced rat ONFH model was established, which impaired bone quality in the femoral head. Then, administration of CST attenuated these ONFH phenotypes. Furthermore, osteoblast and endothelial cells were cultured and stimulated with dexamethasone (Dex) in the presence or absence of recombinant CST. As a result, Dex induced impaired anabolic metabolism of osteoblasts and suppressed tube formation in endothelial cells, while additional treatment with CST reversed this damage to the cells. Moreover, blocking GHSR1a, a well-accepted receptor of CST, or blocking the AKT signaling pathway largely abolished the protective function of CST in Dex-induced disorder of the cells. Taken together, we indicate that CST has the capability to prevent GC-induced apoptosis and metabolic disorder of osteoblasts in the pathogenesis of ONFH via the GHSR1a/AKT signaling pathway.


Glucocorticoids , Neuropeptides , Osteonecrosis , Humans , Rats , Animals , Glucocorticoids/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Endothelial Cells/metabolism , Femur Head/metabolism
5.
Environ Pollut ; 345: 123329, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38281572

The biological pathways linking lead exposure to adverse outcomes are beginning to be understood. Rodent models suggest lead exposure induces dysfunction within the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid regulation, a primary physiological stress response system. Over time, HPA axis and glucocorticoid dysfunction has been associated with adverse neurocognitive and cardiometabolic health, much like lead exposure. This systematic review utilized PRISMA guidelines to synthesize the literature regarding associations between lead exposure and downstream effector hormones of the HPA axis, including cortisol, a glucocorticoid, and dehydroepiandrosterone (DHEA), a glucocorticoid antagonist. We additionally determined the state of the evidence regarding lead exposure and allostatic load, a measure of cumulative body burden resultant of HPA axis and glucocorticoid dysfunction. A total of 18 articles were included in the review: 16 assessed cortisol or DHEA and 3 assessed allostatic load. Generally, the few available child studies suggest a significant association between early life lead exposure and altered cortisol, potentially suggesting the impact of developmental exposure. In adulthood, only cross sectional studies were available. These reported significant associations between lead and reduced cortisol awakening response and increased cortisol reactivity, but few associations with fasting serum cortisol. Two studies reported significant associations between increasing lead exposure and allostatic load in adults and another between early life lead exposure and adolescent allostatic load. The paucity of studies examining associations between lead exposure and allostatic load or DHEA and overall heterogeneity of allostatic load measurements limit conclusions. However, these findings cautiously suggest associations between lead and dysregulation of physiological stress pathways (i.e., glucocorticoids) as seen through cortisol measurement in children and adults. Future research would help to elucidate these associations and could further examine the physiological stress pathway as a mediator between lead exposure and detrimental health outcomes.


Glucocorticoids , Hydrocortisone , Adult , Child , Adolescent , Humans , Glucocorticoids/toxicity , Glucocorticoids/metabolism , Hydrocortisone/metabolism , Lead/toxicity , Lead/metabolism , Hypothalamo-Hypophyseal System , Cross-Sectional Studies , Pituitary-Adrenal System/metabolism , Stress, Physiological , Dehydroepiandrosterone/metabolism , Stress, Psychological
6.
J Orthop Surg Res ; 18(1): 939, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38062514

