Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.307
Filter
1.
Biotechnol J ; 19(6): e2400290, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900053

ABSTRACT

Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.


Subject(s)
Formates , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Formates/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Directed Molecular Evolution , Glyoxylates/metabolism , Gene Editing
2.
Methods Mol Biol ; 2792: 41-49, 2024.
Article in English | MEDLINE | ID: mdl-38861077

ABSTRACT

Glutamate:glyoxylate aminotransferase (GGAT; EC 2.6.1.4) and serine:glyoxylate aminotransferase activities (SGAT; EC 2.6.1.45) are central photorespiratory reactions within plant peroxisomes. Both enzymatic reactions convert glyoxylate, a product of glycolate oxidase, to glycine, a substrate of the mitochondrial glycine decarboxylase complex. The GGAT reaction uses glutamate as an amino group donor and also produces α-ketoglutarate, which is recycled to glutamate in plastids by ferredoxin-dependent glutamate synthase. Using serine, a product of mitochondrial serine hydroxymethyltransferase, as an amino group donor, the SGAT reaction also produces hydroxypyruvate, a substrate of hydroxypyruvate reductase. The activities of these photorespiratory aminotransferases can be measured using indirect, coupled, spectrophotometric assays, detailed herein.


Subject(s)
Spectrophotometry , Transaminases , Transaminases/metabolism , Spectrophotometry/methods , Glyoxylates/metabolism , Glutamic Acid/metabolism , Enzyme Assays/methods , Cell Respiration
3.
PLoS Biol ; 22(6): e3002693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905306

ABSTRACT

Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.


Subject(s)
Biofilms , Candida albicans , Fungal Proteins , Gene Expression Regulation, Fungal , Transcription Factors , Biofilms/growth & development , Candida albicans/genetics , Candida albicans/metabolism , Candida albicans/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Animals , Plankton/metabolism , Glyoxylates/metabolism , Gene Expression Profiling/methods , Mice , Citric Acid Cycle , Hyphae/metabolism , Hyphae/growth & development , Hyphae/genetics , Candidiasis/microbiology , Metabolic Reprogramming
4.
mSystems ; 9(6): e0024824, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38695578

ABSTRACT

A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE: Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.


Subject(s)
Genome, Bacterial , Phylogeny , Genome, Bacterial/genetics , Metabolic Networks and Pathways/genetics , Glyoxylates/metabolism , Genomics , Evolution, Molecular , Serine/metabolism , Serine/genetics , Acyl Coenzyme A/metabolism , Acyl Coenzyme A/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Methane/metabolism
5.
Food Chem ; 452: 139600, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744138

ABSTRACT

A naringinase complex was chemically aminated prior to its immobilization on glyoxyl-agarose to develop a robust biocatalyst for juice debittering. The effects of amination on the optimal pH and temperature, thermal stability, and debittering performance were analyzed. Concentration of amino groups on catalysts surface increased in 36 %. Amination reduced the ß-glucosidase activity of naringinase complex; however, did not affect optimal pH and temperature of the enzyme and it favored immobilization, obtaining α-l-rhamnosidase and ß-d-glucosidase activities of 1.7 and 4.2 times the values obtained when the unmodified enzymes were immobilized. Amination favored the stability of the immobilized biocatalyst, retaining 100 % of both activities after 190 h at 30 °C and pH 3, while its non-aminated counterpart retained 80 and 52 % of α-rhamnosidase and ß-glucosidase activities, respectively. The immobilized catalyst showed a better performance in grapefruit juice debittering, obtaining a naringin conversion of 7 times the value obtained with the non-aminated catalyst.


Subject(s)
Enzymes, Immobilized , Fruit and Vegetable Juices , Glyoxylates , Sepharose , Fruit and Vegetable Juices/analysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Amination , Hydrogen-Ion Concentration , Sepharose/chemistry , Glyoxylates/chemistry , Citrus/chemistry , Citrus/enzymology , Enzyme Stability , Biocatalysis , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Temperature , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flavanones/chemistry , Flavanones/metabolism , Catalysis
6.
Plant Sci ; 344: 112108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705480

ABSTRACT

Ureides, the degraded products of purine catabolism in Arabidopsis, have been shown to act as antioxidant and nitrogen sources. Herein we elucidate purine degraded metabolites as a carbon source using the Arabidopsis Atxdh1, Ataln, and Ataah knockout (KO) mutants vis-à-vis wild-type (WT) plants. Plants were grown under short-day conditions on agar plates containing half-strength MS medium with or without 1% sucrose. Notably, the absence of sucrose led to diminished biomass accumulation in both shoot and root tissues of the Atxdh1, Ataln, and Ataah mutants, while no such effect was observed in WT plants. Moreover, the application of sucrose resulted in a reduction of purine degradation metabolite levels, specifically xanthine and allantoin, predominantly within the roots of WT plants. Remarkably, an increase in proteins associated with the purine degradation pathway was observed in WT plants in the presence of sucrose. Lower glyoxylate levels in the roots but not in the shoot of the Atxdh1 mutant in comparison to WT, were observed under sucrose limitation, and improved by sucrose application in root, indicating that purine degradation provided glyoxylate in the root. Furthermore, the deficit of purine-degraded metabolites in the roots of mutants subjected to carbon starvation was partially mitigated through allantoin application. Collectively, these findings signify that under conditions of sucrose limitation and short-day growth, purines are primarily remobilized within the root system to augment the availability of ureides, serving as an additional carbon (as well as nitrogen) source to support plant growth.


Subject(s)
Arabidopsis , Carbon , Plant Roots , Sucrose , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Carbon/metabolism , Sucrose/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Allantoin/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Purines/metabolism , Urea/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Glyoxylates/metabolism
7.
Molecules ; 29(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38611747

ABSTRACT

In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from Bacillus cereus obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLCBc was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLCBc was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (v/v) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.


Subject(s)
Acetylcysteine , Bacillus cereus , Glyoxylates , Sepharose , Enzymes, Immobilized , Type C Phospholipases
8.
Curr Opin Nephrol Hypertens ; 33(4): 398-404, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38602143

ABSTRACT

PURPOSE OF REVIEW: Primary hyperoxalurias (PHs) are rare disorders caused by the deficit of liver enzymes involved in glyoxylate metabolism. Their main hallmark is the increased excretion of oxalate leading to the deposition of calcium oxalate stones in the urinary tract. This review describes the molecular aspects of PHs and their relevance for the clinical management of patients. RECENT FINDINGS: Recently, the study of PHs pathogenesis has received great attention. The development of novel in vitro and in vivo models has allowed to elucidate how inherited mutations lead to enzyme deficit, as well as to confirm the pathogenicity of newly-identified mutations. In addition, a better knowledge of the metabolic consequences in disorders of liver glyoxylate detoxification has been crucial to identify the key players in liver oxalate production, thus leading to the identification and validation of new drug targets. SUMMARY: The research on PHs at basic, translational and clinical level has improved our knowledge on the critical factors that modulate disease severity and the response to the available treatments, leading to the development of new drugs, either in preclinical stage or, very recently, approved for patient treatment.


Subject(s)
Hyperoxaluria, Primary , Mutation , Humans , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy , Hyperoxaluria, Primary/metabolism , Animals , Liver/metabolism , Liver/pathology , Glyoxylates/metabolism , Genetic Predisposition to Disease , Phenotype , Oxalates/metabolism
9.
Front Cell Infect Microbiol ; 14: 1380747, 2024.
Article in English | MEDLINE | ID: mdl-38585655

ABSTRACT

Introduction: Bacterial biofilm is a well-known characteristic that plays important roles in diverse physiological functions, whereas the current intrinsic regulatory mechanism of its formation is still largely unknown. Methods: In the present study, a label-free based quantitative proteomics technology was conducted to compare the differentially expressed proteins (DEPs) between ΔuidR and the wild-type strain in the biofilm state. Results: The results showed that the deletion of gene uidR encoding a TetR transcriptional regulator significantly increased the biofilm formation in Aeromonas hydrophila. And there was a total of 220 DEPs, including 120 up-regulated proteins and 100 down-regulated proteins between ΔuidR and the wild-type strain based on the quantitative proteomics. Bioinformatics analysis suggested that uidR may affect bacterial biofilm formation by regulating some related proteins in glyoxylic acid and dicarboxylic acid pathway. The expressions of selected proteins involved in this pathway were further confirmed by q-PCR assay, and the results was in accordance with the quantitative proteomics data. Moreover, the deletion of four genes (AHA_3063, AHA_3062, AHA_4140 and aceB) related to the glyoxylic acid and dicarboxylic acid pathway lead to a significant decrease in the biofilm formation. Discussion: Thus, the results indicated that uidR involved in the regulatory of bacterial biofilm formation, and it may provide a potential target for the drug development and a new clue for the prevention of pathogenic A. hydrophila in the future.


Subject(s)
Aeromonas hydrophila , Bacterial Proteins , Glyoxylates , Bacterial Proteins/metabolism , Aeromonas hydrophila/metabolism , Proteomics/methods , Biofilms
10.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641593

ABSTRACT

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Subject(s)
Candida glabrata , Oleic Acid , Candida glabrata/genetics , Candida glabrata/metabolism , Oleic Acid/metabolism , Carbon/metabolism , Glycerol , Antifungal Agents/metabolism , Oxidative Stress , Biofilms , Glucose/metabolism , Glyoxylates/metabolism
12.
Biomed Pharmacother ; 173: 116305, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422653

ABSTRACT

BACKGROUND: Through bioinformatics analysis, this study explores the interactions and biological pathways involving metabolomic products in patients diagnosed with coronary heart disease (CHD). METHODS: A comprehensive search for relevant studies focusing on metabolomics analysis in CHD patients was conducted across databases including CNKI, Wanfang, VIP, CBM, PubMed, Cochrane Library, Nature, Web of Science, Springer, and Science Direct. Metabolites reported in the literature underwent statistical analysis and summarization, with the identification of differential metabolites. The pathways associated with these metabolites were examined using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular annotation of metabolites and their relationships with enzymes or transporters were elucidated through analysis with the Human Metabolome Database (HMDB). Visual representation of the properties related to these metabolites was achieved using Metabolomics Pathway Analysis (metPA). RESULTS: A total of 13 literatures satisfying the criteria for enrollment were included. A total of 91 metabolites related to CHD were preliminarily screened, and 87 effective metabolites were obtained after the unrecognized metabolites were excluded. A total of 45 pathways were involved. Through the topology analysis (TPA) of pathways, their influence values were calculated, and 13 major metabolic pathways were selected. The pathways such as Phenylalanine, tyrosine, and tryptophan biosynthesis, Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism, and Glycine, serine, and threonine metabolism primarily involved the regulation of processes and metabolites related to inflammation, oxidative stress, one-carbon metabolism, energy metabolism, lipid metabolism, immune regulation, and nitric oxide expression. CONCLUSION: Multiple pathways, including Phenylalanine, tyrosine, and tryptophan biosynthesis, Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism, and Glycine, serine, and threonine metabolism, were involved in the occurrence of CHD. The occurrence of CHD is primarily associated with the regulation of processes and metabolites related to inflammation, oxidative stress, one-carbon metabolism, energy metabolism, lipid metabolism, immune regulation, and nitric oxide expression.


Subject(s)
Coronary Disease , Nitric Oxide , Humans , Tryptophan , Metabolomics , Metabolome , Inflammation , Citrates , Glycine , Glyoxylates , Phenylalanine , Serine , Tyrosine , Threonine , Carbon
13.
Environ Pollut ; 346: 123628, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38395129

ABSTRACT

Epidemiological evidence concerning effects of simultaneous exposure to noise and benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on renal function remains uncertain. In 2020, a cross-sectional study was conducted among 1160 petrochemical workers in southern China to investigate effects of their co-exposure on estimated glomerular filtration rate (eGFR) and mild renal impairment (MRI). Noise levels were assessed using cumulative noise exposure (CNE). Urinary biomarkers for BTEXS were quantified. We found the majority of workers had exposure levels to noise and BTEXS below China's occupational exposure limits. CNE, trans, trans-muconic acid (tt-MA), and the sum of mandelic acid and phenylglyoxylic acid (PGMA) were linearly associated with decreased eGFR and increased MRI risk. We observed U-shaped associations for both N-acetyl-S-phenyl-L-cysteine (SPMA) and o-methylhippuric acid (2-MHA) with MRI. In further assessing the joint effect of BTEXS (ß, -0.164 [95% CI, -0.296 to -0.033]) per quartile increase in all BTEXS metabolites on eGFR using quantile g-computation models, we found SPMA, tt-MA, 2-MHA, and PGMA played pivotal roles. Additionally, the risk of MRI associated with tt-MA was more pronounced in workers with lower CNE levels (P = 0.004). Multiplicative interaction analysis revealed antagonisms of CNE and PGMA on MRI risk (P = 0.034). Thus, our findings reveal negative dose-effect associations between noise and BTEXS mixture exposure and renal function in petrochemical workers. With the exception of toluene, benzene, xylene, ethylbenzene, and styrene are all concerning pollutants for renal dysfunction. Effects of benzene, ethylbenzene, and styrene exposure on renal dysfunction were more pronounced in workers with lower CNE.


Subject(s)
Glyoxylates , Kidney Diseases , Mandelic Acids , Occupational Exposure , Humans , Benzene/analysis , Xylenes/analysis , Toluene/analysis , Styrene/analysis , Cross-Sectional Studies , Benzene Derivatives/analysis , Occupational Exposure/analysis
14.
Theranostics ; 14(4): 1764-1780, 2024.
Article in English | MEDLINE | ID: mdl-38389846

ABSTRACT

Rationale: The present understanding of the cellular characteristics and communications in crystal nephropathy is limited. Here, molecular and cellular studies combined with single-cell RNA sequencing (scRNA-seq) were performed to investigate the changes in cell components and their interactions in glyoxylate-induced crystallized kidneys to provide promising treatments for crystal nephropathy. Methods: The transcriptomes of single cells from mouse kidneys treated with glyoxylate for 0, 1, 4, or 7 days were analyzed via 10× Genomics, and the single cells were clustered and characterized by the Seurat pipeline. The potential cellular interactions between specific cell types were explored by CellChat. Molecular and cellular findings related to macrophage-to-epithelium crosstalk were validated in sodium oxalate (NaOx)-induced renal tubular epithelial cell injury in vitro and in glyoxylate-induced crystal nephropathy in vivo. Results: Our established scRNA atlas of glyoxylate-induced crystalline nephropathy contained 15 cell populations with more than 40000 single cells, including relatively stable tubular cells of different segments, proliferating and injured proximal tubular cells, T cells, B cells, and myeloid and mesenchymal cells. In this study, we found that Mrc1+ macrophages, as a subtype of myeloid cells, increased in both the number and percentage within the myeloid population as crystal-induced injury progresses, and distinctly express IGF1, which induces the activation of a signal pathway to dominate a significant information flow towards injured and proliferating tubule cells. IGF1 promoted the repair of damaged tubular epithelial cells induced by NaOx in vitro, as well as the repair of damaged tubular epithelial cells and the recovery of disease outcomes in glyoxylate-induced nephrolithic mice in vivo. Conclusion: After constructing a cellular atlas of glyoxylate-induced crystal nephropathy, we found that IGF1 derived from Mrc1+ macrophages attenuated crystal nephropathy through promoting renal tubule cell proliferation via the AKT/Rb signaling pathway. These findings could lead to the identification of potential therapeutic targets for the treatment of crystal nephropathy.


Subject(s)
Kidney Diseases , Proto-Oncogene Proteins c-akt , Animals , Mice , Cell Proliferation , Glyoxylates , Kidney Diseases/metabolism , Macrophages/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
15.
mSystems ; 9(3): e0083923, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38315666

ABSTRACT

Engineering microbial hosts to synthesize pyruvate derivatives depends on blocking pyruvate oxidation, thereby causing severe growth defects in aerobic glucose-based bioprocesses. To decouple pyruvate metabolism from cell growth to improve pyruvate availability, a genome-scale metabolic model combined with constraint-based flux balance analysis, geometric flux balance analysis, and flux variable analysis was used to identify genetic targets for strain design. Using translation elements from a ~3,000 cistronic library to modulate fxpK expression in a bicistronic cassette, a bifido shunt pathway was introduced to generate three molecules of non-pyruvate-derived acetyl-CoA from one molecule of glucose, bypassing pyruvate oxidation and carbon dioxide generation. The dynamic control of flux distribution by T7 RNAP-mediated synthetic small RNA decoupled pyruvate catabolism from cell growth. Adaptive laboratory evolution and multi-omics analysis revealed that a mutated isocitrate dehydrogenase functioned as a metabolic switch to activate the glyoxylate shunt as the only C4 anaplerotic pathway to generate malate from two molecules of acetyl-CoA input and bypass two decarboxylation reactions in the tricarboxylic acid cycle. A chassis strain for pyruvate derivative synthesis was constructed to reduce carbon loss by using the glyoxylate shunt as the only C4 anaplerotic pathway and the bifido shunt as a non-pyruvate-derived acetyl-CoA synthetic pathway and produced 22.46, 27.62, and 6.28 g/L of l-leucine, l-alanine, and l-valine by a controlled small RNA switch, respectively. Our study establishes a novel metabolic pattern of glucose-grown bacteria to minimize carbon loss under aerobic conditions and provides valuable insights into cell design for manufacturing pyruvate-derived products.IMPORTANCEBio-manufacturing from biomass-derived carbon sources using microbes as a cell factory provides an eco-friendly alternative to petrochemical-based processes. Pyruvate serves as a crucial building block for the biosynthesis of industrial chemicals; however, it is different to improve pyruvate availability in vivo due to the coupling of pyruvate-derived acetyl-CoA with microbial growth and energy metabolism via the oxidative tricarboxylic acid cycle. A genome-scale metabolic model combined with three algorithm analyses was used for strain design. Carbon metabolism was reprogrammed using two genetic control tools to fine-tune gene expression. Adaptive laboratory evolution and multi-omics analysis screened the growth-related regulatory targets beyond rational design. A novel metabolic pattern of glucose-grown bacteria is established to maintain growth fitness and minimize carbon loss under aerobic conditions for the synthesis of pyruvate-derived products. This study provides valuable insights into the design of a microbial cell factory for synthetic biology to produce industrial bio-products of interest.


Subject(s)
Glucose , Pyruvates , Acetyl Coenzyme A/genetics , Glucose/metabolism , Glyoxylates/metabolism , RNA
16.
J Inherit Metab Dis ; 47(2): 280-288, 2024 03.
Article in English | MEDLINE | ID: mdl-38200664

ABSTRACT

Glyoxylate is a key metabolite generated from various precursor substrates in different subcellular compartments including mitochondria, peroxisomes, and the cytosol. The fact that glyoxylate is a good substrate for the ubiquitously expressed enzyme lactate dehydrogenase (LDH) requires the presence of efficient glyoxylate detoxification systems to avoid the formation of oxalate. Furthermore, this detoxification needs to be compartment-specific since LDH is actively present in multiple subcellular compartments including peroxisomes, mitochondria, and the cytosol. Whereas the identity of these protection systems has been established for both peroxisomes and the cytosol as concluded from the deficiency of alanine glyoxylate aminotransferase (AGT) in primary hyperoxaluria type 1 (PH1) and glyoxylate reductase (GR) in PH2, the glyoxylate protection system in mitochondria has remained less well defined. In this manuscript, we show that the enzyme glyoxylate reductase has a bimodal distribution in human embryonic kidney (HEK293), hepatocellular carcinoma (HepG2), and cervical carcinoma (HeLa) cells and more importantly, in human liver, and is actively present in both the mitochondrial and cytosolic compartments. We conclude that the metabolism of glyoxylate in humans requires the complicated interaction between different subcellular compartments within the cell and discuss the implications for the different primary hyperoxalurias.


Subject(s)
Alcohol Oxidoreductases , Mitochondria, Liver , Transaminases , Humans , Mitochondria, Liver/metabolism , HEK293 Cells , Oxalates/metabolism , Liver/metabolism , Glyoxylates/metabolism
17.
Eur J Med Chem ; 265: 116058, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38128237

ABSTRACT

The significant challenge in confronting TB eradication is the discursive treatment that results in the disease reactivation, patient non compliance and drug resistance. The presently available drug regimen for TB largely targets the active bacilli and thus remains inadequate against the dormant or persistent subpopulation of Mtb that results in latent TB affecting a quarter of the global population. The crucial pathways that are particularly essential for the survival of dormant Mtb demand better apprehension. Novel drugs are needed to specifically address these persisters in order to enhance treatment effectiveness. Among such pathways, the glyoxylate bypass plays a critical role in the persistence and latent infection of Mtb, making it a promising target for drug development in recent years. In this review, we have compiled the attributes of bacterial subpopulations liable for latent TB and the pathways indispensable for their survival. Specifically, we delve into the glyoxylate shunt pathway and its key enzymes as potential drug targets.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Latent Tuberculosis/drug therapy , Tuberculosis/drug therapy , Tuberculosis/microbiology , Drug Discovery , Glyoxylates/metabolism , Glyoxylates/therapeutic use
18.
Sci Rep ; 13(1): 19686, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37952078

ABSTRACT

Glycolate oxidase (GLO) is an FMN-containing enzyme localized in peroxisomes and performs in various molecular and biochemical mechanisms. It is a key player in plant glycolate and glyoxylate accumulation pathways. The role of GLO in disease and stress resistance is well-documented in various plant species. Although studies have been conducted regarding the role of GLO genes from spinach on a microbial level, the direct response of GLO genes to various stresses in short-season and leafy plants like lettuce has not been published yet. The genome of Lactuca sativa cultivar 'Salinas' (v8) was used to identify GLO gene members in lettuce by performing various computational analysis. Dual synteny, protein-protein interactions, and targeted miRNA analyses were conducted to understand the function of GLO genes. The identified GLO genes showed further clustering into two groups i.e., glycolate oxidase (GOX) and hydroxyacid oxidase (HAOX). Genes were observed to be distributed unevenly on three chromosomes, and syntenic analysis revealed that segmental duplication was prevalent. Thus, it might be the main reason for GLO gene diversity in lettuce. Almost all LsGLO genes showed syntenic blocks in respective plant genomes under study. Protein-protein interactions of LsGLO genes revealed various functional enrichments, mainly photorespiration, and lactate oxidation, and among biological processes oxidative photosynthetic carbon pathway was highly significant. Results of in-depth analyses disclosed the interaction of GLO genes with other members of the glycolate pathway and the activity of GLO genes in various organs and developmental stages in lettuce. The extensive genome evaluation of GLO gene family in garden lettuce is believed to be a reference for cloning and studying functional analyses of GLO genes and characterizing other members of glycolate/glyoxylate biosynthesis pathway in various plant species.


Subject(s)
Gardens , Lactuca , Lactuca/genetics , Lactuca/metabolism , Plants/metabolism , Glycolates/metabolism , Glyoxylates
19.
Inflamm Res ; 72(12): 2111-2126, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924395

ABSTRACT

OBJECTIVE AND DESIGN: Kidney stones commonly occur with a 50% recurrence rate within 5 years, and can elevate the risk of chronic kidney disease. Macrophage-to-myofibroblast transition (MMT) is a newly discovered mechanism that leads to progressive fibrosis in different forms of kidney disease. In this study, we aimed to investigate the role of MMT in renal fibrosis in glyoxylate-induced kidney stone mice and the mechanism by which signal transducer and activator of transcription 6 (STAT6) regulates MMT. METHODS: We collected non-functioning kidneys from patients with stones, established glyoxylate-induced calcium oxalate stone mice model and treated AS1517499 every other day in the treatment group, and constructed a STAT6-knockout RAW264.7 cell line. We first screened the enrichment pathway of the model by transcriptome sequencing; detected renal injury and fibrosis by hematoxylin eosin staining, Von Kossa staining and Sirius red staining; detected MMT levels by multiplexed immunofluorescence and flow cytometry; and verified the binding site of STAT6 at the PPARα promoter by chromatin immunoprecipitation. Fatty acid oxidation (FAO) and fibrosis-related genes were detected by western blot and real-time quantitative polymerase chain reaction. RESULTS: In this study, we found that FAO was downregulated, macrophages converted to myofibroblasts, and STAT6 expression was elevated in stone patients and glyoxylate-induced kidney stone mice. The promotion of FAO in macrophages attenuated MMT and upregulated fibrosis-related genes induced by calcium oxalate treatment. Further, inhibition of peroxisome proliferator-activated receptor-α (PPARα) eliminated the effect of STAT6 deletion on FAO and fibrosis-associated protein expression. Pharmacological inhibition of STAT6 also prevented the development of renal injury, lipid accumulation, MMT, and renal fibrosis. Mechanistically, STAT6 transcriptionally represses PPARα and FAO through cis-inducible elements located in the promoter region of the gene, thereby promoting MMT and renal fibrosis. CONCLUSIONS: These findings establish a role for STAT6 in kidney stone injury-induced renal fibrosis, and suggest that STAT6 may be a therapeutic target for progressive renal fibrosis in patients with nephrolithiasis.


Subject(s)
Kidney Calculi , Myofibroblasts , Animals , Humans , Mice , Calcium Oxalate/metabolism , Calcium Oxalate/pharmacology , Fatty Acids/metabolism , Fibrosis , Glyoxylates/metabolism , Glyoxylates/pharmacology , Kidney/pathology , Kidney Calculi/metabolism , Kidney Calculi/pathology , Macrophages/metabolism , Myofibroblasts/pathology , Oxalates/metabolism , Oxalates/pharmacology , PPAR alpha/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism
20.
J Sep Sci ; 46(24): e2300452, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37880903

ABSTRACT

Few studies have examined the relationship between lipid metabolism and kidney stone formation, particularly the role of key lipid regulatory factors in kidney stone formation. We evaluated the effect of the lipid regulatory factor-peroxisome proliferator-activated receptor alpha on the formation of renal stones in mice by injecting them with glyoxylate followed by treatment with either a peroxisome proliferator-activated receptor alpha agonist fenofibrate or an antagonist GW6471 (GW). Liquid chromatography coupled with trapped ion mobility spectrometry-quadrupole-time-of-flight mass spectrometry-based lipidomics was used to determine the lipid profile in the mouse kidneys. Histological and biochemical analyses showed that the mice injected with glyoxylate exhibited crystal precipitation and renal dysfunction. Crystallization decreased significantly in the fenofibrate group, whereas it increased significantly in the GW group. A total of 184 lipids, including fatty acyls, glycerolipids, glycerophospholipids, and sphingolipids differed significantly between the mice in the model and control groups. Peroxisome proliferator-activated receptor alpha activity negatively correlated with glyoxylate-induced kidney stone formation in mice, which may be related to improved fatty acid oxidation, maintenance of ceramide/complex sphingolipids cycle balance, and alleviation of disorder in phospholipid metabolism.


Subject(s)
Fenofibrate , Kidney Calculi , Mice , Animals , PPAR alpha/agonists , PPAR alpha/metabolism , Lipidomics , Kidney Calculi/chemically induced , Kidney Calculi/drug therapy , Kidney Calculi/prevention & control , Sphingolipids , Chromatography, Liquid , Glyoxylates , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...