Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 176.106
1.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822901

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
2.
Food Res Int ; 188: 114454, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823832

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Cysteine , Gas Chromatography-Mass Spectrometry , Glucose , Maillard Reaction , Volatile Organic Compounds , Cysteine/chemistry , Glucose/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Density Functional Theory , Hot Temperature
4.
Nat Commun ; 15(1): 4491, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802374

Actin nucleotide-dependent actin remodeling is essential to orchestrate signal transduction and cell adaptation. Rapid energy starvation requires accurate and timely reorganization of the actin network. Despite distinct treadmilling mechanisms of ADP- and ATP-actin filaments, their filament structures are nearly identical. How other actin-binding proteins regulate ADP-actin filament assembly is unclear. Here, we show that Spa2 which is the polarisome scaffold protein specifically remodels ADP-actin upon energy starvation in budding yeast. Spa2 triggers ADP-actin monomer nucleation rapidly through a dimeric core of Spa2 (aa 281-535). Concurrently, the intrinsically disordered region (IDR, aa 1-281) guides Spa2 undergoing phase separation and wetting on the surface of ADP-G-actin-derived F-actin and bundles the filaments. Both ADP-actin-specific nucleation and bundling activities of Spa2 are actin D-loop dependent. The IDR and nucleation core of Spa2 are evolutionarily conserved by coexistence in the fungus kingdom, suggesting a universal adaptation mechanism in the fungal kingdom in response to glucose starvation, regulating ADP-G-actin and ADP-F-actin with high nucleotide homogeneity.


Actins , Adenosine Diphosphate , Glucose , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Actins/metabolism , Glucose/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/analogs & derivatives , Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/chemistry
5.
Sci Rep ; 14(1): 12051, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802412

GDM, as a metabolic disease during pregnancy, regulates GLUT3 translocation by AMPK, thereby affecting glucose uptake in trophoblasts. It provides a new research idea and therapeutic target for alleviating intrauterine hyperglycemia in GDM. STZ was used to construct GDM mice, inject AICAR into pregnant mice, and observe fetal and placental weight; flow cytometry was employed for the detection of glucose uptake by primary trophoblast cells; immunofluorescence was applied to detect the localization of GLUT3 and AMPK in placental tissue; Cocofal microscope was used to detect the localization of GLUT3 in trophoblast cells;qRT-PCR and Western blot experiments were carried out to detect the expression levels of GLUT3 and AMPK in placental tissue; CO-IP was utilized to detect the interaction of GLUT3 and AMPK. Compared with the normal pregnancy group, the weight of the fetus and placenta of GDM mice increased (P < 0.001), and the ability of trophoblasts to take up glucose decreased (P < 0.001). In addition, AMPK activity in trophoblasts and membrane localization of GLUT3 in GDM mice were down-regulated compared with normal pregnant mice (P < 0.05). There is an interaction between GLUT3 and AMPK. Activating AMPK in trophoblasts can up-regulate the expression of GLUT3 membrane protein in trophoblasts of mice (P < 0.05) and increase the glucose uptake of trophoblasts (P < 0.05). We speculate that inhibition of AMPK activity in GDM mice results in aberrant localization of GLUT3, which in turn attenuates glucose uptake by placental trophoblast cells. AICAR activates AMPK to increase the membrane localization of GLUT3 and improve the glucose uptake capacity of trophoblasts.


AMP-Activated Protein Kinases , Diabetes, Gestational , Glucose Transporter Type 3 , Glucose , Signal Transduction , Trophoblasts , Animals , Trophoblasts/metabolism , Female , Pregnancy , Glucose/metabolism , Mice , AMP-Activated Protein Kinases/metabolism , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 3/genetics , Diabetes, Gestational/metabolism , Placenta/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Ribonucleotides/pharmacology
6.
Nat Commun ; 15(1): 4605, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816388

Obesity-induced inflammation causes metabolic dysfunction, but the mechanisms remain elusive. Here we show that the innate immune transcription factor interferon regulatory factor (IRF3) adversely affects glucose homeostasis through induction of the endogenous FAHFA hydrolase androgen induced gene 1 (AIG1) in adipocytes. Adipocyte-specific knockout of IRF3 protects male mice against high-fat diet-induced insulin resistance, whereas overexpression of IRF3 or AIG1 in adipocytes promotes insulin resistance on a high-fat diet. Furthermore, pharmacological inhibition of AIG1 reversed obesity-induced insulin resistance and restored glucose homeostasis in the setting of adipocyte IRF3 overexpression. We, therefore, identify the adipocyte IRF3/AIG1 axis as a crucial link between obesity-induced inflammation and insulin resistance and suggest an approach for limiting the metabolic dysfunction accompanying obesity.


Adipocytes , Diet, High-Fat , Inflammation , Insulin Resistance , Interferon Regulatory Factor-3 , Mice, Knockout , Obesity , Animals , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Male , Obesity/metabolism , Mice , Diet, High-Fat/adverse effects , Inflammation/metabolism , Adipocytes/metabolism , Mice, Inbred C57BL , Glucose/metabolism , 3T3-L1 Cells
7.
Cell Mol Life Sci ; 81(1): 241, 2024 May 29.
Article En | MEDLINE | ID: mdl-38806811

Aspergillus ochraceus is the traditional ochratoxin A (OTA)-producing fungus with density-dependent behaviors, which is known as quorum sensing (QS) that is mediated by signaling molecules. Individual cells trend to adapt environmental changes in a "whole" flora through communications, allowing fungus to occupy an important ecological niche. Signals perception, transmission, and feedback are all rely on a signal network that constituted by membrane receptors and intracellular effectors. However, the interference of density information in signal transduction, which regulates most life activities of Aspergillus, have yet to be elucidated. Here we show that the G protein-coupled receptor (GPCR) to cAMP pathway is responsible for transmitting density information, and regulates the key point in life cycle of A. ochraceus. Firstly, the quorum sensing phenomenon of A. ochraceus is confirmed, and identified the density threshold is 103 spores/mL, which represents the low density that produces the most OTA in a series quorum density. Moreover, the GprC that classified as sugar sensor, and intracellular adenylate cyclase (AcyA)-cAMP-PKA pathway that in response to ligands glucose and HODEs are verified. Furthermore, GprC and AcyA regulate the primary metabolism as well as secondary metabolism, and further affects the growth of A. ochraceus during the entire life cycle. These studies highlight a crucial G protein signaling pathway for cell communication that is mediated by carbohydrate and oxylipins, and clarified a comprehensive effect of fungal development, which include the direct gene regulation and indirect substrate or energy supply. Our work revealed more signal molecules that mediated density information and connected effects on important adaptive behaviors of Aspergillus ochraceus, hoping to achieve comprehensive prevention and control of mycotoxin pollution from interrupting cell communication.


Aspergillus ochraceus , Cyclic AMP , Glucose , Quorum Sensing , Signal Transduction , Aspergillus ochraceus/metabolism , Aspergillus ochraceus/genetics , Glucose/metabolism , Cyclic AMP/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ochratoxins/metabolism
8.
Biomaterials ; 309: 122605, 2024 Sep.
Article En | MEDLINE | ID: mdl-38754291

Multidisciplinary therapy centered on radical surgery for resectable pancreatic cancer is expected to prolong prognosis, but relies on CA19-9 biomarker levels to determine treatment strategy. Boron neutron capture therapy (BNCT) is a chemoradiotherapy using tumor hyperaccumulator boron drugs and neutron irradiation. The purpose of this study is to investigate novel boron drug agents for BNCT for pancreatic cancer. Bioinformatics was used to evaluate the uptake of current boron amino acid (BPA) drugs for BNCT into pancreatic cancer. The expression of the amino acid transporter LAT1, a BPA uptake transporter, was low in pancreatic cancer and even lower in high CA19-9 pancreatic cancer. In contrast, the glucose transporter was high in high CA19-9 pancreatic cancers and inversely correlated with LAT1 expression. Considering the low EPR effect in pancreatic cancer, we synthesized a small molecule Glucose-BSH, which is boron BSH bound to glucose, and confirmed its specific uptake in pancreatic cancer. uptake of Glucose-BSH was confirmed in an environment compatible with the tumor microenvironment. The therapeutic efficacy and safety of Glucose-BSH by therapeutic neutron irradiation were confirmed with BNCT. We report Glucose-BSH boron drug discovery study of a Precision Medicine BNCT with application to high CA19-9 pancreatic cancer.


Boron Neutron Capture Therapy , Glucose , Pancreatic Neoplasms , Boron Neutron Capture Therapy/methods , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Humans , Glucose/metabolism , Cell Line, Tumor , Animals , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Boron/chemistry , Female , Mice, Nude
9.
Biosens Bioelectron ; 259: 116365, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38759309

Effective wound management has the potential to reduce both the duration and cost of wound healing. However, traditional methods often rely on direct observation or complex and expensive biological testing to monitor and evaluate the invasive damage caused by wound healing, which can be time-consuming. Biosensors offer the advantage of precise and real-time monitoring, but existing devices are not suitable for integration with sensitive wound tissue due to their external dimensions. Here, we have designed a self-powered biosensing suture (SPBS) based on biofuel cells to accurately monitor glucose concentration at the wound site and promote wound healing. The anode of the SPBS consists of carbon nanotubes-modified carbon fibers, tetrathiafulvalene (TTF), and glucose oxidase (GOx), while the cathode is composed of Ag2O and carbon nanotubes modified nanotubes modified carbon fibers. It was observed that SPBS exhibited excellent physical and chemical stability in vitro. Regardless of different bending degrees or pH values, the maximum power density of SPBS remained above 92%, which is conducive to long-term dynamic evaluation. Furthermore, the voltage generated by SPBS reflects blood glucose concentration, and measurements at wound sites are consistent with those obtained using a commercially available blood glucose meter. SPBS achieves the healing effect of traditional medical sutures after complete healing within 14 days. It offers valuable insights for intelligent devices dedicated to real-time wound monitoring.


Biosensing Techniques , Nanotubes, Carbon , Sutures , Wound Healing , Biosensing Techniques/instrumentation , Nanotubes, Carbon/chemistry , Humans , Glucose Oxidase/chemistry , Equipment Design , Bioelectric Energy Sources , Blood Glucose/analysis , Animals , Glucose/analysis , Glucose/isolation & purification , Carbon Fiber/chemistry
10.
Int J Med Sci ; 21(6): 1049-1063, 2024.
Article En | MEDLINE | ID: mdl-38774747

Peritoneal dialysis (PD), hemodialysis and kidney transplantation are the three therapies to treat uremia. However, PD is discontinued for peritoneal membrane fibrosis (PMF) and loss of peritoneal transport function (PTF) due to damage from high concentrations of glucose in PD fluids (PDFs). The mechanism behind PMF is unclear, and there are no available biomarkers for the evaluation of PMF and PTF. Using microarray screening, we found that a new long noncoding RNA (lncRNA), RPL29P2, was upregulated in the PM (peritoneal membrane) of long-term PD patients, and its expression level was correlated with PMF severity and the PTF loss. In vitro and rat model assays suggested that lncRNA RPL29P2 targets miR-1184 and induces the expression of collagen type I alpha 1 chain (COL1A1). Silencing RPL29P2 in the PD rat model might suppress the HG-induced phenotypic transition of Human peritoneal mesothelial cells (HPMCs), alleviate HG-induced fibrosis and prevent the loss of PTF. Overall, our findings revealed that lncRNA RPL29P2, which targets miR-1184 and collagen, may represent a useful marker and therapeutic target of PMF in PD patients.


Collagen Type I, alpha 1 Chain , Collagen Type I , MicroRNAs , Peritoneal Dialysis , Peritoneal Fibrosis , Peritoneum , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/etiology , Rats , Collagen Type I, alpha 1 Chain/genetics , Male , Peritoneum/pathology , Collagen Type I/metabolism , Collagen Type I/genetics , Middle Aged , Female , Disease Models, Animal , Glucose/metabolism
11.
Mol Biol Rep ; 51(1): 641, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727798

BACKGROUND: The interrelationship between cellular metabolism and the epithelial-to-mesenchymal transition (EMT) process has made it an interesting topic to investigate the adjuvant effect of therapeutic diets in the treatment of cancers. However, the findings are controversial. In this study, the effects of glucose limitation along and with the addition of beta-hydroxybutyrate (bHB) were examined on the expression of specific genes and proteins of EMT, Wnt, Hedgehog, and Hippo signaling pathways, and also on cellular behavior of gastric cancer stem-like (MKN-45) and non-stem-like (KATO III) cells. METHODS AND RESULTS: The expression levels of chosen genes and proteins studied in cancer cells gradually adopted a low-glucose condition of one-fourth, along and with the addition of bHB, and compared to the unconditioned control cells. The long-term switching of the metabolic fuels successfully altered the expression profiles and behaviors of both gastric cancer cells. However, the results for some changes were the opposite. Glucose limitation along and with the addition of bHB reduced the CD44+ population in MKN-45 cells. In KATO III cells, glucose restriction increased the CD44+ population. Glucose deprivation alleviated EMT-related signaling pathways in MKN-45 cells but stimulated EMT in KATO III cells. Interestingly, bHB enrichment reduced the beneficial effect of glucose starvation in MKN-45 cells, but also alleviated the adverse effects of glucose restriction in KATO III cells. CONCLUSIONS: The findings of this research clearly showed that some controversial results in clinical trials for ketogenic diet in cancer patients stemmed from the different signaling responses of various cells to the metabolic changes in a heterogeneous cancer mass.


3-Hydroxybutyric Acid , Epithelial-Mesenchymal Transition , Glucose , Signal Transduction , Stomach Neoplasms , Epithelial-Mesenchymal Transition/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Cell Line, Tumor , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/metabolism , Glucose/metabolism , Ketosis/metabolism , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics
12.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731488

This study synthesized a novel oat ß-glucan (OBG)-Cr(III) complex (OBG-Cr(III)) and explored its structure, inhibitory effects on α-amylase and α-glucosidase, and hypoglycemic activities and mechanism in vitro using an insulin-resistant HepG2 (IR-HepG2) cell model. The Cr(III) content in the complex was found to be 10.87%. The molecular weight of OBG-Cr(III) was determined to be 7.736 × 104 Da with chromium ions binding to the hydroxyl groups of OBG. This binding resulted in the increased asymmetry and altered spatial conformation of the complex along with significant changes in morphology and crystallinity. Our findings demonstrated that OBG-Cr(III) exhibited inhibitory effects on α-amylase and α-glucosidase. Furthermore, OBG-Cr(III) enhanced the insulin sensitivity of IR-HepG2 cells, promoting glucose uptake and metabolism more efficiently than OBG alone. The underlying mechanism of its hypoglycemic effect involved the modulation of the c-Cbl/PI3K/AKT/GLUT4 signaling pathway, as revealed by Western blot analysis. This research not only broadened the applications of OBG but also positioned OBG-Cr(III) as a promising Cr(III) supplement with enhanced hypoglycemic benefits.


Chromium , Hypoglycemic Agents , alpha-Glucosidases , beta-Glucans , Humans , Chromium/chemistry , Chromium/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , beta-Glucans/chemistry , beta-Glucans/pharmacology , Hep G2 Cells , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Insulin Resistance , Glucose/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Avena/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis
13.
Molecules ; 29(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38731606

The polyphenol-Maillard reaction is considered one of the important pathways in the formation of humic-like substances (HLSs). Glucose serves as a microbial energy source that drives the humification process. However, the effects of changes in glucose, particularly its concentration, on abiotic pathways remain unclear. Given that the polyphenol-Maillard reaction requires high precursor concentrations and elevated temperatures (which are not present in soil), gibbsite was used as a catalyst to overcome energetic barriers. Catechol and glycine were introduced in fixed concentrations into a phosphate-buffered solution containing gibbsite using the liquid shake-flask incubation method, while the concentration of glucose was controlled in a sterile incubation system. The supernatant fluid and HLS components were dynamically extracted over a period of 360 h for analysis, thus revealing the influence of different glucose concentrations on abiotic humification pathways. The results showed the following: (1) The addition of glucose led to a higher degree of aromatic condensation in the supernatant fluid. In contrast, the supernatant fluid without glucose (Glu0) and the control group without any Maillard precursor (CK control group) exhibited lower degrees of aromatic condensation. Although the total organic C (TOC) content in the supernatant fluid decreased in all treatments during the incubation period, the addition of Maillard precursors effectively mitigated the decreasing trend of TOC content. (2) While the C content of humic-like acid (CHLA) and the CHLA/CFLA ratio (the ratio of humic-like acid to fulvic-like acid) showed varying increases after incubation, the addition of Maillard precursors resulted in a more noticeable increase in CHLA content and the CHLA/CFLA ratio compared to the CK control group. This indicated that more FLA was converted into HLA, which exhibited a higher degree of condensation and humification, thus improving the quality of HLS. The addition of glycine and catechol without glucose or with a glucose concentration of 0.06 mol/L was particularly beneficial in enhancing the degree of HLA humification. Furthermore, the presence of glycine and catechol, as well as higher concentrations of glucose, promoted the production of N-containing compounds in HLA. (3) The presence of Maillard precursors enhanced the stretching vibration of the hydroxyl group (-OH) of HLA. After the polyphenol-Maillard reaction of glycine and catechol with glucose concentrations of 0, 0.03, 0.06, 0.12, or 0.24 mol/L, the aromatic C structure in HLA products increased, while the carboxyl group decreased. The presence of Maillard precursors facilitated the accumulation of polysaccharides in HLA with higher glucose concentrations, ultimately promoting the formation of Al-O bonds. However, the quantities of phenolic groups and phenols in HLA decreased to varying extents.


Glucose , Humic Substances , Maillard Reaction , Polyphenols , Humic Substances/analysis , Glucose/chemistry , Glucose/metabolism , Polyphenols/chemistry , Catechols/chemistry
14.
Sci Rep ; 14(1): 10789, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734719

Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with ß-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.


Adipocytes, Brown , Angiotensin II , Glycolysis , Mitochondria , Thermogenesis , Uncoupling Protein 1 , Humans , Adipocytes, Brown/metabolism , Adipocytes, Brown/drug effects , Glycolysis/drug effects , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Lipolysis/drug effects , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Glucose/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
15.
J Physiol Pharmacol ; 75(2): 185-194, 2024 Apr.
Article En | MEDLINE | ID: mdl-38736265

We have previously described local aldosterone synthesis in mouse colon. In the renin-angiotensin-aldosterone system (RAAS), angiotensin II (Ang II) peptide is the physiological factor which stimulates aldosterone synthesis in the adrenal glands. We have recently demonstrated that Ang II stimulates aldosterone synthesis also in mouse colon. Here, we conducted a 75-min ex vivo incubation of murine colonic tissue and evaluated the effects of three other Ang peptides, Ang I (1 µM), Ang III (0.1 µM) and Ang (1-7) (0.1 µM) on aldosterone synthesis. As a possible mechanism, their effects on tissue levels of the rate-limiting enzyme, aldosterone synthase (CYP11B2) were measured by ELISA and Western blot. Ang III significantly elevated the amount of tissue CYP11B2 protein in colon. The values of released aldosterone in colon tissue incubation were increased over the control in the presence of Ang I, II or III, however, being statistically non-significant. In Western blot analysis, the values of tissue CYP11B2 protein content were elevated by Ang I and II. Ang (1-7) alone in colon did not influence CYP11B2 protein levels in the incubation experiment but showed higher aldosterone release without statistical significance. Ang (1-7) showed an antagonistic effect towards Ang II in release of aldosterone in adrenal gland. An overall estimation of a single peptide (three measured variables), the results were always in an increasing direction. The responses of aldosterone synthesis to high levels of glucose (44 mM) and potassium (18.8 mM) as physiological stimulators in vivo were investigated in the colon incubation. Glucose, equal to four times the concentration of the control buffer in the incubation, showed higher values of aldosterone release in colon than control without statistical significance similarly to the effect seen in adrenal glands. Increasing the concentration of potassium in the incubation buffer exerted no effect on colonic aldosterone production. Intriguingly, no correlation was found between aldosterone release and the tissue CYP11B2 protein content in colon. In summary, the response of colonic aldosterone synthesis to different Ang peptides resembles, but is not identical to, the situation in the adrenal glands.


Aldosterone , Colon , Cytochrome P-450 CYP11B2 , Glucose , Potassium , Animals , Male , Mice , Aldosterone/metabolism , Angiotensin I/physiology , Angiotensin II/physiology , Angiotensin III/physiology , Colon/metabolism , Colon/drug effects , Cytochrome P-450 CYP11B2/metabolism , Glucose/metabolism , Peptide Fragments/physiology , Potassium/metabolism
16.
Environ Sci Technol ; 58(20): 8675-8684, 2024 May 21.
Article En | MEDLINE | ID: mdl-38728584

Pregnant women are physiologically prone to glucose intolerance, while the puerperium represents a critical phase for recovery. However, how air pollution disrupts glucose homeostasis during the gestational and early postpartum periods remains unclear. This prospective cohort study conducted an oral glucose tolerance test and measured the insulin levels of 834 pregnant women in Guangzhou, with a follow-up for 443 puerperae at 6-8 weeks postpartum. Residential PM2.5 and five chemical components were estimated by an established spatiotemporal model. The adjusted linear model showed that an IQR increase in gestational PM2.5 exposure was associated with an increase of 0.17 mmol/L (95% CI: 0.06, 0.28) in fasting plasma glucose (FPG) and 0.24 (95% CI: 0.05, 0.42) in the insulin resistance index. Postpartum PM2.5 exposure was linked to a 0.17 mmol/L (95% CI: 0.05, 0.28) elevation in FPG per IQR, with a strengthened association found in women with gestational diabetes (Pinteraction = 0.003). In the quantile-based g-computation model, NO3- consistently contributed to the combined effect of PM2.5 components on gestational and postpartum FPG. This study was the first to suggest that PM2.5 components were associated with exacerbated gestational insulin resistance and elevated postpartum FPG. Targeted interventions reducing the emissions of toxic PM2.5 components are essential to improving maternal glucose metabolism.


Particulate Matter , Postpartum Period , Humans , Female , Prospective Studies , Pregnancy , Adult , China , Blood Glucose , Glucose/metabolism , Diabetes, Gestational/metabolism , Air Pollution , Insulin Resistance , Air Pollutants , Cohort Studies , East Asian People
17.
Sci Rep ; 14(1): 10190, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702366

Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.


Glucose , Goats , Gonadotropin-Releasing Hormone , Luteinizing Hormone , Receptor, Serotonin, 5-HT2C , Serotonergic Neurons , Animals , Luteinizing Hormone/metabolism , Female , Receptor, Serotonin, 5-HT2C/metabolism , Rats , Serotonergic Neurons/metabolism , Gonadotropin-Releasing Hormone/metabolism , Glucose/metabolism , Serotonin/metabolism , Kisspeptins/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/drug effects , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Rats, Sprague-Dawley
18.
J Phys Chem Lett ; 15(20): 5543-5548, 2024 May 23.
Article En | MEDLINE | ID: mdl-38752860

Protein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered ß-casein. Moreover, we address the influence of water, glycerol, and glucose, which create progressively more viscous matrices around the protein surface. By comparing the protein thermal fluctuations, we find that the internal dynamics of thermolysin are less affected by the environment compared to lysozyme and ß-casein. We ascribe this behavior to the protein dynamic personality, i.e., to the stiffer dynamics of the thermophilic protein that contrasts the influence of the environment. Remarkably, lysozyme and thermolysin in all molecular environments reach a critical common flexibility when approaching the calorimetric melting temperature.


Caseins , Muramidase , Thermolysin , Muramidase/chemistry , Muramidase/metabolism , Thermolysin/chemistry , Thermolysin/metabolism , Caseins/chemistry , Glycerol/chemistry , Water/chemistry , Glucose/chemistry , Neutron Diffraction , Molecular Dynamics Simulation
19.
Nat Commun ; 15(1): 4276, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769296

Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.


Deoxycholic Acid , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Glucose , Deoxycholic Acid/metabolism , Animals , Gastrointestinal Microbiome/physiology , Female , Glucose/metabolism , Mice , Humans , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Clostridium/metabolism , Clostridium/genetics , Cholic Acid/metabolism , Male
20.
Commun Biol ; 7(1): 608, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769385

Diverse tumor metabolic phenotypes are influenced by the environment and genetic lesions. Whether these phenotypes extend to rhabdomyosarcoma (RMS) and how they might be leveraged to design new therapeutic approaches remains an open question. Thus, we utilized a Pax7Cre-ER-T2/+; NrasLSL-G12D/+; p53fl/fl (P7NP) murine model of sarcoma with mutations that most frequently occur in human embryonal RMS. To study metabolism, we infuse 13C-labeled glucose or glutamine into mice with sarcomas and show that sarcomas consume more glucose and glutamine than healthy muscle tissue. However, we reveal a marked shift from glucose consumption to glutamine metabolism after radiation therapy (RT). In addition, we show that inhibiting glutamine, either through genetic deletion of glutaminase (Gls1) or through pharmacological inhibition of glutaminase, leads to significant radiosensitization in vivo. This causes a significant increase in overall survival for mice with Gls1-deficient compared to Gls1-proficient sarcomas. Finally, Gls1-deficient sarcomas post-RT elevate levels of proteins involved in natural killer cell and interferon alpha/gamma responses, suggesting a possible role of innate immunity in the radiosensitization of Gls1-deficient sarcomas. Thus, our results indicate that glutamine contributes to radiation response in a mouse model of RMS.


Glutaminase , Glutamine , Sarcoma , Animals , Glutamine/metabolism , Mice , Glutaminase/metabolism , Glutaminase/genetics , Glutaminase/antagonists & inhibitors , Sarcoma/metabolism , Sarcoma/radiotherapy , Sarcoma/genetics , Glucose/metabolism , Disease Models, Animal , Radiation Tolerance
...