OBJECTIVES: Bone microvascular endothelial cells (BMECs) played an important role in the pathogenesis of glucocorticoid-induced osteonecrosis of femoral head (GCS-ONFH), and exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) may provide an effective treatment. This study aimed to evaluate the effects of BMSC-Exos and internal microRNA-210-3p (miRNA-210) on GCS-ONFH in an in vitro hydrocortisone-induced BMECs injury model and an in vivo rat GCS-ONFH model. METHODS: BMECs, BMSCs and BMSC-Exos were isolated and validated. BMECs after the treatment of hydrocortisone were cocultured with different concentrations of BMSC-Exos, then proliferation, migration, apoptosis and angiogenesis of BMECs were evaluated by CCK-8, Annexin V-FITC/PI, cell scratch and tube formation assays. BMSCs were transfected with miRNA-210 mimics and miRNA-210 inhibitors, then BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor secreted from such cells were collected. The differences between BMSC-Exos, BMSC-ExosmiRNA-210 mimic and BMSC-ExosmiRNA-210 inhibitor in protecting BMECs against GCS treatment were analyzed by methods mentioned above. Intramuscular injections of methylprednisolone were performed on Sprague-Dawley rats to establish an animal model of GCS-ONFH, then tail intravenous injections of BMSC-Exos, BMSC-ExosmiRNA-210 mimic or BMSC-ExosmiRNA-210 inhibitor were conducted after methylprednisolone injection. Histological and immunofluorescence staining and micro-CT were performed to evaluate the effects of BMSC-Exos and internal miRNA-210 on the in vivo GCS-ONFH model. RESULTS: Different concentrations of BMSC-Exos, especially high concentration of BMSC-Exos, could enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs treated with GCS. Compared with BMSC-Exos, BMSC-ExosmiRNA-210 mimic could further enhance the proliferation, migration and angiogenesis ability and reduce the apoptosis rates of BMECs, while BMECs in the GCS + BMSC-ExosmiRNA-210 inhibitor group showed reduced proliferation, migration and angiogenesis ability and higher apoptosis rates. In the rat GCS-ONFH model, BMSC-Exos, especially BMSC-ExosmiRNA-210 mimic, could increase microvascular density and enhance bone remodeling of femoral heads. CONCLUSIONS: BMSC-Exos containing miRNA-210 could serve as potential therapeutics for protecting BMECs and ameliorating the progression of GCS-ONFH.


Exosomes , Mesenchymal Stem Cells , MicroRNAs , Osteonecrosis , Rats , Animals , Glucocorticoids/toxicity , Endothelial Cells , Femur Head , Hydrocortisone/pharmacology , Rats, Sprague-Dawley , Methylprednisolone , MicroRNAs/pharmacology
7.
Ecotoxicol Environ Saf ; 266: 115570, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37844410

Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.


Glucocorticoids , Psoriasis , Humans , Animals , Mice , Glucocorticoids/toxicity , Glucocorticoids/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Toll-Like Receptor 7/metabolism , Transcriptome , Psoriasis/pathology , Imiquimod/toxicity , Immunosuppression Therapy , Biomarkers/metabolism , Skin/metabolism
8.
Biomed Pharmacother ; 166: 115310, 2023 Oct.
Article En | MEDLINE | ID: mdl-37573654

