Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Mol Neurobiol ; 61(7): 4577-4588, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38109005

ABSTRACT

We previously reported that 2-arachidonoylglycerol (2-AG) synthesis by diacylglycerol lipase (DAGL) and lysophosphatidate phosphohydrolase (LPAP) and hydrolysis by monoacylglycerol lipase (MAGL) in rod outer segments (ROS) from bovine retina were differently modified by light applied to the retina. Based on these findings, the aim of the present research was to evaluate whether 2-AG metabolism could be modulated by proteins involved in the visual process. To this end, ROS kept in darkness (DROS) or obtained in darkness and then subjected to light (BROS) were treated with GTPγS and GDPßS, or with low and moderate ionic strength buffers for detaching soluble and peripheral proteins, or soluble proteins, respectively. Only DAGL activity was stimulated by the application of light to the ROS. GTPγS-stimulated DAGL activity in DROS reached similar values to that observed in BROS. The studies using different ionic strength show that (1) the highest decrease in DROS DAGL activity was observed when both phosphodiesterase (PDE) and transducin α (Tα) are totally membrane-associated; (2) the decrease in BROS DAGL activity does not depend on PDE association to membrane, and that (3) MAGL activity decreases, both in DROS and BROS, when PDE is not associated to the membrane. Our results indicate that the bioavailability of 2-AG under light conditions is favored by G protein-stimulated increase in DAGL activity and hindered principally by Tα/PDE association with the ROS membrane, which decreases DAGL activity.


Subject(s)
Arachidonic Acids , Endocannabinoids , Glycerides , Rod Cell Outer Segment , Animals , Endocannabinoids/metabolism , Arachidonic Acids/metabolism , Rod Cell Outer Segment/metabolism , Cattle , Glycerides/metabolism , Light Signal Transduction , Transducin/metabolism , Light , Lipoprotein Lipase/metabolism , Phosphoric Diester Hydrolases/metabolism , Vision, Ocular/physiology , Vision, Ocular/drug effects
2.
Arch Anim Nutr ; 76(3-6): 191-204, 2022.
Article in English | MEDLINE | ID: mdl-36688467

ABSTRACT

This study aimed to determine whether butyric acid glycerides can replace conventional growth promoters, favour intestinal health, and improve performance. A total of 420 birds were used, divided into four groups with seven repetitions per group (n = 15), as follows: NC, negative control (no promoter); PC, positive control (basal diet + enramycin + salinomycin); MDT-BUT, a diet supplemented with mono-, di-, and triglycerides of butyric acid; TRI-BUT, a diet supplemented with tributyrin of butyric acid glycerides. Productive performance was measured on days 1, 21, 35, and 42. Excreta were collected for counting Escherichia coli and coliforms on days 21 and 42. Blood samples were collected at 42 days of age to analyse oxidant/antioxidant status, and the intestine was removed for intestinal morphometry. From 1 to 42 days, there was greater body weight, weight gain, and feed conversion in the PC, MDT-BUT, and TRI-BUT groups than in the NC group; the production efficiency index was 21.10% higher in all groups than in the NC group (p = 0.001). At 21 days, there were lower E. coli counts of 86.8% in the TRI-BUT and 99.7% in PC groups than in the NC and MDT-BUT groups (p < 0.001), while at 42 days, lower counts were found in the PC, MDT-BUT, and TRI-BUT groups than the NC group (p < 0.001). There were lower total protein and globulin levels in the MDT-BUT and TRI-BUT groups than in the NC group (p = 0.001). Cholesterol levels were lower in the TRI-BUT group, followed by MDT-BUT and PC groups, than in the NC group (p = 0.001), while lower triglyceride levels were found in the TRI-BUT group than in the NC and PC groups (p = 0.001). There were lower levels of lipid peroxidation and reactive oxygen species in the TRI-BUT group, followed by the PC group than the NC group (p < 0.001); on the other hand, there were higher protein thiol levels in the TRI-BUT group than the NC group (p = 0.041). The villus:crypt ratio increase was 79.4% in the TRI-BUT group, followed by the 45.1% PC and 19.8% MDT-BUT groups than the NC (p < 0.001). These findings suggest that adding butyric acid confers antimicrobial and antioxidant activity and improves birds' production efficiency, intestinal health, and metabolism. Butyric acid glycerides are an effective alternative to conventional growth promoters.


Subject(s)
Chickens , Diet , Animals , Diet/veterinary , Butyric Acid/metabolism , Glycerides/metabolism , Escherichia coli , Animal Feed/analysis , Dietary Supplements/analysis , Intestines , Antioxidants/metabolism
3.
Basic Clin Pharmacol Toxicol ; 129(1): 3-14, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33905617

ABSTRACT

The endocannabinoid 2-arachidonoylglycerol (2-AG) is an atypical neurotransmitter synthesized on demand in response to a wide range of stimuli, including exposure to stress. Through the activation of cannabinoid receptors, 2-AG can interfere with excitatory and inhibitory neurotransmission in different brain regions and modulate behavioural, endocrine and emotional components of the stress response. Exposure to chronic or intense unpredictable stress predisposes to maladaptive behaviour and is one of the main risk factors involved in developing mood disorders, such as major depressive disorder (MDD). In this review, we describe the molecular mechanisms involved in 2-AG signalling in the brain of healthy and stressed animals and discuss how such mechanisms could modulate stress adaptation and susceptibility to depression. Furthermore, we review preclinical evidence indicating that the pharmacological modulation of 2-AG signalling stands as a potential new therapeutic target in treating MDD. Particular emphasis is given to the pharmacological augmentation of 2-AG levels by monoacylglycerol lipase (MAGL) inhibitors and the modulation of CB2 receptors.


Subject(s)
Antidepressive Agents/pharmacology , Arachidonic Acids/metabolism , Depressive Disorder, Major/drug therapy , Endocannabinoids/metabolism , Glycerides/metabolism , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Animals , Antidepressive Agents/therapeutic use , Brain/drug effects , Brain/metabolism , Brain/pathology , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Depressive Disorder, Major/psychology , Disease Models, Animal , Humans , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/psychology , Synaptic Transmission/drug effects
4.
Br J Pharmacol ; 176(10): 1541-1551, 2019 05.
Article in English | MEDLINE | ID: mdl-30101419

ABSTRACT

BACKGROUND AND PURPOSE: The endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) bind to CB1 and CB2 cannabinoid receptors in the brain and modulate the mesolimbic dopaminergic pathway. This neurocircuitry is engaged by psychostimulant drugs, including cocaine. Although CB1 receptor antagonism and CB2 receptor activation are known to inhibit certain effects of cocaine, they have been investigated separately. Here, we tested the hypothesis that there is a reciprocal interaction between CB1 receptor blockade and CB2 receptor activation in modulating behavioural responses to cocaine. EXPERIMENTAL APPROACH: Male Swiss mice received i.p. injections of cannabinoid-related drugs followed by cocaine, and were then tested for cocaine-induced hyperlocomotion, c-Fos expression in the nucleus accumbens and conditioned place preference. Levels of endocannabinoids after cocaine injections were also analysed. KEY RESULTS: The CB1 receptor antagonist, rimonabant, and the CB2 receptor agonist, JWH133, prevented cocaine-induced hyperlocomotion. The same results were obtained by combining sub-effective doses of both compounds. The CB2 receptor antagonist, AM630, reversed the inhibitory effects of rimonabant in cocaine-induced hyperlocomotion and c-Fos expression in the nucleus accumbens. Selective inhibitors of anandamide and 2-AG hydrolysis (URB597 and JZL184, respectively) failed to modify this response. However, JZL184 prevented cocaine-induced hyperlocomotion when given after a sub-effective dose of rimonabant. Cocaine did not change brain endocannabinoid levels. Finally, CB2 receptor blockade reversed the inhibitory effect of rimonabant in the acquisition of cocaine-induced conditioned place preference. CONCLUSION AND IMPLICATIONS: The present data support the hypothesis that CB1 and CB2 receptors work in concert with opposing functions to modulate certain addiction-related effects of cocaine. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Subject(s)
Arachidonic Acids/metabolism , Cocaine/pharmacology , Endocannabinoids/metabolism , Glycerides/metabolism , Polyunsaturated Alkamides/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Reward , Animals , Behavior, Animal/drug effects , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Conditioning, Classical , Male , Mice , Motor Activity/drug effects , Protein Binding , Proto-Oncogene Proteins c-fos/metabolism
5.
Neuroscience ; 362: 168-180, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-28844762

ABSTRACT

Alzheimer's disease (AD) is the most prevalent disorder of senile dementia mainly characterized by amyloid-beta peptide (Aß) deposits in the brain. Cannabinoids are relevant to AD as they exert several beneficial effects in many models of this disease. Still, whether the endocannabinoid system is either up- or down-regulated in AD has not yet been fully elucidated. Thus, the aim of the present paper was to analyze endocannabinoid 2-arachidonoylglycerol (2-AG) metabolism in cerebral cortex synaptosomes incubated with Aß oligomers or fibrils. These Aß conformations were obtained by "aging" the 1-40 fragment of the peptide under different agitation and time conditions. A diminished availability of 2-AG resulting from a significant decrease in diacylglycerol lipase (DAGL) activity was observed in the presence of large Aß1-40 oligomers along with synaptosomal membrane damage, as judged by transmission electron microscopy and LDH release. Conversely, a high availability of 2-AG resulting from an increase in DAGL and lysophosphatidic acid phosphohydrolase activities occurred in the presence of Aß1-40 fibrils although synaptosomal membrane disruption was also observed. Interestingly, neither synaptosomal mitochondrial viability assayed by MTT reduction nor membrane lipid peroxidation assayed by TBARS formation measurements were altered by Aß1-40 oligomers or fibrils. These results show a differential effect of Aß1-40 peptide on 2-AG metabolism depending on its conformation.


Subject(s)
Amyloid beta-Peptides/metabolism , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Peptide Fragments/metabolism , Synaptosomes/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Humans , Lipid Peroxidation , Lipoprotein Lipase/metabolism , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondria/ultrastructure , Peptide Fragments/chemistry , Peptide Fragments/ultrastructure , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Rats, Wistar , Synaptosomes/ultrastructure
6.
Microb Pathog ; 99: 178-190, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27565088

ABSTRACT

Quorum sensing is a cell-to-cell communication mechanism leading to differential gene expression in response to high population density. The autoinducer-1 (AI-1) type quorum sensing system is incomplete in Escherichia coli and Salmonella due to the lack of the AI-1 synthase (LuxI homolog) responsible for acyl homoserine lactone (AHL) synthesis. However, these bacteria encode the AHL receptor SdiA (a LuxR homolog) leading to gene regulation in response to AI-1 produced by other bacteria. This study aimed to model the SdiA protein of Salmonella enterica serovar Enteritidis PT4 578 based on three crystallized SdiA structures from Enterohemorrhagic E. coli (EHEC) with different ligands. Molecular docking of these predicted structures with AHLs, furanones and 1-octanoyl-rac-glycerol were also performed. The available EHEC SdiA structures provided good prototypes for modeling SdiA from Salmonella. The molecular docking of these proteins showed that residues Y63, W67, Y71, D80 and S134 are common binding sites for different quorum modulating signals, besides being conserved among other LuxR type proteins. We also show that AHLs with twelve carbons presented better binding affinity to SdiA than AHLs with smaller side chains in our docking analysis, regardless of the protein structures used. Interestingly, the conformational changes provided by AHL binding resulted in structural models with increased affinities to brominated furanones. These results suggest that the use of brominated furanones to inhibit phenotypes controlled by quorum sensing in Salmonella and EHEC may present a good strategy since these inhibitors seem to specifically compete with AHLs for binding to SdiA in both pathogens.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/enzymology , Salmonella enteritidis/enzymology , Trans-Activators/chemistry , Trans-Activators/metabolism , Acyl-Butyrolactones/chemistry , Acyl-Butyrolactones/metabolism , Binding Sites , Furans/chemistry , Furans/metabolism , Glycerides/chemistry , Glycerides/metabolism , Models, Molecular , Molecular Docking Simulation , Octanols/chemistry , Octanols/metabolism , Protein Binding , Protein Conformation
7.
Eur Neuropsychopharmacol ; 26(1): 15-22, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26628106

ABSTRACT

2-arachidonoylglycerol (2-AG) is an endogenous ligand of the cannabinoid CB1 receptor. This endocannabinoid and its hydrolyzing enzyme, monoacylglycerol lipase (MAGL), are present in encephalic regions related to psychiatric disorders, including the midbrain dorsolateral periaqueductal grey (dlPAG). The dlPAG is implicated in panic disorder and its stimulation results in defensive responses proposed as a model of panic attacks. The present work verified if facilitation of 2-AG signalling in the dlPAG counteracts panic-like responses induced by local chemical stimulation. Intra-dlPAG injection of 2-AG prevented panic-like response induced by the excitatory amino acid N-methyl-d-aspartate (NMDA). This effect was mimicked by the 2-AG hydrolysis inhibitor (MAGL preferring inhibitor) URB602. The anti-aversive effect of URB602 was reversed by the CB1 receptor antagonist, AM251. Additionally, a combination of sub-effective doses of 2-AG and URB602 also prevented NMDA-induced panic-like response. Finally, immunofluorescence assay showed a significant increase in c-Fos positive cells in the dlPAG after local administration of NMDA. This response was also prevented by URB602. These data support the hypothesis that 2-AG participates in anti-aversive mechanisms in the dlPAG and reinforce the proposal that facilitation of endocannabinoid signalling could be a putative target for developing additional treatments against panic and other anxiety-related disorders.


Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Panic Disorder/drug therapy , Panic Disorder/metabolism , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Animals , Biphenyl Compounds/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Fluorescent Antibody Technique , Male , N-Methylaspartate , Panic Disorder/pathology , Periaqueductal Gray/pathology , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats, Wistar , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism
8.
Exp Gerontol ; 55: 134-42, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24768821

ABSTRACT

2-Arachidonoylglycerol (2-AG) is one of the principal endocannabinoids involved in the protection against neurodegenerative processes. Cannabinoids primarily interact with the seven-segment transmembrane cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), both of which are expressed in the central nervous system (CNS). The level of 2-AG is controlled through key enzymes responsible for its synthesis or degradation. We have previously observed a deregulation of 2-AG metabolism in physiological aging. The aim of this study was to analyze how 2-AG metabolism is modulated by CB1/CB2 receptors during aging. To this end, both CB1 and CB2 receptor expression and the enzymatic activities (diacylglycerol lipase (DAGL), lysophosphatidate phosphohydrolase (LPAase) and monoacylglycerol lipase (MAGL)) involved in 2-AG metabolism were analyzed in the presence of cannabinoid receptor (CBR) agonists (WIN and JWH) and/or antagonists (SR1 and SR2) in synaptosomes from adult and aged rat cerebral cortex (CC). Our results demonstrate that: (a) aging decreases the expression of both CBRs; (b) LPAase inhibition, due to the individual action of SR1 or SR2, is reverted in the presence of both antagonists together; (c) LPAase activity is regulated mainly by the CB1 receptor in adult and in aged synaptosomes while the CB2 receptor acquires importance when CB1 is blocked; (d) modulation via CBRs of DAGL and MAGL by both antagonists occurs only in aged synaptosomes, stimulating DAGL and inhibiting MAGL activities; (e) only DAGL stimulation is reverted by WIN. Taken together, the results of the present study show that CB1 and/or CB2 receptor antagonists trigger a significant modulation of 2-AG metabolism, underlining their relevance as therapeutic strategy for controlling endocannabinoid levels in physiological aging.


Subject(s)
Aging/metabolism , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Receptors, Cannabinoid/physiology , Animals , Cell Membrane/metabolism , Cerebral Cortex/metabolism , Lipoprotein Lipase/metabolism , Monoacylglycerol Lipases/metabolism , Phosphatidate Phosphatase/metabolism , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism , Receptors, Cannabinoid/metabolism , Synaptosomes/metabolism
9.
Environ Technol ; 34(13-16): 2361-9, 2013.
Article in English | MEDLINE | ID: mdl-24350492

ABSTRACT

The most common methods currently used for the removal of waste glycerol, monoglycerides and diglycerides remaining after phase separation during biodiesel production involve wet processes. These procedures are not environmentally viable because they require large volumes of water and thus generate significant quantities of effluent. In this study, adsorption was employed to replace this purification step. Some commercial activated carbons were tested along with adsorbents chemically modified with HNO3. A kinetics study was conducted at 30 degrees C and adsorption isotherms were obtained at 20 degrees C, 30 degrees C and 40 degrees C. The results indicated that the adsorption of glycerol increased with the use of chemically-modified activated carbon, showing that pH has a strong influence on glycerol adsorption. The pseudo-first-order kinetic model provided the best fit with the experimental data for the monoglycerides while the pseudo-second-order model showed a better fit for the glycerol and diglycerides. The Freundlich model had the best fit with experimental data on the adsorption equilibrium for all temperatures. The thermodynamic study indicated that the adsorption process is endothermic and thus adsorption is favoured by increasing the temperature. The adsorption process using chemically-modified activated carbon was therefore very effective for the removal of waste glycerol resulting from biodiesel production, which is of considerable significance given the legal limits imposed.


Subject(s)
Biofuels , Glycerides/isolation & purification , Glycerol/isolation & purification , Soybean Oil/metabolism , Waste Disposal, Fluid/methods , Adsorption , Glycerides/chemistry , Glycerides/metabolism , Glycerol/chemistry , Glycerol/metabolism , Kinetics , Thermodynamics
10.
PLoS One ; 8(10): e77706, 2013.
Article in English | MEDLINE | ID: mdl-24204926

ABSTRACT

Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for 2-Arachidonoylglycerol (2-AG), is mediated by monoacylglycerol lipase (MAGL). The piperidine carbamate, 4-nitrophenyl- 4-(dibenzo[d] [1,3]dioxol-5-yl (hydroxy) methyl) piperidine- 1-carboxylate (JZL184), is a drug that inhibits MAGL and presents high potency and selectivity. Thus, JZL184 increases the levels of 2-AG, an endocannabinoid that acts on the CB1 and CB2 cannabinoid receptors. Here, we investigated the effects of MAGL inhibition, with a single dose (16 mg/kg, intraperitoneally (i.p.)) of JZL184, in a murine model of lipopolysaccharide (LPS) -induced acute lung injury (ALI) 6, 24 and 48 hours after the inflammatory insult. Treatment with JZL184 decreased the leukocyte migration into the lungs as well as the vascular permeability measured through the bronchoalveolar lavage fluid (BAL) and histological analysis. JZL184 also reduced the cytokine and chemokine levels in the BAL and adhesion molecule expression in the blood and BAL. The CB1 and CB2 receptors were considered involved in the anti-inflammatory effects of JZL184 because the AM281 selective CB1 receptor antagonist (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) and the AM630 selective CB2 receptor antagonist ([6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)-methanone) blocked the anti-inflammatory effects previously described for JZL184. It was concluded that MAGL inhibition, and consequently the increase in 2-AG levels, produced anti-inflammatory effects in a murine model of LPS-induced ALI, a finding that was considered a consequence of the activation of the CB1 and CB2 receptors.


Subject(s)
Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Animals , Arachidonic Acids/metabolism , Benzodioxoles/pharmacology , Bronchoalveolar Lavage Fluid , Capillary Permeability/drug effects , Cell Adhesion Molecules/drug effects , Cell Adhesion Molecules/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Indoles , Inflammation/drug therapy , Inflammation/metabolism , Leukocytes/drug effects , Leukocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Piperidines/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism
11.
Behav Brain Res ; 252: 10-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23714073

ABSTRACT

Anandamide and 2-arachidonoylglycerol (2-AG) are the two main endocannabinoids, exerting their effects by activating type 1 (CB1r) and type 2 (CB2r) cannabinoid receptors. Anandamide inhibits anxiety-like responses through the activation of CB1r in certain brain regions, including the dorsolateral periaqueductal gray (dlPAG). 2-AG also attenuates anxiety-like responses, although the neuroanatomical sites for these effects remained unclear. Here, we tested the hypothesis that enhancing 2-AG signaling in the dlPAG would induce anxiolytic-like effects. The mechanisms involved were also investigated. Male Wistar rats received intra-dlPAG injections of 2-AG, URB602 (inhibitor of the 2-AG hydrolyzing enzyme, mono-acylglycerol lipase--MGL), AM251 (CB1r antagonist) and AM630 (CB2r antagonist). The behavior was analyzed in the elevated plus maze after the following treatments. Exp. 1: vehicle (veh) or 2-AG (5 pmol, 50 pmol, and 500 pmol). Exp. 2: veh or URB602 (30 pmol, 100 pmol or 300 pmol). Exp. 3: veh or AM251 (100 pmol) followed by veh or 2-AG (50 pmol). Exp. 4: veh or AM630 (1000 pmol) followed by veh or 2-AG. Exp. 5: veh or AM251 followed by veh or URB602 (100 pmol). Exp. 6: veh or AM630 followed by veh or URB602. 2-AG (50 pmol) and URB602 (100 pmol) significantly increased the exploration of the open arms of the apparatus, indicating an anxiolytic-like effect. These behavioral responses were prevented by CB1r (AM251) or CB2r (AM630) antagonists. Our results showed that the augmentation of 2-AG levels in the dlPAG induces anxiolytic-like effects. The mechanism seems to involve both CB1r and CB2r receptors.


Subject(s)
Anxiety/chemically induced , Arachidonic Acids/metabolism , Arachidonic Acids/toxicity , Biphenyl Compounds/toxicity , Cannabinoid Receptor Agonists/toxicity , Endocannabinoids/metabolism , Endocannabinoids/toxicity , Glycerides/metabolism , Glycerides/toxicity , Periaqueductal Gray/drug effects , Analysis of Variance , Animals , Cannabinoid Receptor Antagonists , Disease Models, Animal , Dose-Response Relationship, Drug , Indoles/pharmacology , Male , Maze Learning/drug effects , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Wistar
12.
Biofactors ; 39(2): 209-20, 2013.
Article in English | MEDLINE | ID: mdl-23281018

ABSTRACT

One of the principal monoacylglycerol (MAG) species in animal tissues is 2-arachidonoylglycerol (2-AG), and the diacylglycerol lipase (DAGL) pathway is the most important 2-AG biosynthetic pathway proposed to date. Lysophosphatidate phosphatase (LPAase) activity is part of another 2-AG-forming pathway in which monoacylglycerol lipase (MAGL) is the major degrading enzyme. The purpose of this study was to analyze the manner in which DAGL, LPAase, and MAGL enzymes are modified in the central nervous system (CNS) during aging. To this end, diacylglycerols (DAGs) and MAGs of different composition were used as substrates of DAGL and MAGL, respectively. All enzymatic activities were evaluated in membrane and soluble fractions as well as in synaptic terminals from the cerebral cortex (CC) of adult and aged rats. Results related to 2-AG metabolism show that aging: (a) decreases DAGL-α expression in the membrane fraction whereas in synaptosomes it increases DAGL-ß and decreases MAGL expression; (b) decreases LPAase activity in both membrane and soluble fractions; (c) decreases DAGL and stimulates LPAase activities in CC synaptic terminals; (d) stimulates membrane-associated MAGL-coupled DAGL activity; and (e) stimulates MAGL activity in CC synaptosomes. Our results also reveal that during aging the net balance between the enzymatic activities involved in 2-AG synthesis and breakdown is low availability of 2-AG in CC membrane fractions and synaptic terminals. Taken together, our results lead us to conclude that these enzymes play crucial roles in the regulation of 2-AG tissue levels during aging.


Subject(s)
Aging/physiology , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Animals , Cerebral Cortex/enzymology , Cerebral Cortex/metabolism , Diglycerides/metabolism , Fatty Acids/metabolism , Immunoblotting , Lipoprotein Lipase/metabolism , Male , Monoacylglycerol Lipases/metabolism , Monoglycerides/metabolism , Rats , Rats, Wistar , Synaptosomes/enzymology , Synaptosomes/metabolism
13.
Phytochemistry ; 72(17): 2155-64, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21885074

ABSTRACT

Leishmaniasis is a tropical disease caused by protozoan parasites of the genus Leishmania which affects 12 million people worldwide. The discovery of drugs for the treatment of leishmaniasis is a pressing concern in global health programs. The aim of this study aim was to evaluate the leishmanicidal effect of piperine and its derivatives/analogues on Leishmania amazonensis. Our results showed that piperine and phenylamide are active against promastigotes and amastigotes in infected macrophages. Both drugs induced mitochondrial swelling, loose kinetoplast DNA, and led to loss of mitochondrial membrane potential. The promastigote cell cycle was also affected with an increase in the G1 phase cells and a decrease in the S-phase cells, respectively, after piperine and phenylamide treatment. Lipid analysis of promastigotes showed that piperine reduced triglyceride, diacylglycerol, and monoacylglycerol contents, whereas phenylamide only reduced diacylglycerol levels. Both drugs were deemed non toxic to macrophages at 50 µM as assessed by XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt), Trypan blue exclusion, and phagocytosis assays, whereas low toxicity was noted at concentrations higher than 150 µM. None of the drugs induced nitric oxide (NO) production. By contrast, piperine reduced NO production in activated macrophages. The isobologram analysis showed that piperine and phenylamide acted synergistically on the parasites suggesting that they affect different target mechanisms. These results indicate that piperine and its phenylamide analogue are candidates for development of drugs for cutaneous leishmaniasis treatment.


Subject(s)
Alkaloids/therapeutic use , Benzodioxoles/therapeutic use , Leishmania/drug effects , Leishmaniasis/drug therapy , Macrophages/drug effects , Phytotherapy , Piper/chemistry , Piperidines/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Trypanocidal Agents/therapeutic use , Alkaloids/pharmacology , Amides/pharmacology , Amides/therapeutic use , Benzodioxoles/pharmacology , Cell Cycle/drug effects , Fruit , Glycerides/metabolism , Leishmania/growth & development , Leishmania/metabolism , Leishmaniasis/parasitology , Leishmaniasis, Cutaneous/drug therapy , Lipid Metabolism/drug effects , Macrophages/parasitology , Mitochondria/drug effects , Nitric Oxide/biosynthesis , Piperidines/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Polyunsaturated Alkamides/pharmacology , Trypanocidal Agents/pharmacology
14.
J Biotechnol ; 147(2): 108-15, 2010 May 17.
Article in English | MEDLINE | ID: mdl-20347889

ABSTRACT

This work reports new experimental data and mathematical modeling of lipase-catalyzed biodiesel production using soybean oil and ethanol as substrates and pressurized n-propane as solvent. The experiments were carried out in a batch reactor, recording the reaction kinetics and evaluating the effects of temperature in the range of 45-70 degrees C, enzyme content from 1 to 20 wt% and oil to ethanol molar ratios of 1:3, 1:6, 1:9 and 1:15. The solvent to substrates mass ratio and pressure were set at 2:1 and 50 bar, respectively. Results showed that lipase-catalyzed alcoholysis in propane medium might be a potential alternative to conventional techniques for biodiesel production, since good conversions were obtained at mild temperature and pressure conditions. The semi-empirical mathematical model based on balance equations, adopted to describe the transesterification kinetics in pressurized n-propane, yielded relative deviations between experimental and calculated values lower than 10%, thus allowing a satisfactory representation of experimental results and a better understanding of the transesterification reaction.


Subject(s)
Biotechnology/methods , Esters/metabolism , Glycerides/metabolism , Lipase/metabolism , Propane/chemistry , Biofuels , Bioreactors , Biotechnology/instrumentation , Catalysis , Equipment Design , Esterification , Ethanol/metabolism , Kinetics , Models, Biological , Pressure , Soybean Oil/chemistry , Temperature
15.
Med Sci Monit ; 15(6): BR157-65, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19478693

ABSTRACT

BACKGROUND: The influence of cytoskeletal integrity on fatty-acid (FA) metabolism is an almost unexplored field of biochemical research. This study therefore investigated the influence of cytoskeletal integrity on the incorporation of palmitate and eicosa-8,11,14-trienoate into glycerolipids of Hep G2 human hepatoma cells. MATERIAL/METHODS: Attached cultures and suspended cells were exposed to colchicine (COL, 10 microM) or dihydrocytochalasin B (DHCB, 20 microM) and supplemented with [14C]FAs bound to delipidated BSA or [14C]glycerol during 0-300 min of incubation. Various key enzymes of lipid metabolism were also determined after COL or DHCB treatment. RESULTS: Incorporation of both FAs into phospholipids (PLs) was strongly reduced by COL treatment especially in the PE and PC subfractions at short incubation times and in PS and SM for 300 min. COL also produced increased incorporation of both FAs into neutral lipids (NL), especially in TG and its precursors (MG and DG). DHCB increased the labeling into lyso-PL and reduced incorporation into PE and SM. However, this drug did not modify the [14C]NL to [14C]PL ratio. DG-acyltransferase and phosphatidate phosphohydrolase were stimulated by COL treatment. Phospholipase A2 activity was reduced significantly by COL and stimulated by DHCB treatment. CONCLUSIONS: It was demonstrated that the microtubule and microfilament network is involved in the incorporation of FAs and in its channeling to neutral lipids and phospholipids. These effects had differential characteristics depending on the type of FA involved and may have potential significance in the understanding of physiological and/or pathological processes.


Subject(s)
Fatty Acids/metabolism , Glycerides/metabolism , Microtubules/metabolism , Cell Line, Tumor , Colchicine/pharmacology , Cytochalasin B/analogs & derivatives , Cytochalasin B/pharmacology , Glycerol/metabolism , Humans , Phospholipids/metabolism , Time Factors
16.
Eur J Pharm Biopharm ; 73(1): 90-4, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19442727

ABSTRACT

It was intended to examine the in vitro penetration of cisplatin (CIS) through porcine skin in the presence of different concentrations of monoolein (MO) as well as to verify the main barrier for CIS skin penetration. In vitro skin penetration of CIS was studied from propylene glycol (PG) solutions containing 0%, 5%, 10%, and 20% of MO using Franz-type diffusion cell and porcine ear skin. Pretreatment experiments with MO and experiments with skin without stratum corneum (SC) were also carried out. Skin penetration studies of CIS showed that the presence of MO doubled the drug permeation through the intact skin. However, permeation studies through the skin without SC caused only a small enhancement of CIS permeation compared to intact skin. Moreover, pretreatment of skin with MO formulations did not show any significant increase in the flux of the drug. In conclusion, MO did not act as a real penetration enhancer for CIS, but it increased the drug partition to the receptor solution improving CIS transdermal permeation. The absence of improvement in drug permeation by MO pretreatment and by the removal of SC indicates that the SC is not the main barrier for the permeation of the metal coordination compound.


Subject(s)
Cisplatin/metabolism , Glycerides/metabolism , Signal Transduction/physiology , Skin Absorption/physiology , Administration, Cutaneous , Animals , Cisplatin/administration & dosage , Drug Synergism , Glycerides/administration & dosage , In Vitro Techniques , Permeability/drug effects , Signal Transduction/drug effects , Skin/drug effects , Skin/metabolism , Skin Absorption/drug effects , Swine
17.
Micron ; 39(7): 952-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18083037

ABSTRACT

The purpose of this work was to evaluate the new bone tissue, comparing two different carriers for rhBMP-2, monoolein and chitosan gels, using the decortication and nondecorticatication surgical technique in rat mandibles, evaluated by histomorphometrical method. It was used 56 male Wistar rats (300 g), divided into 8 groups according to the rhBMP-2 carrier used, monoolein or chitosan gels; surgical technique, bone decortication or nondecortication; and period of time, 3 or 6 weeks until the sacrifice by perfusion. Results obtained in this study showed that the rhBMP-2/monoolein and rhBMP-2/chitosan used in this experimental model was able to induce osteogenesis, contributing to the bone healing process. The bone repair process was time dependent, so that at 6 weeks there was an improved amount of new bone in relation to 3 weeks, considered each analyzed group, and the decortication was able to expose the bone marrow and speed up the bone healing process, which was showed by histomorphometrical methods. Both of carriers were capable to adapt to the bone surgical area, according to the clinical observations, and had favorable properties in relation to protein releasing, revealed by the amount of new bone tissue found in the histological analysis.


Subject(s)
Bone Morphogenetic Proteins/pharmacology , Chitosan/metabolism , Drug Carriers/metabolism , Gels/chemistry , Glycerides/metabolism , Osteogenesis/drug effects , Recombinant Proteins/pharmacology , Transforming Growth Factor beta/pharmacology , Animals , Bone Morphogenetic Protein 2 , Chitosan/pharmacology , Disease Models, Animal , Drug Carriers/pharmacology , Glycerides/pharmacology , Humans , Male , Mandible/cytology , Mandible/surgery , Random Allocation , Rats , Rats, Wistar
18.
Br J Pharmacol ; 151(7): 1109-16, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17549045

ABSTRACT

BACKGROUND AND PURPOSE: Evidence indicates that the endocannabinoid, 2-arachidonoylglycerol (2-AG), increases food intake when injected into the nucleus accumbens shell (NAcS), thereby potentially activating hypothalamic nuclei involved in food intake regulation. We aimed to evaluate potential orexigenic effects of the endocannabinoid anandamide and of AA5HT, a fatty acid amide hydrolase (FAAH) inhibitor, and OMDM-1, an inhibitor of anandamide uptake, injected in the NAcS, as well as the effect of these treatments on activation of hypothalamic nuclei. EXPERIMENTAL APPROACH: Drugs were given into the NAcS of rats and food intake quantified during the next 4 h. In other groups, after the same treatments the brains were processed for c-Fos immunohistochemistry with focus on hypothalamic nuclei. Additional groups were used to quantify endocannabinoid levels in the nucleus accumbens and the hypothalamus after AA5HT and OMDM-1 intra-NAcS injections. KEY RESULTS: Our results indicate that the above treatments stimulate food intake during 4 h post-injection. They also increase c-Fos immunoreactivity in hypothalamic nuclei. The CB(1) antagonist, AM251, blocked these effects. Finally, we found elevated levels of 2-AG, but not anandamide, after intra-NAcS injections of AA5HT. CONCLUSIONS AND IMPLICATIONS: These data support the involvement of the endocannabinoid system in feeding behavior at the level of the NAcS and hypothalamus. In addition, this is the first experimental demonstration that the pharmacological inhibition of endocannabinoid inactivation in the NAcS stimulates food intake, suggesting that the endocannabinoid degrading proteins can be a target for treating eating disorders.


Subject(s)
Cannabinoid Receptor Modulators/metabolism , Eating/physiology , Endocannabinoids , Hypothalamus/metabolism , Nucleus Accumbens/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Benzyl Compounds/pharmacology , Cannabinoid Receptor Modulators/physiology , Eating/drug effects , Glycerides/metabolism , Hypothalamus/drug effects , Immunohistochemistry , Male , Nucleus Accumbens/drug effects , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Pyrazoles/pharmacology , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/metabolism , Serotonin/analogs & derivatives , Serotonin/pharmacology , Time Factors
19.
Metabolism ; 55(1): 84-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16324924

ABSTRACT

We have previously shown in in vivo experiments that adipose tissue glyceroneogenesis is increased in rats adapted to a high-protein, carbohydrate-free (HP) diet. The objectives of the present study were (1) to verify if the increased glyceroneogenic activity is also observed in isolated adipocytes and (2) to investigate the role of preformed fatty acids in the production of the increased adipose tissue glyceroneogenesis. Control rats received a balanced diet, with the same lipid content of the HP diet. Glyceroneogenic activity was found to be higher in adipocytes from HP rats than in controls, as evidenced by increased rates of conversion of pyruvate and lactate to triacylglycerol (TAG)-glycerol. Administration of Triton WR 1339, which blocks the removal of TAG incorporated into circulating lipoproteins, to HP diet-adapted rats caused a significant reduction in the incorporation of 14C-pyruvate into TAG-glycerol by adipose tissue, which was accompanied by a marked inhibition of phosphoenolpyruvate carboxykinase activity, the key enzyme of glyceroneogenesis. The inhibitory effect of Triton on TAG-glycerol synthesis by adipose tissue was also observed in vivo, after administration of 3H2O. Adaptation to the HP diet induced a marked increase in the activity of retroperitoneal and epididymal fat LPL, which was restored to control values 24 hours after replacement of the HP diet by the balanced diet. The data suggest that in rats adapted to a carbohydrate-free diet, adipose tissue glyceroneogenesis is activated by an increased use of diet-derived fatty acids.


Subject(s)
Adaptation, Physiological/physiology , Adipose Tissue/metabolism , Dietary Carbohydrates/pharmacology , Dietary Proteins/pharmacology , Fatty Acids/pharmacology , Glycerol/metabolism , Animals , Chylomicrons/metabolism , Diet , Glutathione Peroxidase/metabolism , Glycerides/metabolism , Lactic Acid/metabolism , Lipoprotein Lipase/metabolism , Lipoproteins, LDL/metabolism , Male , Polyethylene Glycols/pharmacology , Pyruvic Acid/metabolism , Rats , Rats, Wistar
20.
Biochim Biophys Acta ; 1735(3): 185-91, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16024291

ABSTRACT

Physiological and cellular adaptations to environmental changes are known to be related to modifications in membrane lipids. This work provides metabolic and compositional evidence that Trypanosoma cruzi epimastigotes are able to synthesize and desaturate fatty acids, to incorporate them into their lipids, and to modify this incorporation when carbamoylcholine is present in the medium. The fatty acids formed from [2-(14)C]acetate in the period from 2 to 9 days were mostly (70%) incorporated in phospholipids, the remainder 30% being recovered in neutral lipids, such as triacylglycerols (TAG) and diacylglycerols (DAG). The main fatty acids formed from [2-(14)C]acetate were saturates (16:0, 18:0), monoenes (16:1, 18:1) and dienes (mostly 18:2). The ratios between labelled unsaturated and saturated fatty acids increased continuously with growth, consistent with a precursor-product relationship between the main fatty acids, and with the occurrence in T. cruzi of Delta(9)- and Delta(12)-desaturases. From days 2 to 5, [(14)C]18:2 was the main fatty acid produced. Accordingly, the fatty acid profiles showed a significant increase in the percentage of 18:2 in all lipids in the period under study, especially in the first 2 to 5 days. In the presence of carbamoylcholine, the labelling of DAG and TAG with [(14)C]18:2 augmented. The results indicate that T cruzi is able to synthesize the main types of fatty acids required to form its membrane lipids, and to exchange them actively in response to environmental stimuli.


Subject(s)
Carbachol/pharmacology , Linoleic Acid/metabolism , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism , Acetates/metabolism , Animals , Carbon Radioisotopes , Fatty Acids/metabolism , Glycerides/metabolism , Linoleic Acid/biosynthesis , Membrane Lipids/metabolism , Phospholipids/metabolism , Radioisotope Dilution Technique , Sterols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL