Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 725
Filter
1.
Sci Rep ; 14(1): 14643, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918421

ABSTRACT

Wheat flour is widely used in Poland for the preparation of bread, pasta and other foods. Due to the increasing number of people diagnosed with diet-related diseases, consumer awareness of health-promoting issues and interest in gluten-free products (GFP). There is a dynamic development of the market for these foods with high quality and nutritional value and minerals that benefit human health and prevent deficiencies in patients on a gluten-free diet. The aim of this study was to determine the content of minerals: Ca, Fe, Mg and Zn in flours using the ICP-OES method. The mineral composition of selected GF flours available on the Polish market was analysed. It was tested how they supplement the mineral requirements compared to gluten-containing flours. It was found that these products can be a valuable source of essential minerals, which are often in short supply, especially in patients with gastrointestinal disorders. As our study has shown, flours from the GFP group are a good source of essential minerals, especially in the case of chia and flax flours, as well as buckwheat, amaranth, quinoa, lupin or almonds flours.


Subject(s)
Calcium , Diet, Gluten-Free , Flour , Glutens , Iron , Magnesium , Zinc , Flour/analysis , Zinc/analysis , Iron/analysis , Magnesium/analysis , Glutens/analysis , Humans , Calcium/analysis , Nutritive Value , Triticum/chemistry , Minerals/analysis , Poland
2.
Food Chem ; 455: 139909, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843717

ABSTRACT

In our study, we explored how gluten's role during dough formation and thermal processing can mitigate the adverse effects of physical factors on product quality. We discovered that a gluten network with a gliadin/glutenin ratio of 5:5 effectively limits oil penetration into the dough's core. This particular ratio is found to reduce the exposure of hydrophobic groups due to the presence of hydrated ß-sheet structures. In contrast, gluten networks with higher gliadin proportions than typical wheat gluten tend to be looser, leading to increased chromophore exposure and facilitating more oil absorption. These observations highlighted the complex link between changes in gluten structure, varying protein compositions, and oil content in fried dough sticks. This research provided a foundation for developing specialized low-fat wheat flour and improving the quality of fried dough products.


Subject(s)
Cooking , Flour , Glutens , Hot Temperature , Triticum , Glutens/chemistry , Glutens/analysis , Flour/analysis , Triticum/chemistry , Gliadin/chemistry , Gliadin/analysis , Bread/analysis
3.
J Texture Stud ; 55(3): e12836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702990

ABSTRACT

A new technique known as dough crumb-sheet composite rolling (DC-SCR) was used to improve the quality of fresh noodles. However, there is a dearth of theoretical investigations into the optimal selection of specific parameters for this technology, and the underlying mechanisms are not fully understood. Therefore, the effects of dough crumb addition times in DC-SCR on the texture, cooking, and eating quality of fresh noodles were first studied. Then, the underlying regulation mechanism of DC-SCR technology on fresh noodles was analyzed in terms of moisture distribution and microstructure. The study demonstrated that the most significant enhancement in the quality of fresh noodles was achieved by adding dough crumbs six times. Compared with fresh noodles made without the addition of dough crumbs, the initial hardness and chewiness of fresh noodles made by adding six times of dough crumbs increased by 25.32% and 46.82%, respectively. In contrast, the cooking time and cooking loss were reduced by 28.45% and 29.69%, respectively. This quality improvement in fresh noodles made by DC-SCR came from the microstructural differences of the gluten network between the inner and outer layers of the dough sheet. A dense structure on the outside and a loose structure on the inside could endow the fresh noodles made by DC-SCR with higher hardness, a shortened cooking time, and less cooking loss. This study would provide a theoretical and experimental basis for creating high-quality fresh noodles.


Subject(s)
Bread , Cooking , Flour , Food Handling , Water , Cooking/methods , Flour/analysis , Food Handling/methods , Bread/analysis , Hardness , Glutens/analysis , Food Quality , Triticum/chemistry , Humans
4.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731596

ABSTRACT

This work aimed to develop gluten-free snacks such as crispbread based on beetroot pomace (Beta vulgaris L.) and golden linseed (Lini semen). Beetroot is attracting more and more consumer attention because of its nutritional and health properties. The use of beet pomace contributes to waste management. Linseed, known as a superfood with many health-promoting properties, was used to produce crispbreads as an alternative to cereals, which are allergens. Beetroot pomace and whole or ground linseed were used in different proportions to produce crispbread snacks. Chemical and physical analyses were performed including water activity, dry matter, betalains, and polyphenols content, as well as Fourier transform infrared spectroscopy (FTIR). A sensory evaluation and microstructure observations were also performed. The obtained snacks were characterized by low water activity (0.290-0.395) and a high dry matter content (93.43-97.53%), which ensures their microbiological stability and enables longer storage. Beetroot pomace provided betalains-red (14.59-51.44 mg betanin/100 g d.m.) and yellow dyes (50.02-171.12 mg betanin/100 g d.m.)-while using linseed enriched the product with polyphenols (730-948 mg chlorogenic acid/100 g d.m.). FTIR analysis showed the presence of functional groups such as the following: -OH, -C-O, -COOH, and -NH. The most desired overall consumer acceptability was achieved for snacks containing 50% beetroot pomace and 50% linseed seeds. The obtained results confirmed that beetroot pomace combined with linseed can be used in the production of vegetable crispbread snacks.


Subject(s)
Beta vulgaris , Flax , Snacks , Beta vulgaris/chemistry , Flax/chemistry , Vegetables/chemistry , Betalains/chemistry , Betalains/analysis , Polyphenols/analysis , Polyphenols/chemistry , Spectroscopy, Fourier Transform Infrared , Diet, Gluten-Free , Phytochemicals/chemistry , Glutens/analysis , Glutens/chemistry
5.
Food Chem ; 453: 139709, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781908

ABSTRACT

As an emerging physical technology, magnetic fields have been used to improve the quality of frozen and refrigerated foods. This study compared the effect of applying a static magnetic field (2 mT) at different stages of freezing and storage on the quality of frozen dough. Results suggested that the magnetic field significantly impacted frozen dough quality. It not only prevented the formation of ice crystals during the pre-freezing stage but also inhibited ice crystal growth during the following frozen storage. This effect helped to maintain the integrity of gluten proteins and their adhesion to starch granules by preventing the breakage of disulfide bonds and the depolymerization of gluten macromolecules. It was also observed that yeast inactivation and glutathione release were reduced, resulting in improved air retention and air production capacity of the dough. This, in turn, led to a more appealing volume and texture quality of the finished bread.


Subject(s)
Bread , Flour , Freezing , Magnetic Fields , Triticum , Triticum/chemistry , Bread/analysis , Flour/analysis , Glutens/chemistry , Glutens/analysis , Cooking
6.
J Food Sci ; 89(6): 3700-3712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709880

ABSTRACT

The densified powder material is convenient for storage and transportation, with broad market application prospects. In this study, the discrete element model parameters required for simulating gluten densification were calibrated using the Hertz-Mindlin with JKR contact model. Initially, physical testing techniques were utilized to assess the size distribution, density, and angle of repose (AoR) of gluten particles. Following this, the Plackett-Burman test, the steepest ascent test, and the Box-Behnken test were conducted, and the significant factors were obtained: The coefficient of rolling friction (P-P) was 1.038, the coefficient of static friction (P-P) was 0.071, and the surface energy (P-P) was 0.047. Finally, the AoR and densification simulations were performed under the optimal parameter combination, along with validation tests. The results showed that the relative error between the simulated and tested AoR was 0.52%. The compression ratio and compression force curves of simulated and actual were similar.


Subject(s)
Glutens , Glutens/chemistry , Glutens/analysis , Calibration , Powders/chemistry , Food Handling/methods , Particle Size , Friction , Models, Theoretical
7.
Indian J Gastroenterol ; 43(3): 668-678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753225

ABSTRACT

OBJECTIVES: Nutritional quality of gluten-free (GF) food products is very important, as patients with celiac disease consume these products for lifelong. There is paucity of data on the nutritional content and cost of GF food products compared with their gluten-containing (GC) counterparts from India (Asia). DESIGN: After a detailed market survey, packaged and labeled GF food products (n=485) and their packaged GC counterparts (n=790) from the supermarkets of Delhi (India) and e-commerce websites were included. Nutritional content and cost/100 g food (in US dollars) were calculated using the information on food label. RESULTS: Gluten-free food products were 232% (range: 118% to 376%) more expensive than their GC counterparts. Energy content of all GF food products was similar to their GC counterparts, except cereal-based snacks (GF: 445 kcal vs. GC: 510 kcal, p<0.001). The protein content was significantly lower in GF pasta and macaroni products (single-grain: GF: 6.5 g vs. GC:11. 5 g, p-0.002; multigrain: GF:7.6 g vs. GC:11.5 g, p-0.027), cereal flours (single-grain: GF: 7.6 g vs. GC: 12.3 g, p<0.001; multigrain: GF:10.9 g vs. GC: 14.1 g, p-0.009) and nutritional bars (GF: 21.81 g vs. GC:26 g, p-0.028) than their GC counterparts. Similarly, the dietary-fiber content of GF pasta and macaroni products, cereal flours, cereal premix and nutritional bars of GF foods was significantly lower than their GC counterparts. Gluten-free bread and confectionary items, biscuits and cookies and snacks had higher total fats and trans-fat content than their GC counterparts. Gluten-free cereal-based snacks had higher sodium content than their GC counterparts (GF: 820 mg vs. GC:670 mg; p<0.001). CONCLUSION: GF foods are significantly more expensive, contain less protein and dietary fiber and higher fat, trans-fat and sodium than their GC counterparts. Strategies must be developed to reduce the cost and improve the nutritional profile of GF foods.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Glutens , Nutritive Value , Diet, Gluten-Free/economics , India , Glutens/analysis , Humans , Celiac Disease/diet therapy , Food Labeling , Costs and Cost Analysis , Food Analysis
8.
Food Chem ; 449: 139204, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38613992

ABSTRACT

People with celiac disease or gluten sensitivity may experience an immune reaction to the protein called gluten, which is present in wheat, barley, and rye. A strict gluten-free diet is the sole cure for these ailments. There are chances of food fraud about the claim of being gluten-free food items. As a result, there is a rising need for trustworthy and precise ways to identify gluten. There are many methods to detect gluten in food samples viz., enzyme-linked immunosorbent assay 1 Surface plasmon resonance (SPR), Electrochemical sensors, Fluorescence-based sensors, etc. The use of sensors is one of the most promising methods for gluten detection. For detecting gluten, a variety of sensors, including optical, electrochemical, and biosensors, have been developed with different limits of detection and sensitivity. The present review reports the recent advancements (2019-2023) in the development of sensors for gluten detection in food. We may conclude that sensitivity and limit of detection are not related to the type of sensor used (aptamer or antibody-based), however, there are advancements, with the year, on the simplicity of the material used like paper-based sensors and paradigm shift to reagent free sensors by the spectral analysis. Also, recent work shows the potential of IoT-based studies for gluten detection.


Subject(s)
Biosensing Techniques , Food Analysis , Glutens , Glutens/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Humans , Electrochemical Techniques/instrumentation , Surface Plasmon Resonance/instrumentation , Enzyme-Linked Immunosorbent Assay/instrumentation , Celiac Disease/diagnosis , Celiac Disease/diet therapy
9.
J Food Sci ; 89(5): 2645-2658, 2024 May.
Article in English | MEDLINE | ID: mdl-38563094

ABSTRACT

Xylanases are mainly utilized in bakery industry for the hydrolysis of dietary fiber-based fractions. Their applications in gluten-free products have not been considered before. In the present study, the xylanase produced by Aureobasidium pullulans NRRL Y-2311-1 was utilized in a mulberry and rice flours-based gluten-free cookie formulation for the first time. Effects of various xylanase concentrations on gluten-free dough rheology and cookie characteristics were elucidated. Only rice flour-based cookie and only wheat flour-based cookie formulations were also prepared as comparison. Incorporation of xylanase into all cookie recipes resulted in softer cookie doughs with lower absolute stickiness. The hardness and absolute stickiness of the cookie doughs prepared by the mixture of mulberry and rice flours decreased by the addition of the enzyme into the formulation in a concentration-dependent manner. Enzyme concentrations above 100 U/100 g flour did not provide statistically significant further changes on gluten-free cookie doughs. Incorporation of xylanase into the cookie recipes resulted in increased baking loss and spread ratio in an enzyme concentration-dependent manner for all cookie types. Hardness values of both types of gluten-free cookies decreased by xylanase incorporation. Different effects on fracturability were observed depending on the cookie type and enzyme concentration. Enzyme concentration of 100 U/100 g flour provided mulberry and rice flours-based cookies with a more flexible and softer structure. No significant effects on color parameters of cookies were observed by xylanase incorporation.


Subject(s)
Diet, Gluten-Free , Flour , Morus , Oryza , Rheology , Flour/analysis , Oryza/chemistry , Morus/chemistry , Ascomycota/enzymology , Food Handling/methods , Endo-1,4-beta Xylanases/metabolism , Hardness , Cooking/methods , Dietary Fiber/analysis , Triticum/chemistry , Glutens/analysis
10.
J Food Sci ; 89(5): 2747-2760, 2024 May.
Article in English | MEDLINE | ID: mdl-38563096

ABSTRACT

In this study, a new electrochemical sensor based on molybdenum disulfide (MoS2) nanoflowers/glassy carbon electrode (GCE was created for the sensitive detection of gluten. The prepared nanocatalysts were characterized using scanning electron microscopy with energy dispersive spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. The effects of the prepared nanocatalysts, pH value, and dropping amounts on the results were examined in detail. The electrochemical performance of the developed sensor (MoS2 nanoflowers/GCE) was then evaluated using differential pulse voltammetry, and the sensor was found to have significant electrochemical activity against gluten. A substantial linear connection was observed in the range of 0.5-100 ppm of gluten concentration under optimum experimental circumstances, and the detection limit between peak current and gluten concentration was determined as 1.16 ppm. The findings showed that the MoS2 nanoflowers/GCE gluten sensor has exceptional selectivity and stability. Finally, the generated electrochemical sensor was effectively utilized for gluten detection in commercial gluten-containing materials with a detection limit of 0.1652 ppm. Thus, the developed MoS2 nanoflowers/GCE sensor offers a potential method for the detection of other molecules and is a promising candidate for gluten detection in commercial samples.


Subject(s)
Disulfides , Electrochemical Techniques , Enzyme-Linked Immunosorbent Assay , Glutens , Limit of Detection , Molybdenum , Molybdenum/chemistry , Disulfides/chemistry , Glutens/analysis , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Electrodes , Nanostructures/chemistry , Food Contamination/analysis , Photoelectron Spectroscopy , X-Ray Diffraction
11.
J Proteome Res ; 23(5): 1649-1665, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38574199

ABSTRACT

Plant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes. We devised a proteomics method to discern the protein content of these pastes. Protocols involved extracting soluble proteins using 0.5 M NaCl and 30 mM Tris-HCl solutions and then targeting insoluble proteins, such as gliadins and glutenins, with a buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, and 75 mM DTT. Flour paste's proteome is diverse (1942 proteins across 759 groups), contrasting with starch paste's predominant starch-associated protein makeup (218 proteins in 58 groups). Transformation into pastes reduces proteomes' complexity. Testing on historical bookbindings confirmed the use of flour-based glue, which is rich in gluten and serpins. High levels of deamidation were detected, particularly for glutamine residues, which can impact the solubility and stability of the glue over time. The mass spectrometry proteomics data have been deposited to the ProteomeXchange, Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the data set identifier MSV000093372 (ftp://MSV000093372@massive.ucsd.edu).


Subject(s)
Adhesives , Flour , Glutens , Proteome , Starch , Triticum , Triticum/chemistry , Flour/analysis , Starch/chemistry , Proteome/analysis , Proteome/chemistry , Adhesives/chemistry , Glutens/chemistry , Glutens/analysis , Proteomics/methods , Plant Proteins/analysis , Gliadin/chemistry , Gliadin/analysis
12.
Food Chem ; 450: 139219, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640531

ABSTRACT

Foxtail millet and sourdough are used to make foxtail millet sourdough steamed bread to improve the flavor and taste. Compared with the conventional freeze-thaw treatment (CFT), the effect of magnetic field-assisted freeze-thaw treatment (MFT) on the storage quality of foxtail millet sourdough and steamed bread is explored. The results showed that compared with CFT, MFT shortened the phase transition time of dough; decreased the water loss rate, the water mobility, and the freezable water content; increased the fermentation volume; stabilized the rheological properties; and minimized the damage of freezing and thawing to the secondary structure and microstructure of the gluten. In addition, an analysis of the specific volume, texture, surface color, and texture structure showed that MFT was beneficial to slowing the deterioration of the steamed bread texture. Finally, MFT effectively inhibited the growth and recrystallization of ice crystals during freezing and thawing, improving the quality of millet dough and steamed bread.


Subject(s)
Bread , Freezing , Setaria Plant , Taste , Bread/analysis , Setaria Plant/chemistry , Setaria Plant/growth & development , Food Handling , Fermentation , Flour/analysis , Magnetic Fields , Glutens/chemistry , Glutens/analysis , Rheology
13.
Plant Foods Hum Nutr ; 79(2): 545-550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642193

ABSTRACT

Gluten-free foods (GF) availability on supermarket shelves is growing and it is expected to continue expanding in the years ahead. These foods have been linked to a lower content of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs), molecules that trigger gastrointestinal symptoms in sensitive persons. In this study, the FODMAP content of 25 cereal-based GF foods in Spain (breakfast cereals, pasta, bread, biscuits, bakery products, and dough and puff pastry) and 25 gluten-containing equivalents (GC) available in the same supermarket were analysed and compared. Lactose, fructose, glucose, sorbitol, mannitol, raffinose, stachyose and fructans were quantified. In a like-by-like analysis, GF foods were found to generally contain fewer FODMAPs than their GC counterparts. The ingredients used in the manufacture of GF cereal-based foods may contribute to this fact. When the individually wrapped size was considered, the proportion of samples classified as high-FODMAPs in GC and GF foods showed a trend towards fewer samples in the GF. However, not all the GF samples were low-FODMAP. Altogether, our findings provide essential information for FODMAP content databases of GF products in Spain.


Subject(s)
Diet, Gluten-Free , Disaccharides , Edible Grain , Glutens , Monosaccharides , Oligosaccharides , Polymers , Edible Grain/chemistry , Spain , Monosaccharides/analysis , Glutens/analysis , Oligosaccharides/analysis , Disaccharides/analysis , Polymers/analysis , Fermentation , Fructans/analysis , Lactose/analysis , Bread/analysis , Humans , Raffinose/analysis , Fructose/analysis
14.
J Food Sci ; 89(6): 3484-3493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685867

ABSTRACT

Potato whole flour is a promising way to improve the nutrition of tough biscuits, while its gluten-free characteristic was difficult to form acceptable texture properties. In this study, cellulase was used to degrade the cellulose in dough enriched with potato whole flour, so as to mitigate the interference of cellulose with the gluten network, resulting in forming the potato whole flour biscuit with great characteristics. Results indicated that cellulase within 0.2% led to the gradually reduced G' and G'' values of dough from 5.50×104 to 4.00×104 and 2.66×104 to 1.35×104, respectively. Cellulase at 0.2% resulted in the significantly increased tensile properties of the dough compared to the control. The incorporation of cellulase within 0.2% also led to the tightly ordered and intact network structure base on the results of SEM, disulfide bonds determination and FTIR. Those results indicated that cellulase was beneficial to improve the baking quality of dough, which was conductive to form tough biscuit with great characteristics. The hardness, crunchiness, crispness and specific volume analysis results confirmed that 0.2% cellulase resulted in the significantly decreased hardness by 45.25% and the significantly increased specific volume, crunchiness and crispness by 24.74%, 121.20% and 156.47%, respectively. Overall, cellulase ultimately improved the quality of the biscuits by improving the properties and structure of the dough. It was of great significance for the utilization of potato whole flour resources and the industrial production of its tough biscuits. PRACTICAL APPLICATION: The results showed that inclusion of cellulase led to the reduced hardness and increased crunchiness, crispness, and specific volume of potato whole flour tough biscuits. Cellulase could be used as a potential improver of tough biscuits. This study will provide guidance for practical uses of cellulase in improving potato whole flour dough and tough biscuit quality.


Subject(s)
Bread , Cellulase , Flour , Solanum tuberosum , Solanum tuberosum/chemistry , Cellulase/chemistry , Cellulase/metabolism , Flour/analysis , Bread/analysis , Food Handling/methods , Hardness , Cooking/methods , Cellulose/chemistry , Glutens/analysis , Tensile Strength
15.
J Sci Food Agric ; 104(11): 6893-6901, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38591632

ABSTRACT

BACKGROUND: Gluten composition is an important quality parameter of wheat flour. Reversed-phase high-performance liquid chromatography (RP-HPLC) is a state-of-the-art method for its analysis. As this is a very labour-intensive and time-consuming procedure, alternative faster methods are desirable. Enzyme-linked immunosorbent assay (ELISA) is a high-throughput method often used for the analysis of gluten traces in gluten-free products. In this proof-of-principle study, we introduce an experimental triple ELISA for the relative quantitation of gliadins, high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) of one wheat flour extract. RESULTS: The results of 80 common wheat flour samples obtained from the triple ELISA and RP-HPLC were correlated. The results for gliadins (r = 0.69) and HMW-GS (r = 0.81) showed a medium and high correlation, respectively. Only a very weak correlation of ELISA and RP-HPLC results was observed for LMW-GS (r = 0.49). Results for glutenins (r = 0.69) and gluten (r = 0.72) had a medium correlation. The gliadin/glutenin ratio (r = 0.47) and LMW-GS/HMW-GS ratio (r = 0.40) showed a weak or no correlation. The gliadin, LMW-GS and gluten contents were lower and the HMW-GS content was higher in the ELISA measurement compared to RP-HPLC. CONCLUSION: The quantitation of gliadins and HMW-GS by the experimental triple ELISA showed comparable results to RP-HPLC, whereas no strong correlation between the results from the two methods was found for LMW-GS. Overall, the experimental triple ELISA is suitable for relative gluten quantitation, especially for the analysis of large sample sets. Further work will focus on improving the experimental procedure of the ELISA. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Flour , Gliadin , Glutens , Triticum , Glutens/analysis , Triticum/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Flour/analysis , Gliadin/analysis , Gliadin/chemistry , Chromatography, High Pressure Liquid/methods , Molecular Weight
16.
J Food Sci ; 89(6): 3384-3399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660933

ABSTRACT

Celiac disease (CD) is an autoimmune disorder that produces inflammation in the gut mucosa, affecting nutrient digestion and absorption. CD affects 0.3% to 1.0% of the world's population and only 15% have a clinical diagnosis. The only effective treatment is a gluten-free diet. The objective of this study was to develop a dough for gluten-free pasta prepared with mixtures of flours from corn, amaranth, soy, and rice. According to the FAO standard of 1975, the resultant mixtures should have a protein content greater than 11.0% and a chemical rating of not less than 70. Three mixtures were obtained: corn‒soy (81-19), corn‒rice‒soy (48-37-15), and corn‒rice‒amaranth (49-32-14). To improve the handling of the pasta and its physical characteristics (sedimentation, degree of absorption, and cracked shaped pasta) compared to a control (commercial) gluten-free pasta, carboxymethylcellulose, an emulsifier (distilled monoglycerides), and egg albumin were added at concentrations of 0.3, 0.5, and 5.0%, respectively. The corn flour was pregelatinized, and the extrusion was repeated twice. The experimental pasta had a protein content of 14.0%, which was higher than the commercial pasta (4.5%), and a gluten content of less than 20 mg/kg which, according to the Codex Alimentarius International Food Standard (2015), it is considered gluten-free. The corn‒rice‒soy pasta obtained had an acceptance and liking similar to a commercial brand. This pasta may widen the gluten-free products commercially available to CD patients in Mexico, which nowadays is limited and expensive. PRACTICAL APPLICATION: Raw materials available in our country were selected to promote their consumption and diversify the ingredients used in the production of gluten-free products. The pasta obtained presented a higher nutritional content than a commercial gluten-free pasta and was comparable to that of a pasta made with wheat.


Subject(s)
Celiac Disease , Diet, Gluten-Free , Flour , Oryza , Zea mays , Celiac Disease/diet therapy , Humans , Flour/analysis , Zea mays/chemistry , Oryza/chemistry , Amaranthus/chemistry , Glycine max/chemistry , Food Handling/methods , Glutens/analysis
17.
Rocz Panstw Zakl Hig ; 75(1): 13-20, 2024.
Article in English | MEDLINE | ID: mdl-38578113

ABSTRACT

Background: The rising prevalence of gluten-related disorders such as celiac disease explains the increased consumption of gluten-free foods (GFF). However, these foods must be safe in terms of both gluten content and contamination by pathogenic microorganisms in order to avoid food poisoning. Objective: The objective of this study was to assess the microbiological quality of gluten-free meals, naturally gluten free foods, and gluten free-labelled products. Material and Methods: We collected 62 GFF samples including 20 meals (M-GF), 22 naturally gluten free (N-GFF) and 20 labelled (L-GFF) products, which were investigated for microbiological contamination according to Moroccan regulations guidelines, issued by the International Organization for Standardization (ISO). The analysis consisted of the detection of Salmonella and Listeria monocytogenes in each sample, and the quantification of the microbial load of the following six micro-organisms: total aerobic mesophilic flora, total coliforms, fecal coliforms, Staphylococcus aureus, Sulphite-Reducing Anaerobic, and yeasts and molds. Results: A total of 372 analyses were carried out, showing a microbiological contamination rate of 5.1%. This contamination concerned N-GFF in 8.3% (predominantly with yeasts and molds), and meals prepared at home in 11.7 (predominantly with Staphylococcus aureus and coliforms). Only one case (0.8%) of contamination was observed in products labelled gluten-free and no contamination was noticed in meals prepared in food services. Listeria monocytgenes and Salmonella were not detected in any samples of food analyzed. These results indicate a good compliance of L-GFP and M-GF prepared in food services, while unsatisfactory quality was observed in N-GFF and M-GF prepared at home. Conclusion: Therefore, rigorous hygienic practices and adequate corrective measures should be considered by celiac patients, especially regarding the N-GFF and M-GF prepared at home.


Subject(s)
Celiac Disease , Food Services , Humans , Diet, Gluten-Free , Glutens/analysis , Meals , Fungi , Food Contamination/analysis
18.
Food Chem ; 448: 139025, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38522293

ABSTRACT

Monitoring of the accidental presence of gluten (Glu), resulting from cross-contamination, is imperative in different industries, in particular food industry. The objective of this study was the development of an analytical platform utilizing thin-layer chromatography (TLC) with colorimetric read-out for making binary (yes/no) decisions on surfaces and/or point of these industries. The composition of the extractive phase was optimized with commercial products used in cleaning processing lines. Subsequently, an exploration of TLC separation and detection was undertaken. CN-modified nanosilica plates and 30:70 acetonitrile:water were used to achieve a selective signal for Glu residues. The study of the detection performance showed that both spectroscopic measurement and image analysis were resulted in satisfactory results for quantitate analysis (RSD = 5 %, LOD = 0.12 mg). The practical application of the proposed methodology on surfaces of the food processing lines. This work demonstrated the operational feasibility in detecting gluten cross-contaminations within the food processing industry.


Subject(s)
Colorimetry , Food Contamination , Glutens , Food Contamination/analysis , Glutens/analysis , Glutens/chemistry , Colorimetry/methods , Chromatography, Thin Layer/methods , Food Industry
19.
Food Chem ; 448: 139103, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547708

ABSTRACT

The protein content (PC) and wet gluten content (WGC) are crucial indicators determining the quality of wheat, playing a pivotal role in evaluating processing and baking performance. Original reflectance (OR), wavelet feature (WF), and color index (CI) were extracted from hyperspectral and RGB sensors. Combining Pearson-competitive adaptive reweighted sampling (CARs)-variance inflation factor (VIF) with four machine learning (ML) algorithms were used to model accuracy of PC and WGC. As a result, three CIs, six ORs, and twelve WFs were selected for PC and WGC datasets. For single-modal data, the back-propagation neural network exhibited superior accuracy, with estimation accuracies (WF > OR > CI). For multi-modal data, the random forest regression paired with OR + WF + CI showed the highest validation accuracy. Utilizing the Gini impurity, WF outweighed OR and CI in the PC and WGC models. The amalgamation of MLs with multimodal data harnessed the synergies among various remote sensing sources, substantially augmenting model precision and stability.


Subject(s)
Algorithms , Glutens , Machine Learning , Plant Proteins , Triticum , Triticum/chemistry , Glutens/analysis , Glutens/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry
20.
J Sci Food Agric ; 104(10): 6298-6310, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38501745

ABSTRACT

BACKGROUND: The celiac population usually struggle finding nutritive gluten-free (GF) baked goods. GF foods can be improved using legume flours. Eleven GF cake formulations were elaborated according to different percentages of lentil flour (LF), corn flour (CF) and rice flour (RF) using a simplex lattice design. Water holding capacity and particle size of flours were evaluated. Moisture, aw, pH, specific volume, texture profile, relaxation, color and alveolar characteristics were determined for crumbs of all formulations. An optimization process was used to enhance the technological and nutritional attributes, selecting the three best formulations containing LF: 46% LF + 54% RF (CLF+RF); 49% LF + 51% CF (CLF+CF); and 100% LF (CLF), evaluated in their proximal composition and sensory characteristics. Linear and quadratic models for predicting the behavior of GF lentil cakes were obtained. RESULTS: LF and CF could favor water incorporation and show more resistance to enzymatic digestion than RF. Formulations with LF showed an improvement in specific volume and alveolar parameters, while use of RF led to better cohesiveness, elasticity and resilience but with a deterioration in chewiness and firmness. CLF can be labeled as high in protein and fiber and presented the lowest amounts of lipids, carbohydrates and energy content. Consumer preference leaned towards CLF+RF. CONCLUSION: It was possible to elaborate GF cakes using LF, obtaining nutritive products that can be offered to people intolerant to gluten ingestion. © 2024 Society of Chemical Industry.


Subject(s)
Diet, Gluten-Free , Flour , Glutens , Lens Plant , Nutritive Value , Lens Plant/chemistry , Humans , Flour/analysis , Glutens/chemistry , Glutens/analysis , Celiac Disease/diet therapy , Zea mays/chemistry , Seeds/chemistry , Oryza/chemistry , Food Handling/methods , Adult , Taste , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...