AIMS: To preliminarily explore, whether glucocorticoids have a therapeutic effect on diquat-induced acute kidney injury in rats. METHOD: 150 Wistar rats were randomly divided into six groups: exposure model group (DQ group), dexamethasone control group (GC group), blank control group (Ctrl group), dexamethasone 2.1 mg/kg dose group (DQ+L-GC group), dexamethasone 4.2 mg/kg dose group (DQ+M-GC group), and dexamethasone 8.4 mg/kg dose group (DQ+H-GC group), with 25 rats in each group. Each group was further divided into five subgroups, 24 h, 3 d, 7 d, 14 d, and 21 d after exposure, according to the feeding time and the course of treatment, with five animals in each subgroup. The rats in DQ, DQ+L-GC, DQ+M-GC, and DQ+H-GC groups were administered 115.5 mg/kg diquat by gavage, respectively. Moreover, 30 min after gavage, rats in DQ+L-GC group, DQ+M-GC group, DQ+H-GC group and GC group were intragastric administered dexamethasone 2.1 mg/kg, 4.2 mg/kg, 8.4 mg/kg and 8.4 mg/kg, respectively. After 7 days, the intraperitoneal injection of dexamethasone was changed to 6.3 mg/kg prednisone by intragastric administration. Subsequently, 7 days later, it was changed to 3.15 mg/kg prednisone by intragastric administration until the end of the experiment on 21 days. After the start of the experiment, changes in the conditions of the rats in each group were observed at a fixed time every day, changes in the body weight of the rats were monitored at the same time, and the death of the rats was recorded at 24 h, 3 d, 7 d, 14 d, and 21 d after exposure. The rats were sacrificed by an intraperitoneal injection of 100 mg/kg sodium pentobarbital overdose. Blood was collected by puncture of the inferior vena cava, used to determine Cr and BUN. The upper segment of the left kidney was collected for histopathological examination. Elisa was used to detect neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in the lower segment of left kidney. TLR4, Myd88, and NF-κB were detected in the right kidney. RESULTS: (1) After exposure, most rats in DQ group, DQ+L-GC group, DQ+M-GC group and DQ+H-GC group showed shortness of breath, oliguria, diarrhea, yellow hair and other symptoms. No symptoms and related signs were observed in Ctrl group and GC group. (2) The weight of rats in the Ctrl group and the GC group increased slowly during the test. the body weight of the rats in the DQ, DQ+L-GC, DQ+M-GC, and DQ+H-GC groups continued to decrease after self-infection. Body weight dropped to the lowest point at approximately 7 d, and gradually increased from 7 d to 21 d. (3) A small amount of capillary congestion in the medulla was observed after 7 days in the GC group. The DQ group showed tubular atrophy, edema of the epithelial cells, and over time, the tubules were seen dilated and became irregular in shape; large amount of capillary congestion was also observed in the renal cortex and medulla. The renal injury in the DQ+L-GC group was less than that in the DQ group. DQ+H-GC group had no obvious injury before 7 d, but more renal tubules were seen in the DQ+H-GC group from 7 d to 14 d. (4) Compared with the DQ group, there was no difference before 14 d, and at 14 d-21 d, DQ+L-GC group, DQ+M-GC group, DQ+H-GC group all had different degrees of decline. NGAL content: Compared with the DQ group, the content of NGAL and KIM-1 in kidney tissue of the DQ+L-GC, DQ+M-GC, and DQ+H-GC groups decreased compared with the DQ group at each time node. (5) Compared with the Ctrl group, the expression of TNF-α, TLR4, MyD88, NF-κB in the DQ, DQ+L-GC, DQ+M-GC, and DQ+H-GC groups at each time node increased in the renal tissue. The content of TNF-α, TLR4, MyD88, NF-κB in kidney tissue of the DQ+L-GC, DQ+M-GC, and DQ+H-GC groups at each time node was lower than that in the DQ group. CONCLUSION: (1) Diquat can cause kidney damage in rats, mainly manifested as renal tubular atrophy, epithelial cell edema, capillary congestion and dilation, and the renal function damage indicators have been improved to varying degrees. (2) Glucocorticoids have therapeutic effects on acute kidney injury in rats exposed to diquat. During the treatment, the efficacy of glucocorticoids did not increase with increasing doses after reaching a dose of 4.2 mg/kg. (3) TLR4 receptor-mediated TLR4/Myd88/NF-κB signaling pathway is involved in the inflammatory response of acute kidney injury in diquat poisoning rats. Glucocorticoids can inhibit the inflammatory response, thereby affecting the expression of TLR4/Myd88/NF-κB signaling pathway-related proteins.


Acute Kidney Injury , NF-kappa B , Rats , Animals , Rats, Wistar , NF-kappa B/metabolism , Glucocorticoids/toxicity , Diquat/pharmacology , Lipocalin-2 , Prednisone/pharmacology , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Kidney , Dexamethasone/pharmacology , Body Weight , Atrophy/pathology
9.
Food Chem Toxicol ; 180: 114004, 2023 Oct.
Article En | MEDLINE | ID: mdl-37634611

Extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stem cells (hucMSC) have excellent therapeutic potential for many diseases. The aim of this study was to define the role of hucMSC-EVs in the prevention and treatment of steroid-induced avascular necrosis of the femoral head (SANFH). After establishing the SANFH rat model, the effects of hucMSC-EVs were assessed by measuring the microstructure of the femoral head using HE staining, micro-computed tomography (micro-CT), and TUNEL staining. The administration of hucMSC-EVs caused a significant reduction to glucocorticoids (GCs)-induced osteoblast apoptosis and empty lacuna of the femoral head, while effectively improving the microstructure. HucMSC-EVs rescued the deactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway induced by GCs, and reversed the proliferation and migration of osteoblasts inhibited by GCs. In addition, hucMSC-EVs attenuated the inhibitory effects of GCs on rat osteoblast osteogenesis, angiogenesis of endothelial cells, and prevented osteoblast apoptosis. However, the promoting effects of hucMSC-EVs were abolished following the blockade of PI3K/AKT on osteoblasts. hucMSC-EVs were found to prevent glucocorticoid-induced femoral head necrosis in rats through the PI3K/AKT pathway.


Extracellular Vesicles , Femur Head Necrosis , Mesenchymal Stem Cells , Humans , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/prevention & control , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , X-Ray Microtomography , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Glucocorticoids/toxicity , Steroids/metabolism , Umbilical Cord/metabolism
10.
Life Sci ; 326: 121799, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37245838

Prenatal overexposure to glucocorticoids (GC) can lead to behavioral changes in adulthood. We aimed to explore the effects of gestational administration of vitamin D on the behavioral responses of dams and their offspring prenatally exposed to dexamethasone (DEX). Vitamin D (500UI) was given daily during the whole pregnancy (VD group). Half of the groups that received vitamin D were treated with DEX (0.1 mg/kg, VD + DEX group) daily between the 14th and 19th days of pregnancy. The corresponding control groups of progenitors were assigned (CTL and DEX groups, respectively). Maternal care and the dam's behaviors were evaluated during lactation. The offspring had developmental and behavioral parameters evaluated during lactation and at 3, 6, and 12 months of age. Gestational administration of vitamin D increased maternal care and had an anxiolytic-like effect on the dams, but the latter was blocked in DEX-treated dams. Prenatal DEX partially impaired neural development and caused an anxiety-like phenotype in the male and female offspring at 6 months, which was prevented by gestational administration of vitamin D. As well, gestational vitamin D improved memory just in the male offspring, but this response was suppressed by prenatal DEX. We concluded that gestational vitamin D could prevent anxiety-like behavior in adult male and female rats prenatally exposed to DEX, which might be, in part, a result of the maternal care improvement.


Dexamethasone , Prenatal Exposure Delayed Effects , Pregnancy , Rats , Female , Male , Animals , Humans , Rats, Wistar , Dexamethasone/pharmacology , Vitamin D/pharmacology , Glucocorticoids/toxicity , Anxiety/drug therapy , Anxiety/prevention & control , Vitamins , Prenatal Exposure Delayed Effects/prevention & control
11.
Biomed Pharmacother ; 161: 114461, 2023 May.
Article En | MEDLINE | ID: mdl-36889109

Secondary osteoporosis is commonly caused by long-term intake of glucocorticoids (GCs), such as dexamethasone (DEX). Diosmin, a natural substance with potent antioxidant and anti-inflammatory properties, is clinically used for treating some vascular disorders. The current work targeted exploring the protective properties of diosmin to counteract DEX-induced osteoporosis in vivo. Rats were administered DEX (7 mg/kg) once weekly for 5 weeks, and in the second week, vehicle or diosmin (50 or 100 mg/kg/day) for the next four weeks. Femur bone tissues were collected and processed for histological and biochemical examinations. The study findings showed that diosmin alleviated the histological bone impairments caused by DEX. In addition, diosmin upregulated the expression of Runt-related transcription factor 2 (Runx2) and phosphorylated protein kinase B (p-AKT) and the mRNA transcripts of Wingless (Wnt) and osteocalcin. Furthermore, diosmin counteracted the rise in the mRNA levels of receptor activator of nuclear factor-kB ligand (RANKL) and the reduction in osteoprotegerin (OPG), both were induced by DEX. Diosmin restored the oxidant/antioxidant equilibrium and exerted significant antiapoptotic activity. The aforementioned effects were more pronounced at the dose level of 100 mg/kg. Collectively, diosmin has proven to protect rats against DEX-induced osteoporosis by augmenting osteoblast and bone development while hindering osteoclast and bone resorption. Our findings could be used as a stand for recommending supplementation of diosmin for patients chronically using GCs.


Bone Density Conservation Agents , Diosmin , Osteoporosis , Animals , Rats , Antioxidants/metabolism , Bone Density Conservation Agents/pharmacology , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dexamethasone/pharmacology , Diosmin/pharmacology , Diosmin/therapeutic use , Glucocorticoids/toxicity , Ligands , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , Oxidative Stress , RANK Ligand/metabolism , RNA, Messenger/metabolism
12.
Biochem Pharmacol ; 210: 115486, 2023 04.
Article En | MEDLINE | ID: mdl-36893817

BACKGROUND: Exogenous glucocorticoids (CGs) possess relevant therapeutic effects but exert diabetogenic actions when in excess. Thus, ligands with potential therapeutic applications and fewer adverse effects are needed. To this, we analyzed whether mometasone furoate (MF), a CG expected to cause fewer side effects, given through systemic routes, could maintain the anti-inflammatory actions without relevant repercussions on metabolism. METHODS: The anti-inflammatory effect of MF was evaluated with both peritonitis and colitis models in rodents. Glucose and lipid metabolism were investigated in male and female rats treated daily with MF with different doses and routes of administration for seven days. The involvement of glucocorticoid receptor (GR) on MF actions was assessed in animals pretreated with mifepristone. Also, the potential reversibility of the adverse effects was assessed. Dexamethasone was used as a positive control. RESULTS: MF treatment resulted in glucose intolerance in male rats treated through intraperitoneal (ip) but not oral gavage route (og). In female rats, none of the routes led to glucose intolerance. MF treatment attenuated insulin sensitivity and increased pancreatic ß-cell mass, regardless of the sex and route of administration. MF treatment through og route did not result in dyslipidemia, as observed in rats treated through the ip route (both sexes). The anti-inflammatory and metabolic adverse effects of MF were GR-dependent, and metabolic outcomes altered by MF administration were reversible. CONCLUSION: MF maintains anti-inflammatory activity when administered by systemic routes and exerts less impact on metabolism when administered orally in male and female rats, effects that are GR-dependent and reversible. Category: Metabolic Disorders and Endocrinology.


Drug-Related Side Effects and Adverse Reactions , Glucose Intolerance , Pregnadienediols , Male , Female , Rats , Animals , Mometasone Furoate , Glucose Intolerance/chemically induced , Glucose Intolerance/drug therapy , Pregnadienediols/adverse effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Glucocorticoids/toxicity , Administration, Inhalation
13.
Pharm Biol ; 61(1): 416-426, 2023 Dec.
Article En | MEDLINE | ID: mdl-36786302

CONTEXT: Morroniside (MOR) possesses antiosteoporosis (OP) effects, but its molecular target and relevant mechanisms remain unknown. OBJECTIVE: We investigated the effects of MOR on glucocorticoid-induced OP and osteoblastogenesis and its underlying mechanisms. MATERIALS AND METHODS: The effects of MOR (10-100 µM) on the proliferation and differentiation of MC3T3-E1 cells were studied in vitro. The glucocorticoid-induced zebrafish OP model was treated with 10, 20 and 40 µM MOR for five days to evaluate its effects on vertebral bone density and related osteogenic markers. In addition, molecular targets prediction and molecular docking analysis were carried out to explore the binding interactions of MOR with the target proteins. RESULTS: In cultured MC3T3-E1 cells, 20 µM MOR significantly increased cell viability (1.64 ± 0.12 vs. 0.95 ± 0.16; p < 0.01) and cell differentiation (1.57 ± 0.01 vs. 1.00 ± 0.04; p < 0.01) compared to the control group. MOR treatment significantly ameliorated vertebral bone loss in the glucocorticoid-induced OP zebrafish model (0.86 ± 0.02 vs. 0.40 ± 0.03; p < 0.01) and restored the expression of osteoblast-specific markers, including ALP, Runx2 and Col-І. Ligand-based target prediction and molecular docking revealed the binding interaction between MOR and the glucose pockets in sodium-glucose cotransporter 2 (SGLT2). DISCUSSION AND CONCLUSIONS: These findings demonstrated that MOR treatment promoted osteoblastogenesis and ameliorated glucocorticoid-induced OP by targeting SGLT2, which may provide therapeutic potential in managing glucocorticoid-induced OP.


Glucocorticoids , Osteoporosis , Animals , Glucocorticoids/toxicity , Zebrafish , Cell Line , Molecular Docking Simulation , Sodium-Glucose Transporter 2/adverse effects , Sodium-Glucose Transporter 2/metabolism , Cell Differentiation , Osteogenesis , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Sodium/adverse effects , Sodium/metabolism , Osteoblasts
14.
J Hazard Mater ; 447: 130831, 2023 04 05.
Article En | MEDLINE | ID: mdl-36696776

Legacy per- and polyfluoroalkyl substances (PFASs) are a worldwide health concern due to their potential bioaccumulation and toxicity in humans. A variety of perfluoroether carboxylic acids (PFECAs) have been developed as next-generation replacements of legacy PFASs. However, information regarding their possible environmental and human health risks is limited. In the present study, we explored the effects of PFECAs on mice based on long-term exposure to environmentally relevant doses of perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA). Results showed that PFECAs exposure suppressed many cellular stress signals and resulted in hepatomegaly. PFO5DoDA acted as an agonist of the peroxisome proliferator-activated receptor (PPAR) in vitro and modulated PPAR-dependent gene expression in the liver. Importantly, PFECAs had an inhibitory effect on the glucocorticoid receptor (GR), which may contribute to the extensive suppression of stress signals. Of note, the GR suppression induced by PFECAs was not reported by legacy perfluorooctanoic acid (PFOA). PFO5DoDA-induced changes in both GR and PPAR signals remodeled hepatic metabolic profiles, including decreased fatty acids and amino acids and increased ß-oxidation. Mechanistically, PFO5DoDA inhibited GR transactivation by degradation of GR proteins. Our results emphasize the potential risk of PFECAs to human health, which were introduced to ease concerns regarding legacy PFASs.


Fluorocarbons , Glucocorticoids , Mice , Humans , Animals , Glucocorticoids/toxicity , Peroxisome Proliferator-Activated Receptors/pharmacology , Liver/metabolism , Fluorocarbons/toxicity , Receptors, Glucocorticoid/metabolism , Carboxylic Acids , Homeostasis
15.
J Voice ; 37(6): 822-828, 2023 Nov.
Article En | MEDLINE | ID: mdl-34284926

OBJECTIVES: Local injection of glucocorticoids (GCs) into the vocal folds has been used for treating the vocal fold lesions. While the positive effects on vocal fold nodules, polyps, or scarring have been clinically reported, some concern remains around the potential adverse effects such as vocal fold atrophy, and the mechanisms remain unclear. The present study examined the histology and gene expression of locally injected GC into the vocal folds in rats. METHODS: Thirteen-week-old male Sprague-Dawley rats were used in the experiments. Triamcinolone acetonide (TAA) or saline were administered repeatedly to the right vocal folds at a weekly interval, and rats were euthanized one week after the last administration for histological examination. Genetic examination was assessed hyaluronic acid (HA) metabolism at 1 or 3 days after a single TAA injection by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The group which underwent four TAA injections showed a significant decrease in HA in the lamina propria (LP), thickness of the LP and total cell numbers of the LP compared with the saline group. In contrast, there was no significant difference in the area of collagen accumulation and the thyroarytenoid muscle, although there was a tendency of atrophy of the muscle. After single injection of TAA, qRT-PCR showed a significant decrease in the expression of HA synthases, Has2 and Has3. CONCLUSIONS: The current animal study first demonstrates that repeated intracordal injection of GCs may lead to atrophy of vocal folds caused by decrease of deposition of HA in the LP and decrease of gene expression of Has.


Glucocorticoids , Vocal Cords , Rats , Male , Animals , Vocal Cords/physiology , Rats, Sprague-Dawley , Glucocorticoids/toxicity , Gene Expression , Atrophy/metabolism , Atrophy/pathology
16.
Toxicol Mech Methods ; 33(2): 161-171, 2023 Feb.
Article En | MEDLINE | ID: mdl-35866224

The linkage between inflammation and oxidative stress in liver damage has been proven and is undeniable; dexamethasone with some antioxidants can reduce the toxicity of liver tissue. Due to the importance of cancer treatment, glucocorticoids' synergistic effect in inhibiting cancer cell growth is also investigated. Dexamethasone alone and combined with etoposide were tested at concentrations of 1, 5, and 10 µM to evaluate the potency of dexamethasone in inhibiting the growth of A549 cells using oxidative stress factors and DNA damage. Also, intraperitoneal injection of dexamethasone in rats was used to induce liver toxicity. Coenzyme Q10 at different concentrations (1, 10, and 50 mg/kg) was used as an antioxidant to assess the oxidative stress factors and measure Caspase-3 activity. The results showed that dexamethasone combined with etoposide could significantly inhibit the growth of cancer cells and induce apoptosis. Treatment of A549 cells using dexamethasone also inhibits cancer cells' growth by inducing oxidative stress and DNA damage. Dexamethasone also, by inducing oxidative stress and activation of caspase 3, ultimately causes hepatotoxicity. Treatment with different concentrations of CoQ10 showed improved mitochondrial function, antioxidant defense, and liver enzyme. The best effect of coenzyme Q10 on dexamethasone-induced hepatotoxicity is 50 mg/kg. As a result, dexamethasone (alone and combined with etoposide) has an anti-cancer effect by damaging DNA and inducing oxidative stress. Also, CoQ10 has antioxidant effects against dexamethasone-induced hepatotoxicity by improving mitochondrial function and reducing caspase-3 activity.


Antioxidants , Chemical and Drug Induced Liver Injury , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Caspase 3 , Etoposide/toxicity , Ubiquinone/pharmacology , Oxidative Stress , Glucocorticoids/toxicity , Dexamethasone/toxicity , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control
19.
Food Chem Toxicol ; 168: 113407, 2022 Oct.
Article En | MEDLINE | ID: mdl-36075474

Glucocorticoid (GC) exposure can lead to deterioration of the structure and function of hippocampal neurons and is closely involved in Alzheimer's disease (AD). Amyloid-ß (Aß) overproduction is an important aspect of AD pathogenesis. Our study mainly investigated the mechanism of chronic GC exposure in accelerating Aß production in primary cultured hippocampal neurons from APP/PS1 mice. The results indicated that chronic dexamethasone (DEX, 1 µM) significantly accelerated neuronal damage and Aß accumulation in hippocampal neurons from APP/PS1 mice. Meanwhile, DEX exposure markedly upregulated APP, NCSTN, BACE1 and p-Tau/Tau expression in hippocampal neurons from APP/PS1 mice. Our study also indicated that chronic DEX exposure significantly increased intracellular Ca2+ ([Ca2+]i) levels and the expressions of p-PLC, CN and NFAT1 in hippocampal neurons from APP/PS1 mice. We further found that stabilizing intracellular calcium homeostasis with 2-APB (50 µM) and SKF-96365 (10 µM) significantly alleviated neuronal damage and Aß accumulation in chronic DEX-induced hippocampal neurons from APP/PS1 mice. Additionally, dual luciferase assays showed that NFAT1 upregulated NCSTN transactivation, which was further increased upon DEX treatment. This study suggests that chronic DEX exposure accelerates Aß accumulation by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons from APP/PS1 mice, which may be closely related to the acceleration of AD.


Alzheimer Disease , Amyloid beta-Peptides , Glucocorticoids , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/metabolism , Calcium/metabolism , Dexamethasone/toxicity , Disease Models, Animal , Glucocorticoids/adverse effects , Glucocorticoids/toxicity , Hippocampus/metabolism , Mice , Mice, Transgenic , NFATC Transcription Factors/drug effects , NFATC Transcription Factors/metabolism , Neurons/metabolism , Neurotoxicity Syndromes/metabolism
20.
Biomed Pharmacother ; 152: 113221, 2022 Aug.
Article En | MEDLINE | ID: mdl-35671582

The current study aimed to discover more effective drugs to treat osteoporosis (OP) with fewer side effects. OP was induced in 24 rats using dexamethasone (DEX) 7 mg/kg intramuscular once weekly for four weeks, with six rats as a negative control. The osteoporotic rats were divided into one untreated group (positive control) and three treated groups (n = 6) that received L-carnitine (L-Car) (100 mg/kg/d), simvastatin (SIMV) (10 mg/kg/d), and L-Car + SIMV in the same previous doses, all treatments were orally for four weeks. At the end of the experiment, serum calcium (Ca), phosphorous (P), alkaline phosphatase (ALP), osteoprotegerin (OPG), total antioxidant (TAO), creatine kinase (CK), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels were measured. The femur was histopathologically examined. Serum Ca, OPG, and TAO levels increased significantly, while P and ALP levels decreased in the L-Car and SIMV treated groups compared to the DEX-treated group. Moreover, there was a significant decrease in CK, ALT, and AST levels in the L-Car and L-Car + SIMV treated groups compared to the DEX treated group. CONCLUSIONS: L-Car and SIMV have antiosteoporotic effects, as well as a synergistic effect. Moreover, L-Car ameliorates SIMV-induced myotoxicity and hepatoxicity.


Chemical and Drug Induced Liver Injury , Osteoporosis , Animals , Carnitine , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Glucocorticoids/toxicity , Myotoxicity , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Rats , Rats, Wistar , Simvastatin/pharmacology , Simvastatin/therapeutic use
...