Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.925
Filter
1.
Science ; 385(6705): 174-178, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991083

ABSTRACT

One of the hallmarks of living organisms is their capacity for self-organization and regeneration, which requires a tight integration of metabolic and genetic networks. We sought to construct a linked metabolic and genetic network in vitro that shows such lifelike behavior outside of a cellular context and generates its own building blocks from nonliving matter. We integrated the metabolism of the crotonyl-CoA/ethyl-malonyl-CoA/hydroxybutyryl-CoA cycle with cell-free protein synthesis using recombinant elements. Our network produces the amino acid glycine from CO2 and incorporates it into target proteins following DNA-encoded instructions. By orchestrating ~50 enzymes we established a basic cell-free operating system in which genetically encoded inputs into a metabolic network are programmed to activate feedback loops allowing for self-integration and (partial) self-regeneration of the complete system.


Subject(s)
Cell-Free System , Metabolic Networks and Pathways , Protein Biosynthesis , Glycine/metabolism , Gene Regulatory Networks , Escherichia coli/metabolism , Escherichia coli/genetics , Carbon Dioxide/metabolism , Acyl Coenzyme A/metabolism , Feedback, Physiological
2.
Sci Rep ; 14(1): 16018, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992080

ABSTRACT

Microscale thermophoresis (MST) is a well-established method to quantify protein-RNA interactions. In this study, we employed MST to analyze the RNA binding properties of glycine-rich RNA binding protein 7 (GRP7), which is known to have multiple biological functions related to its ability to bind different types of RNA. However, the exact mechanism of GRP7's RNA binding is not fully understood. While the RNA-recognition motif of GRP7 is known to be involved in RNA binding, the glycine-rich region (known as arginine-glycine-glycine-domain or RGG-domain) also influences this interaction. To investigate to which extend the RGG-domain of GRP7 is involved in RNA binding, mutation studies on putative RNA interacting or modulating sites were performed. In addition to MST experiments, we examined liquid-liquid phase separation of GRP7 and its mutants, both with and without RNA. Furthermore, we systemically investigated factors that might affect RNA binding selectivity of GRP7 by testing RNAs of different sizes, structures, and modifications. Consequently, our study revealed that GRP7 exhibits a high affinity for a variety of RNAs, indicating a lack of pronounced selectivity. Moreover, we established that the RGG-domain plays a crucial role in binding longer RNAs and promoting phase separation.


Subject(s)
Glycine , Protein Binding , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Glycine/metabolism , Glycine/chemistry , RNA/metabolism , RNA/genetics , Protein Domains , Mutation , Binding Sites , Humans , Phase Separation , Arabidopsis Proteins
3.
Neurotox Res ; 42(4): 32, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38949693

ABSTRACT

Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.


Subject(s)
Energy Metabolism , Glycine , Hyperglycinemia, Nonketotic , Oxidative Stress , Hyperglycinemia, Nonketotic/pathology , Hyperglycinemia, Nonketotic/metabolism , Animals , Humans , Oxidative Stress/physiology , Energy Metabolism/physiology , Glycine/metabolism , Brain/metabolism , Brain/pathology
4.
Amino Acids ; 56(1): 42, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869518

ABSTRACT

Creatine is a natural nitrogenous organic acid that is integral to energy metabolism and crucial for proper cell functioning. The kidneys are involved in the first step of creatine production. With kidney transplantation being the gold-standard treatment for end-stage kidney disease, kidney transplant recipients (KTR) may be at risk of impaired creatine synthesis. We aimed to compare creatine homeostasis between KTR and controls. Plasma and urine concentrations of arginine, glycine, guanidinoacetate, creatine and creatinine were measured in 553 KTR and 168 healthy controls. Creatine intake was assessed using food frequency questionnaires. Iothalamate-measured GFR data were available in subsets of 157 KTR and 167 controls. KTR and controls had comparable body weight, height and creatine intake (all P > 0.05). However, the total creatine pool was 14% lower in KTR as compared to controls (651 ± 178 vs. 753 ± 239 mmol, P < 0.001). The endogenous creatine synthesis rate was 22% lower in KTR as compared to controls (7.8 ± 3.0 vs. 10.0 ± 4.1 mmol per day, P < 0.001). Despite lower GFR, the plasma guanidinoacetate and creatine concentrations were 21% and 41% lower in KTR as compared to controls (both P < 0.001). Urinary excretion of guanidinoacetate and creatine were 66% and 59% lower in KTR as compared to controls (both P < 0.001). In KTR, but not in controls, a higher measured GFR was associated with a higher endogenous creatine synthesis rate (std. beta: 0.21, 95% CI: 0.08; 0.33; P = 0.002), as well as a higher total creatine pool (std. beta: 0.22, 95% CI: 0.11; 0.33; P < 0.001). These associations were fully mediated (93% and 95%; P < 0.001) by urinary guanidinoacetate excretion which is consistent with production of the creatine precursor guanidinoacetate as rate-limiting factor. Our findings highlight that KTR have a disturbed creatine homeostasis as compared to controls. Given the direct relationship of measured GFR with endogenous creatine synthesis rate and the total creatine pool, creatine supplementation might be beneficial in KTR with low kidney function.Trial registration ID: NCT02811835.Trial registration URL: https://clinicaltrials.gov/ct2/show/NCT02811835 .


Subject(s)
Creatine , Homeostasis , Kidney Transplantation , Kidney , Humans , Creatine/urine , Creatine/metabolism , Male , Female , Middle Aged , Adult , Kidney/metabolism , Glycine/analogs & derivatives , Glycine/urine , Glycine/metabolism , Glycine/blood , Glomerular Filtration Rate , Transplant Recipients , Case-Control Studies , Creatinine/urine , Creatinine/blood
5.
Int J Oral Sci ; 16(1): 44, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886346

ABSTRACT

Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine-glycine-one-carbon (SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and individualized precise metabolic-targeted treatment.


Subject(s)
Head and Neck Neoplasms , Serine , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Humans , Prognosis , Serine/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/therapy , Glycine/metabolism , Carbon/metabolism , Transcriptome , Tumor Microenvironment , Cell Proliferation , Cell Line, Tumor , Animals
6.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884814

ABSTRACT

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Subject(s)
Action Potentials , Glycine , Neurons , Nucleus Accumbens , Receptors, G-Protein-Coupled , Animals , Glycine/pharmacology , Glycine/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/cytology , Neurons/metabolism , Neurons/drug effects , Receptors, G-Protein-Coupled/metabolism , Male , Action Potentials/drug effects , Mice , Mice, Inbred C57BL , Receptors, Glycine/metabolism , Patch-Clamp Techniques , Phosphorylation/drug effects , Medium Spiny Neurons
7.
Psychiatr Genet ; 34(4): 86-90, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38842011

ABSTRACT

X-linked creatine transporter deficiency is caused by hemizygous or heterozygous pathogenic variants in SLC6A8 that cause neuropsychiatric symptoms because of impaired uptake of creatine into tissues throughout the body. Small cohorts have suggested that supplementation of creatine, arginine, and glycine can stop disease progression in males, but only six cases of supplementation in females have been published. Here, we present a female with a de-novo pathogenic SLC6A8 variant who had ongoing weight loss, mild intellectual disability, and neuropsychiatric symptoms. Magnetic resonance spectroscopy of the brain showed reduced creatine on all acquired spectra. The patient was started on creatine-monohydrate, l -arginine, and l -glycine supplementation, and she had significant symptomatic improvement within the following 3 weeks. After 8 months of supplementation, magnetic resonance spectroscopy showed improved creatine concentrations with normalizing semiquantitative ratios with other brain metabolites. Current data supports clinicians trialing creatine, arginine, and glycine supplements for female patients with creatine transporter deficiency.


Subject(s)
Arginine , Creatine , Dietary Supplements , Glycine , Mental Retardation, X-Linked , Plasma Membrane Neurotransmitter Transport Proteins , Humans , Female , Creatine/metabolism , Creatine/deficiency , Glycine/metabolism , Arginine/metabolism , Arginine/therapeutic use , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/drug therapy , Mental Retardation, X-Linked/metabolism , Plasma Membrane Neurotransmitter Transport Proteins/deficiency , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/metabolism , Brain/metabolism , Adult , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Magnetic Resonance Spectroscopy , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/drug therapy , Brain Diseases, Metabolic, Inborn , Membrane Transport Proteins
8.
J Biotechnol ; 391: 72-80, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38876311

ABSTRACT

The lipase from Prunus dulcis almonds was inactivated under different conditions. At pH 5 and 9, enzyme stability remained similar under the different studied buffers. However, when the inactivation was performed at pH 7, there were some clear differences on enzyme stability depending on the buffer used. The enzyme was more stable in Gly than when Tris was employed for inactivation. Then, the enzyme was immobilized on methacrylate beads coated with octadecyl groups at pH 7 in the presence of Gly, Tris, phosphate and HEPES. Its activity was assayed versus triacetin and S-methyl mandelate. The biocatalyst prepared in phosphate was more active versus S-methyl mandelate, while the other ones were more active versus triacetin. The immobilized enzyme stability at pH 7 depends on the buffer used for enzyme immobilization. The buffer used in the inactivation and the substrate used determined the activity. For example, glycine was the buffer that promoted the lowest or the highest stabilities depending on the substrate used to quantify the activities.


Subject(s)
Enzyme Stability , Enzymes, Immobilized , Lipase , Prunus dulcis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Prunus dulcis/chemistry , Prunus dulcis/enzymology , Buffers , Hydrogen-Ion Concentration , Triacetin/chemistry , Triacetin/metabolism , Glycine/chemistry , Glycine/metabolism , Tromethamine/chemistry , Biocatalysis , Substrate Specificity , Phosphates/chemistry , Phosphates/metabolism , HEPES/chemistry
9.
PLoS One ; 19(6): e0305073, 2024.
Article in English | MEDLINE | ID: mdl-38900837

ABSTRACT

Stable isotope methods have been used to study protein metabolism in humans; however, there application in dogs has not been frequently explored. The present study compared the methods of precursor (13C-Leucine), end-products (15N-Glycine), and amino acid oxidation (13C-Phenylalanine) to determine the whole-body protein turnover rate in senior dogs. Six dogs (12.7 ± 2.6 years age, 13.6 ± 0.6 kg bodyweight) received a dry food diet for maintenance and were subjected to all the above-mentioned methods in succession. To establish 13C and 15N kinetics, according to different methodologies blood plasma, urine, and expired air were collected using a specifically designed mask. The volume of CO2 was determined using respirometry. The study included four methods viz. 13C-Leucine, 13C-Phenylalanine evaluated with expired air, 13C-Phenylalanine evaluated with urine, and 15N-Glycine, with six dogs (repetitions) per method. Data was subjected to variance analysis and means were compared using the Tukey test (P<0.05). In addition, the agreement between the methods was evaluated using Pearson correlation and Bland-Altman statistics. Protein synthesis (3.39 ± 0.33 g.kg-0,75. d-1), breakdown (3.26 ± 0.18 g.kg-0.75.d-1), and flux estimations were similar among the four methods of study (P>0.05). However, only 13C-Leucine and 13C-Phenylalanine (expired air) presented an elevated Pearson correlation and concordance. This suggested that caution should be applied while comparing the results with the other methodologies.


Subject(s)
Leucine , Oxidation-Reduction , Phenylalanine , Animals , Dogs , Leucine/metabolism , Leucine/blood , Phenylalanine/metabolism , Phenylalanine/blood , Carbon Isotopes , Amino Acids/metabolism , Amino Acids/blood , Male , Nitrogen Isotopes , Glycine/urine , Glycine/metabolism , Glycine/blood , Proteins/metabolism , Proteins/analysis , Female
10.
BMC Plant Biol ; 24(1): 495, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831411

ABSTRACT

BACKGROUND: Phosphorus (P) and iron (Fe) deficiencies are relevant plants nutritional disorders, prompting responses such as increased root exudation to aid nutrient uptake, albeit at an energy cost. Reacquiring and reusing exudates could represent an efficient energy and nitrogen saving strategy. Hence, we investigated the impact of plant development, Fe and P deficiencies on this process. Tomato seedlings were grown hydroponically for 3 weeks in Control, -Fe, and -P conditions and sampled twice a week. We used Isotope Ratio Mass-Spectrometry to measure δ13C in roots and shoots after a 2-h exposure to 13C-labeled glycine (0, 50, or 500 µmol L-1). Plant physiology was assessed with an InfraRed Gas Analyzer and ionome with an Inductively Coupled Plasma Mass-Spectrometry. RESULTS: Glycine uptake varied with concentration, suggesting an involvement of root transporters with different substrate affinities. The uptake decreased over time, with -Fe and -P showing significantly higher values as compared to the Control. This highlights its importance during germination and in nutrient-deficient plants. Translocation to shoots declined over time in -P and Control but increased in -Fe plants, suggesting a role of Gly in the Fe xylem transport. CONCLUSIONS: Root exudates, i.e. glycine, acquisition and their subsequent shoot translocation depend on Fe and P deficiency. The present findings highlight the importance of this adaptation to nutrient deficiencies, that can potentially enhance plants fitness. A thorough comprehension of this trait holds potential significance for selecting cultivars that can better withstand abiotic stresses.


Subject(s)
Glycine , Phosphorus , Plant Roots , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Glycine/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Phosphorus/metabolism , Phosphorus/deficiency , Iron Deficiencies , Iron/metabolism , Biological Transport , Seedlings/metabolism , Seedlings/growth & development , Plant Shoots/metabolism , Plant Shoots/growth & development
11.
Food Res Int ; 188: 114501, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823874

ABSTRACT

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Subject(s)
Biogenic Amines , Fermentation , Glycine , Glycine/metabolism , Biogenic Amines/metabolism , Salts , Putrescine/metabolism , Tyramine/metabolism , Food Microbiology , Lactobacillus/metabolism , Lactobacillus/genetics , Fermented Foods/microbiology , Pichia/metabolism , Pichia/genetics
12.
Vet Med Sci ; 10(4): e1470, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923734

ABSTRACT

BACKGROUND: The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep. METHODS: Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively. RESULTS: Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05). CONCLUSION: Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.


Subject(s)
Animal Feed , Betaine , Creatine , Diet , Dietary Supplements , Digestion , Glycine , Animals , Dietary Supplements/analysis , Betaine/metabolism , Betaine/administration & dosage , Animal Feed/analysis , Diet/veterinary , Male , Digestion/drug effects , Creatine/metabolism , Glycine/analogs & derivatives , Glycine/administration & dosage , Glycine/metabolism , Sheep/physiology , Sheep/metabolism , Sheep, Domestic/physiology , Sheep, Domestic/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Random Allocation , Nutrients/metabolism
13.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725068

ABSTRACT

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Subject(s)
Amino Acids , Glycolysis , Pentose Phosphate Pathway , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Metabolic Engineering/methods , Nostoc/metabolism , Nostoc/genetics , Sugar Phosphates/metabolism , Glycine/metabolism , Glycine/analogs & derivatives , Cyclohexylamines
14.
Brain Res ; 1838: 148998, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754802

ABSTRACT

Altered extracellular amino acid concentrations following concussion or mild traumatic brain injury can result in delayed neuronal damage through overactivation of NMDA glutamatergic receptors. However, the consequences of repeated concussions prior to complete recovery are not well understood. In this study, we utilized in vivo cerebral microdialysis and a weight-drop model to investigate the acute neurochemical response to single and repeated concussions in adult rats that were fully conscious. A microdialysis probe was inserted into the hippocampus and remained in place during impact. Primary outcomes included concentrations of glutamate, GABA, taurine, glycine, glutamine, and serine, while secondary outcomes were righting times and excitotoxic indices. Compared to sham injury, the first concussion resulted in significant increases in glutamate, GABA, taurine, and glycine levels, longer righting times, and higher excitotoxic indices. Following the second concussion, righting times were significantly longer, suggesting cumulative effects of repeated concussion while only partial increases were observed in glutamate and taurine levels. GABA and glycine levels, and excitotoxic indices were comparable to sham injury. These findings suggest that single and repeated concussions may induce acute increases in several amino acids, while repeated concussions could exacerbate neurological symptoms despite less pronounced neurochemical changes.


Subject(s)
Brain Concussion , Disease Models, Animal , Microdialysis , Rats, Sprague-Dawley , Animals , Brain Concussion/metabolism , Microdialysis/methods , Male , Rats , Hippocampus/metabolism , gamma-Aminobutyric Acid/metabolism , Taurine/metabolism , Glutamic Acid/metabolism , Glycine/metabolism
15.
ACS Chem Biol ; 19(6): 1229-1236, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38742762

ABSTRACT

Triceptides are a class of ribosomally synthesized and post-translationally modified peptides defined by an aromatic C(sp2) to Cß(sp3) bond. The Gly-rich repeat family of triceptide maturases (TIGR04261) are paired with precursor peptides (TIGR04260) containing a Gly-rich core peptide. These maturases are prevalent in cyanobacteria and catalyze cyclophane formation on multiple Ω1-X2-X3 motifs (Ω1 = Trp and Phe) of the Gly-rich precursor peptide. The topology of the individual rings has not been completely elucidated, and the promiscuity of these enzymes is not known. In this study, we characterized all the cyclophane rings formed by the triceptide maturase OscB and show the ring topology is uniform with respect to the substitution at Trp-C7 and the atropisomerism (planar chirality). Additionally, the enzyme OscB demonstrated substrate promiscuity on Gly-rich precursors and can accommodate a diverse array of engineered sequences. These findings highlight the versatility and implications for using OscB as a biocatalyst for producing polycyclophane-containing peptides for biotechnological applications.


Subject(s)
Glycine , Substrate Specificity , Glycine/chemistry , Glycine/metabolism , Peptides/chemistry , Peptides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cyanobacteria/enzymology , Cyanobacteria/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Biocatalysis , Cyclophanes
16.
Mol Genet Metab ; 142(3): 108496, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761651

ABSTRACT

Non-Ketotic Hyperglycinemia (NKH) is a rare inborn error of metabolism caused by impaired function of the glycine cleavage system (GCS) and characterised by accumulation of glycine in body fluids and tissues. NKH is an autosomal recessive condition and the majority of affected individuals carry mutations in GLDC (glycine decarboxylase). Current treatments for NKH have limited effect and are not curative. As a monogenic condition with known genetic causation, NKH is potentially amenable to gene therapy. An AAV9-based expression vector was designed to target sites of GCS activity. Using a ubiquitous promoter to drive expression of a GFP reporter, transduction of liver and brain was confirmed following intra-venous and/or intra-cerebroventricular administration to neonatal mice. Using the same capsid and promoter with transgenes to express mouse or human GLDC, vectors were then tested in GLDC-deficient mice that provide a model of NKH. GLDC-deficient mice exhibited elevated plasma glycine concentration and accumulation of glycine in liver and brain tissues as previously observed. Moreover, the folate profile indicated suppression of folate one­carbon metabolism (FOCM) in brain tissue, as found at embryonic stages, and reduced abundance of FOCM metabolites including betaine and choline. Neonatal administration of vector achieved reinstatement of GLDC mRNA and protein expression in GLDC-deficient mice. Treated GLDC-deficient mice showed significant lowering of plasma glycine, confirming functionality of vector expressed protein. AAV9-GLDC treatment also led to lowering of brain tissue glycine, and normalisation of the folate profile indicating restoration of glycine-derived one­carbon supply. These findings support the hypothesis that AAV-mediated gene therapy may offer potential in treatment of NKH.


Subject(s)
Brain , Dependovirus , Disease Models, Animal , Genetic Therapy , Genetic Vectors , Glycine Dehydrogenase (Decarboxylating) , Glycine , Hyperglycinemia, Nonketotic , Liver , Animals , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/metabolism , Hyperglycinemia, Nonketotic/therapy , Glycine Dehydrogenase (Decarboxylating)/genetics , Glycine Dehydrogenase (Decarboxylating)/metabolism , Dependovirus/genetics , Mice , Humans , Genetic Vectors/genetics , Glycine/metabolism , Liver/metabolism , Brain/metabolism , Biomarkers/metabolism , Folic Acid/metabolism
17.
PLoS Pathog ; 20(5): e1012266, 2024 May.
Article in English | MEDLINE | ID: mdl-38787906

ABSTRACT

Mycoplasmas are minimal but notorious bacteria that infect humans and animals. These genome-reduced organisms have evolved strategies to overcome host apoptotic defense and establish persistent infection. Here, using Mycoplasma bovis as a model, we demonstrate that mycoplasma glycine cleavage system (GCS) H protein (GcvH) targets the endoplasmic reticulum (ER) to hijack host apoptosis facilitating bacterial infection. Mechanically, GcvH interacts with the ER-resident kinase Brsk2 and stabilizes it by blocking its autophagic degradation. Brsk2 subsequently disturbs unfolded protein response (UPR) signaling, thereby inhibiting the key apoptotic molecule CHOP expression and ER-mediated intrinsic apoptotic pathway. CHOP mediates a cross-talk between ER- and mitochondria-mediated intrinsic apoptosis. The GcvH N-terminal amino acid 31-35 region is necessary for GcvH interaction with Brsk2, as well as for GcvH to exert anti-apoptotic and potentially pro-infective functions. Notably, targeting Brsk2 to dampen apoptosis may be a conserved strategy for GCS-containing mycoplasmas. Our study reveals a novel role for the conserved metabolic route protein GcvH in Mycoplasma species. It also sheds light on how genome-reduced bacteria exploit a limited number of genomic proteins to resist host cell apoptosis thereby facilitating pathogenesis.


Subject(s)
Apoptosis , Bacterial Proteins , Endoplasmic Reticulum , Humans , Endoplasmic Reticulum/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Mycoplasma Infections/metabolism , Mycoplasma Infections/microbiology , Mycoplasma bovis/metabolism , Glycine/metabolism , Unfolded Protein Response , Protein Serine-Threonine Kinases/metabolism
18.
BMC Genomics ; 25(1): 535, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816837

ABSTRACT

BACKGROUND: Setae on the pad lamellae of the Japanese gecko Gekko japonicus (Schlegel, 1836), a vital epidermal derivative, are primarily composed of cornified beta-proteins (CBPs) and play a pivotal role in adhesion and climbing. The amino acid composition of CBPs might be a determining factor influencing their functional properties. However, the molecular mechanisms governed by CBP genes with diverse amino acid compositions in setae development remain unexplored. RESULTS: Based on RNA-seq analyses, this study confirmed that all G. japonicus CBPs (GjCBPs) are involved in setae formation. Cysteine-rich CBPs encoding genes (ge-cprp-17 to ge-cprp-26) and glycine-rich CBPs encoding genes (ge-gprp-17 to ge-gprp-22) were haphazardly selected, with quantitative real-time PCR revealing their expression patterns in embryonic pad lamellae and dorsal epidermis. It is inferred that glycine-rich CBPs are integral to the formation of both dorsal scales and lamellar setae, cysteine-rich CBPs are primarily associated with setae development. Additionally, fluorescence in situ hybridization revealed spatiotemporal differences in the expression of a glycine-rich CBP encoding gene (ge-gprp-19) and a cysteine-rich CBP encoding gene (ge-cprp-17) during dorsal scales and/or lamellar development. CONCLUSIONS: All 66 CBPs are involved in the formation of setae. Glycine-rich CBPs hold a significant role in the development of dorsal scales and lamellar setae, whereas most cysteine-rich CBPs appear to be essential components of G. japonicus setae. Even GjCBPs with similar amino acid compositions may play diverse functions. The clear spatio-temporal expression differences between the glycine-rich and cysteine-rich CBP encoding genes during epidermal scale and/or setae formation were observed. Embryonic developmental stages 39 to 42 emerged as crucial phases for setae development. These findings lay the groundwork for deeper investigation into the function of GjCBPs in the development of G. japonicus setae.


Subject(s)
Cysteine , Glycine , Lizards , Animals , Lizards/genetics , Lizards/metabolism , Glycine/metabolism , Cysteine/metabolism , Gene Expression Regulation, Developmental , Animal Scales/metabolism , Gene Expression Profiling
19.
Elife ; 132024 May 30.
Article in English | MEDLINE | ID: mdl-38814174

ABSTRACT

Neurexins play diverse functions as presynaptic organizers in various glutamatergic and GABAergic synapses. However, it remains unknown whether and how neurexins are involved in shaping functional properties of the glycinergic synapses, which mediate prominent inhibition in the brainstem and spinal cord. To address these issues, we examined the role of neurexins in a model glycinergic synapse between the principal neuron in the medial nucleus of the trapezoid body (MNTB) and the principal neuron in the lateral superior olive (LSO) in the auditory brainstem. Combining RNAscope with stereotactic injection of AAV-Cre in the MNTB of neurexin1/2/3 conditional triple knockout mice, we showed that MNTB neurons highly express all isoforms of neurexins although their expression levels vary remarkably. Selective ablation of all neurexins in MNTB neurons not only reduced the amplitude but also altered the kinetics of the glycinergic synaptic transmission at LSO neurons. The synaptic dysfunctions primarily resulted from an impaired Ca2+ sensitivity of release and a loosened coupling between voltage-gated Ca2+ channels and synaptic vesicles. Together, our current findings demonstrate that neurexins are essential in controlling the strength and temporal precision of the glycinergic synapse, which therefore corroborates the role of neurexins as key presynaptic organizers in all major types of fast chemical synapses.


Subject(s)
Glycine , Mice, Knockout , Trapezoid Body , Animals , Glycine/metabolism , Mice , Trapezoid Body/metabolism , Trapezoid Body/physiology , Synaptic Transmission/physiology , Neural Cell Adhesion Molecules/metabolism , Neural Cell Adhesion Molecules/genetics , Superior Olivary Complex/physiology , Superior Olivary Complex/metabolism , Brain Stem/physiology , Brain Stem/metabolism , Synapses/metabolism , Synapses/physiology , Neurons/metabolism , Neurons/physiology , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurexins , Calcium-Binding Proteins
20.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710705

ABSTRACT

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Subject(s)
Argininosuccinate Synthase , Cell Proliferation , Phosphoglycerate Dehydrogenase , Serine , Triple Negative Breast Neoplasms , Phosphoglycerate Dehydrogenase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism , Serine/biosynthesis , Humans , Female , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Animals , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cell Line, Tumor , Mice, Nude , Ubiquitination , Mice , Glycine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...