Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 483
Filter
1.
Best Pract Res Clin Haematol ; 37(2): 101555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39098803

ABSTRACT

Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.


Subject(s)
Graft vs Host Disease , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Minor Histocompatibility Antigens , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/immunology , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/genetics , Graft vs Leukemia Effect/immunology , Transplantation, Homologous , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , T-Lymphocytes/immunology , Allografts
2.
J Clin Invest ; 134(16)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916965

ABSTRACT

Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting T cell (Tc) immunoglobulin and mucin-containing molecule 3 (TIM-3) for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ Tc enhanced Tc activation, proliferation, and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion, and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3 treatment-mediated GVL effects are Tc induced. In contrast to anti-programmed cell death protein 1 (anti-PD-1) and anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We decipher the connections between oncogenic mutations found in AML and TIM-3 ligand expression and identify anti-TIM-3 treatment as a strategy for enhancing GVL effects via metabolic and transcriptional Tc reprogramming without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Ab in patients with AML relapse after allo-HCT.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Animals , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Mice , Hematopoietic Stem Cell Transplantation , Graft vs Leukemia Effect/immunology , Graft vs Leukemia Effect/genetics , Humans , Allografts , Ligands , Oncogenes , CD8-Positive T-Lymphocytes/immunology , Mice, Knockout , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/antagonists & inhibitors , Gene Expression Regulation, Leukemic
3.
J Immunol ; 213(3): 384-393, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38864663

ABSTRACT

Allogeneic hematopoietic cell transplantation is an effective treatment for hematologic malignancies, but the complications such as graft-versus-host disease (GVHD) can limit its benefit. The conditioning regimens before transplant, including chemotherapy or irradiation, can trigger endoplasmic reticulum stress. IRE-1α is a major endoplasmic reticulum stress mediator that can further activate both spliced XBP-1 (XBP-1s) and regulated IRE-1-dependent decay (RIDD). IRE-1α-XBP-1s signaling controls dendritic cell (DC) differentiation and Ag presentation, crucial in GVHD progression. In this study, we used DC-specific XBP-1-deficient mice as donors or recipients and observed that XBP-1s was crucial for host DCs in the induction of GVHD but dispensable for the graft-versus-leukemia response. To specifically target IRE-1α in the host, we treated recipient mice with the IRE-1α inhibitor B-I09 for 3 d prior to bone marrow transplantation, which significantly suppressed GVHD development while maintaining the graft-versus-leukemia effect. XBP-1-deficient or BI09-treated recipients showed reduced DC survival after irradiation and bone marrow transplantation. Inhibition of IRE-1α also led to a reduction in DC alloreactivity, subsequently decreasing the proliferation and activation of allogeneic T cells. With further study using RIDD-deficient DCs, we observed that RIDD was also required for optimal DC activation. Taken together, XBP-1s and RIDD both promote host DC survival and alloreactivity that contribute to GVHD development.


Subject(s)
Dendritic Cells , Endoplasmic Reticulum Stress , Endoribonucleases , Graft vs Host Disease , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Animals , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Mice , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Mice, Knockout , Mice, Inbred C57BL , Hematopoietic Stem Cell Transplantation , Bone Marrow Transplantation , Signal Transduction , Cell Differentiation/immunology , Graft vs Leukemia Effect/immunology
4.
Front Immunol ; 15: 1358668, 2024.
Article in English | MEDLINE | ID: mdl-38817602

ABSTRACT

Allogeneic hematopoietic cell transplantation (HCT) has transformed over the past several decades through enhanced supportive care, reduced intensity conditioning (RIC), improved human leukocyte antigen (HLA) typing, and novel graft-versus-host disease (GVHD)-prevention and treatment strategies. Most notably, the implementation of post-transplantation cyclophosphamide (PTCy) has dramatically increased the safety and availability of this life-saving therapy. Given reductions in nonrelapse mortality (NRM) with these advances, the HCT community has placed even greater emphasis on developing ways to reduce relapse - the leading cause of death after HCT. When using RIC HCT, protection from relapse relies predominantly on graft-versus-leukemia (GVL) reactions. Donor lymphocyte infusion (DLI), adoptive cellular therapy, checkpoint inhibition, and post-HCT maintenance strategies represent approaches under study that aim to augment or synergize with the GVL effects of HCT. Optimizing donor selection algorithms to leverage GVL represents another active area of research. Many of these strategies seek to harness the effects of T cells, which for decades were felt to be the primary mediators of GVL and the focus of investigation in relapse reduction. However, there is growing interest in capitalizing on the ability of natural killer (NK) cells to yield potent anti-tumor effects. A potential advantage of NK cell-based approaches over T cell-mediated is the potential to reduce NRM in addition to relapse. By decreasing infection, without increasing the risk of GVHD, NK cells may mitigate NRM, while still yielding relapse reduction through identification and clearance of cancer cells. Most T cell-focused relapse-prevention strategies must weigh the benefits of relapse reduction against the increased risk of NRM from GVHD. In contrast, NK cells have the potential to reduce both, potentially tipping the scales significantly in favor of survival. Here, we will review the role of NK cells in GVL, optimization of NK cell match or mismatch, and burgeoning areas of research in NK cell therapy such as adoptive transfer and chimeric antigen receptor (CAR) NK cells.


Subject(s)
Graft vs Host Disease , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Killer Cells, Natural , Transplantation, Homologous , Humans , Killer Cells, Natural/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Graft vs Leukemia Effect/immunology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology , Transplantation Conditioning/methods , Animals
5.
Front Immunol ; 15: 1339318, 2024.
Article in English | MEDLINE | ID: mdl-38711496

ABSTRACT

Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.


Subject(s)
Graft vs Host Disease , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Humans , Graft vs Leukemia Effect/immunology , Animals , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Transplantation, Homologous , Adoptive Transfer/methods , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology
6.
Rinsho Ketsueki ; 65(4): 265-271, 2024.
Article in Japanese | MEDLINE | ID: mdl-38684437

ABSTRACT

Hematopoietic cell transplantation (HCT) is considered a curative treatment for hematological malignancies. However, HCT recipients often face complications such as graft-versus-host disease (GVHD) and disease relapse. Clinical factors like age and HLA disparity are recognized as risks for GVHD. Notably, sex-mismatched HCT, particularly with female donors and male recipients (F→M), is reported to increase the risk of chronic GVHD. This adverse effect of F→M HCT is thought to result from allogeneic immune response against minor histocompatibility antigens encoded on the Y-chromosome of a male recipient (HY-antigens). Indeed, antibodies against HY-antigens (HY-Abs) were detected three months after F→M HCT, and the cumulative number of HY-Abs was significantly associated with increased risks of chronic GVHD and non-relapse mortality. This review focuses on F→M HCT, shedding light on its impact in several clinical settings and presenting clinical evidence of its allogeneic response, encompassing GVHD and graft-versus-leukemia (GVL) effects. Additionally, potential clinical options to mitigate adverse effects in F→M HCT will be discussed. Further investigation is required to improve clinical outcomes and understand allogenic immunological reconstitution after F→M HCT.


Subject(s)
Graft vs Host Disease , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Tissue Donors , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/immunology , Graft vs Host Disease/etiology , Graft vs Leukemia Effect/immunology , Female , Male
8.
Int J Hematol ; 115(3): 371-381, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35037229

ABSTRACT

Genomic deletion of donor-patient-mismatched HLA alleles in leukemic cells is a major cause of relapse after allogeneic hematopoietic stem cell transplantation (HSCT). Mismatched HLA is frequently lost as an individual allele or a whole region in HLA-class I, however, it is downregulated in HLA-class II. We hypothesized that there might be a difference in T cell recognition capacity against epitopes associated with HLA-class I and HLA-class II and consequently such allogeneic immune pressure induced HLA alterations in leukemic cells. To investigate this, we conducted in vitro experiments with T cell receptor-transduced T (TCR-T) cells. The cytotoxic activity of NY-ESO-1-specific TCR-T cells exhibited similarly against K562 cells with low HLA-A*02:01 expression. However, we demonstrated that the cytokine production against low HLA-DPB1*05:01 expression line decreased gradually from the HLA expression level approximately 2-log lower than normal expressors. Using sort-purified leukemia cells before and after HSCT, we applied the next-generation sequencing, and revealed that there were several marked downregulations of HLA-class II alleles which demonstrated consistently low expression from pre-transplantation. The marked downregulation of HLA-class II may lead to decreased antigen recognition ability of antigen-specific T cells and may be one of immune evasion mechanism associated with HLA-class II downregulation.


Subject(s)
Down-Regulation , Epitopes/immunology , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Leukemia/genetics , Leukemia/immunology , T-Lymphocytes/immunology , Transplantation, Homologous , Alleles , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Humans , K562 Cells , Leukemia/therapy , Recurrence
9.
J Leukoc Biol ; 111(2): 427-437, 2022 02.
Article in English | MEDLINE | ID: mdl-34057741

ABSTRACT

The prognosis for acute myeloid leukemia (AML) relapse post allogeneic hematopoietic stem cell transplantation (alloSCT) is dismal. Novel effective treatment is urgently needed. Clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. The mechanisms that mediate immune escape of leukemia (thus causing GVL failure) remain poorly understood. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. Here, using our large, longitudinal clinical tissue bank that include AML cells and G-CSF mobilized donor hematopoietic stem cells (HSCs), we successfully established a novel GVL model in humanized mice. Donor HSCs were injected into immune-deficient NOD-Cg-Prkdcscid IL2rgtm1Wjl /SzJ (NSG) mice to build humanized mice. Immune reconstitution in these mice recapitulated some clinical scenario in the patient who received the corresponding HSCs. Allogeneic but HLA partially matched patient-derived AML cells were successfully engrafted in these humanized mice. Importantly, we observed a significantly reduced (yet incomplete elimination of) leukemia growth in humanized mice compared with that in control NSG mice, demonstrating a functional (but defective) GVL effect. Thus, for the first time, we established a novel humanized mouse model that can be used for studying human GVL responses against human AML cells in vivo. This novel clinically relevant model provides a valuable platform for investigating the mechanisms of human GVL and development of effective leukemia treatments.


Subject(s)
Disease Models, Animal , Graft vs Leukemia Effect/immunology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/cytology , Leukemia, Myeloid, Acute/therapy , Animals , Granulocyte Colony-Stimulating Factor/administration & dosage , Humans , Leukemia, Myeloid, Acute/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Transplantation, Homologous
10.
J Clin Invest ; 131(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34730109

ABSTRACT

Despite the curative potential of hematopoietic stem cell transplantation (HSCT), conditioning-associated toxicities preclude broader clinical application. Antibody-drug conjugates (ADCs) provide an attractive approach to HSCT conditioning that minimizes toxicity while retaining efficacy. Initial studies of ADC conditioning have largely focused on syngeneic HSCT. However, to treat acute leukemias or induce tolerance for solid organ transplantation, this approach must be expanded to allogeneic HSCT (allo-HSCT). Using murine allo-HSCT models, we show that pharmacologic Janus kinase 1/2 (JAK1/2) inhibition combined with CD45- or cKit-targeted ADCs enables robust multilineage alloengraftment. Strikingly, myeloid lineage donor chimerism exceeding 99% was achievable in fully MHC-mismatched HSCT using this approach. Mechanistic studies using the JAK1/2 inhibitor baricitinib revealed marked impairment of T and NK cell survival, proliferation, and effector function. NK cells were exquisitely sensitive to JAK1/2 inhibition due to interference with IL-15 signaling. Unlike irradiated mice, ADC-conditioned mice did not develop pathogenic graft-versus-host alloreactivity when challenged with mismatched T cells. Finally, the combination of ADCs and baricitinib balanced graft-versus-host disease and graft-versus-leukemia responses in delayed donor lymphocyte infusion models. Our allo-HSCT conditioning strategy exemplifies the promise of immunotherapy to improve the safety of HSCT for treating hematologic diseases.


Subject(s)
Azetidines/pharmacology , Hematopoietic Stem Cell Transplantation , Immunoconjugates/pharmacology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Janus Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Allografts , Animals , Disease Models, Animal , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect/drug effects , Graft vs Leukemia Effect/genetics , Graft vs Leukemia Effect/immunology , Interleukin-15/genetics , Interleukin-15/immunology , Janus Kinase 1/genetics , Janus Kinase 1/immunology , Janus Kinase 2/genetics , Janus Kinase 2/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Signal Transduction/genetics , Signal Transduction/immunology
11.
Front Immunol ; 12: 715893, 2021.
Article in English | MEDLINE | ID: mdl-34594330

ABSTRACT

Allogeneic stem cell transplantation (alloSCT) is a curative therapy for hematopoietic malignancies. The therapeutic effect relies on donor T cells and NK cells to recognize and eliminate malignant cells, known as the graft-versus-leukemia (GVL) effect. However, off target immune pathology, known as graft-versus-host disease (GVHD) remains a major complication of alloSCT that limits the broad application of this therapy. The presentation of recipient-origin alloantigen to donor T cells is the primary process initiating GVHD and GVL. Therefore, the understanding of spatial and temporal characteristics of alloantigen presentation is pivotal to attempts to separate beneficial GVL effects from detrimental GVHD. In this review, we discuss mouse models and the tools therein, that permit the quantification of alloantigen presentation after alloSCT.


Subject(s)
Antigen Presentation/immunology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Transplantation Immunology , Animals , Graft vs Host Disease/etiology , Graft vs Leukemia Effect/immunology , H-2 Antigens/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Isoantigens/immunology , Mice , Minor Histocompatibility Antigens/immunology , Molecular Mimicry/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Homologous
12.
J Interferon Cytokine Res ; 41(9): 310-318, 2021 09.
Article in English | MEDLINE | ID: mdl-34543129

ABSTRACT

Graft-versus-host disease (GVHD) is a physiological response of the graft to allogeneic hosts. However, the effector cells, affected organ(s), and cytokines in the GVHD remain controversially discussed, without having determined a particular cytotoxic activity of the graft against the host. After i.v. injection of C57BL/6 (H-2b) spleen cells into irradiated BDF1 (H-2b/d) mice, the hosts developed interferon-gamma (IFN-γ)-dependent bone marrow (BM) GVHD on days 5-17. When H-2DdKd transgenic H-2b lymphoma cells were i.p. inoculated into irradiated, H-2b splenocyte-transplanted H-2b/d mice, the infiltration of macrophages cytotoxic against H-2DdKd transgenic H-2b mouse skin epithelia (a GVHD activity) into the peritoneal cavity preceded several days the infiltration of interleukin (IL)-2-dependent cytotoxic T lymphocytes (CTLs) to achieve a graft-versus-leukemia (GVL) effect. In contrast, allogeneic BM transplanted alone into the irradiated mice did not induce GVHD for 44 days, whereas i.v. injection of graft anti-host macrophages or graft anti-host CTLs along with allogeneic BM, respectively, induced GVHD or promoted the GVL effect in the absence of GVHD. These results revealed that macrophage-induced GVHD and the CTL-mediated GVL effect were a set (Th1: IFN-γ/IL-2) response of the graft to allogeneic hosts and leukemia cells, respectively, and that graft T cell activation rather than inhibition skipped GVHD after BM transplantation.


Subject(s)
Bone Marrow/immunology , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Macrophages/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Bone Marrow Transplantation/methods , Cell Line, Tumor , Hematopoietic Stem Cell Transplantation/methods , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred DBA
13.
Front Immunol ; 12: 697854, 2021.
Article in English | MEDLINE | ID: mdl-34220860

ABSTRACT

Graft versus host disease (GVHD) is a common complication and the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Pharmacological immunosuppression used in GVHD prophylaxis and treatment lacks specificity and can increase the likelihood of infection and relapse. Regulatory T lymphocytes (Tregs) play a vital role in restraining excessive immune responses and inducing peripheral immune tolerance. In particular, clinical trials have demonstrated that Tregs can prevent and treat GVHD, without increasing the risk of relapse and infection. Hence, adoptive transfer of Tregs to control GVHD using their immunosuppressive properties represents a promising therapeutic approach. To optimally apply Tregs for control of GVHD, a thorough understanding of their biology is necessary. In this review, we describe the biological characteristics of Tregs, including how the stability of FOXP3 expression can be maintained. We will also discuss the mechanisms underlying Tregs-mediated modulation of GVHD and approaches to effectively increase Tregs' numbers. Finally, we will examine the developing trends in the use of Tregs for clinical therapy.


Subject(s)
Graft vs Host Disease/immunology , Graft vs Host Disease/therapy , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Cell Proliferation , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect/immunology , Humans , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Immunotherapy, Adoptive , Models, Immunological , Peripheral Tolerance , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Tissue Donors
14.
Front Immunol ; 12: 652105, 2021.
Article in English | MEDLINE | ID: mdl-33968052

ABSTRACT

Transplantation of allogeneic hematopoietic cells faces two barriers: failure of engraftment due to a host versus graft reaction, and the attack of donor cells against the patient, the graft versus host (GVH) reaction. This reaction may lead to GVH disease (GVHD), but in patients transplanted due to leukemia or other malignant disorders, this may also convey the benefit of a graft versus leukemia (GVL) effect. The interplay of transplant conditioning with donor and host cells and the environment in the patient is complex. The microbiome, particularly in the intestinal tract, profoundly affects these interactions, directly and via soluble mediators, which also reach other host organs. The microenvironment is further altered by the modifying effect of malignant cells on marrow niches, favoring the propagation of the malignant cells. The development of stable mixed donor/host chimerism has the potential of GVHD prevention without necessarily increasing the risk of relapse. There has been remarkable progress with novel conditioning regimens and selective T-cell manipulation aimed at securing engraftment while preventing GVHD without ablating the GVL effect. Interventions to alter the microenvironment and change the composition of the microbiome and its metabolic products may modify graft/host interactions, thereby further reducing GVHD, while enhancing the GVL effect. The result should be improved transplant outcome.


Subject(s)
Chimerism , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia/therapy , Neoplasm Recurrence, Local/prevention & control , Disease-Free Survival , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Graft vs Host Reaction/drug effects , Graft vs Host Reaction/genetics , Graft vs Host Reaction/immunology , Graft vs Leukemia Effect/genetics , Graft vs Leukemia Effect/immunology , Humans , Leukemia/genetics , Leukemia/immunology , Leukemia/mortality , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Transplantation Conditioning/methods , Transplantation, Homologous/adverse effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
15.
Br J Haematol ; 195(3): 433-446, 2021 11.
Article in English | MEDLINE | ID: mdl-34046897

ABSTRACT

Allogeneic immune responses underlie the graft-versus-leukaemia effect of stem cell transplantation, but disease relapse occurs in many patients. Minor histocompatibility antigen (mHAg) peptides mediate alloreactive T cell responses and induce graft-versus-leukaemia responses when expressed on patient haematopoietic tissue. We vaccinated nine HA-1-negative donors against HA-1 with a 'prime-boost' protocol of either two or three DNA 'priming' vaccinations prior to 'boost' with modified vaccinia Ankara (MVA). HA-1-specific CD8+ T cell responses were observed in seven donors with magnitude up to 1·5% of total CD8+ T cell repertoire. HA-1-specific responses peaked two weeks post-MVA challenge and were measurable in most donors after 12 months. HA-1-specific T cells demonstrated strong cytotoxic activity and lysed target cells with endogenous HA-1 protein expression. The pattern of T cell receptor (TCR) usage by HA-1-specific T cells revealed strong conservation of T cell receptor beta variable 7-9 (TRBV7-9) usage between donors. These findings describe one of the strongest primary peptide-specific CD8+ T cell responses yet recorded to a DNA-MVA prime-boost regimen and this may reflect the strong immunogenicity of mHAg peptides. Prime-boost vaccination in donors or patients may prove of substantial benefit in boosting graft-versus-leukaemia responses.


Subject(s)
Antigens, Neoplasm/immunology , Graft vs Leukemia Effect/immunology , Minor Histocompatibility Antigens/immunology , Oligopeptides/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccination , Vaccines, DNA/therapeutic use , Vaccinia virus/immunology , Viral Vaccines/therapeutic use , Adult , Aged , Allografts , Cytotoxicity, Immunologic , Epitopes/immunology , Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , HLA-A2 Antigen/immunology , Hematopoietic Stem Cell Transplantation , Humans , Immunogenicity, Vaccine , Immunologic Memory , Male , Middle Aged , Peptides/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Vaccines, Attenuated , Vaccines, DNA/immunology , Viral Vaccines/immunology
16.
Front Immunol ; 12: 641910, 2021.
Article in English | MEDLINE | ID: mdl-33732262

ABSTRACT

Histone deacetylase inhibitors are currently the most studied drugs because of their beneficial effects on inflammatory response. Emerging data from numerous basic studies and clinical trials have shown that histone deacetylase inhibitors can suppress immune-mediated diseases, such as graft-vs.-host disease (GVHD), while retaining beneficial graft-vs.-leukemia (GVL) effects. These drugs prevent and/or treat GVHD by modifying gene expression and inhibiting the production of proinflammatory cytokines, regulating the function of alloreactive T cells, and upregulating the function and number of regulatory T cells. Some of these drugs may become new immunotherapies for GVHD and other immune diseases.


Subject(s)
Graft vs Host Disease , Graft vs Leukemia Effect , Histone Deacetylase Inhibitors/therapeutic use , Immunologic Factors/therapeutic use , Stem Cell Transplantation , T-Lymphocytes, Regulatory/immunology , Allografts , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect/drug effects , Graft vs Leukemia Effect/immunology , Humans
17.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33554953

ABSTRACT

Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.


Subject(s)
Bacteroides fragilis/immunology , Gastrointestinal Microbiome/immunology , Graft vs Host Disease/prevention & control , Allografts , Animals , Disease Models, Animal , Fecal Microbiota Transplantation , Graft vs Host Disease/immunology , Graft vs Host Disease/microbiology , Graft vs Leukemia Effect/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Isoantigens/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , T-Lymphocytes/immunology , Tumor Cells, Cultured
20.
Cancer Res ; 81(4): 1063-1075, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33277367

ABSTRACT

Autophagy is a vital cellular process whose role in T immune cells is poorly understood, specifically, in its regulation of allo-immunity. Stimulation of wild-type T cells in vitro and in vivo with allo-antigens enhances autophagy. To assess the relevance of autophagy to T-cell allo-immunity, we generated T-cell-specific Atg5 knock-out mice. Deficiency of ATG5-dependent autophagy reduced T-cell proliferation and increased apoptosis following in vitro and in vivo allo-stimulation. The absence of ATG5 in allo-stimulated T cells enhanced their ability to release effector cytokines and cytotoxic functions, uncoupling their proliferation and effector functions. Absence of autophagy reduced intracellular degradation of cytotoxic enzymes such as granzyme B, thus enhancing the cytotoxicity of T cells. In several in vivo models of allo-HSCT, ATG5-dependent dissociation of T-cell functions contributed to significant reduction in graft-versus-host disease (GVHD) but retained sufficient graft versus tumor (GVT) response. Our findings demonstrate that ATG5-dependent autophagy uncouples T-cell proliferation from its effector functions and offers a potential new strategy to enhance outcomes after allo-HSCT. SIGNIFICANCE: These findings demonstrate that induction of autophagy in donor T-cell promotes GVHD, while inhibition of T-cell autophagy mitigates GVHD without substantial loss of GVL responses.


Subject(s)
Autophagy-Related Protein 5/physiology , Graft vs Host Disease/genetics , Graft vs Leukemia Effect/genetics , T-Lymphocytes/physiology , Animals , Autophagy-Related Protein 5/genetics , Cell Proliferation/genetics , Cells, Cultured , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Graft vs Leukemia Effect/immunology , Humans , Lymphocyte Activation/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL