Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.084
Filter
1.
Sci Rep ; 14(1): 19321, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164442

ABSTRACT

Much remains unknown about the reproductive physiology of southern white rhinoceros (SWR) and the effect of ovarian stimulation prior to ovum pickup (OPU) have not been fully elucidated. Granulosa cells (GC) provide valuable insight into follicle growth and oocyte maturation status. The goals of this study were to evaluate transcriptomic changes in GC from three stages of follicle development and to identify biomarkers possibly associated with follicular growth and maturation as a result of ovarian stimulation. GC collected from SWRs following OPU were assigned stages based upon follicle size. Total RNA was isolated, and cDNA libraries were prepared and sequenced on a NovaSeq 6000. All bioinformatics analyses were performed utilizing the Galaxy web platform. Reads were aligned to CerSimCot1.0, and the manual curation was performed with EquCab3.0. Overall, 39,455 transcripts (21,612 genes) were identified across follicle stages, and manual curation yielded a 61% increase in gene identification from the original annotation. Granulosa cells from preovulatory follicles expressed the highest number of unique transcripts. The following seven biomarkers were determined based upon cluster analysis and patterns of expression: COL1A1, JMY, FBXW11, NRG1, TMPO, MACIR and COL4A1. These data can be used to potentially evaluate the effects of different ovarian stimulation protocols on follicle dynamics, improve OPU results, and support conservation efforts in this species.


Subject(s)
Granulosa Cells , Ovarian Follicle , Perissodactyla , Transcriptome , Animals , Female , Granulosa Cells/metabolism , Granulosa Cells/cytology , Ovarian Follicle/metabolism , Ovarian Follicle/cytology , Perissodactyla/genetics , Gene Expression Profiling
2.
J Vis Exp ; (209)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39141564

ABSTRACT

The study of oocyte development holds significant implications in developmental biology. The zebrafish (Danio rerio) has been extensively used as a model organism to investigate early developmental processes from oocyte to embryo. In zebrafish, oocytes are surrounded by a single layer of somatic granulosa cells. However, separating granulosa cells from oocytes poses a challenge, as achieving pure oocytes is crucial for precise analysis. Although various methods have been proposed to isolate zebrafish oocytes at different developmental stages, current techniques fall short in removing granulosa cells completely, limiting the accuracy of genome analysis focused solely on oocytes. In this study, we successfully developed a rapid and efficient process for isolating pure stage I oocytes in zebrafish while eliminating granulosa cell contamination. This technique facilitates biochemical and molecular analysis, particularly in exploring epigenetic and genome structure aspects specific to oocytes. Notably, the method is user-friendly, minimizes oocyte damage, and provides a practical solution for subsequent research and analysis.


Subject(s)
Granulosa Cells , Oocytes , Zebrafish , Animals , Oocytes/cytology , Female , Granulosa Cells/cytology
3.
Article in English | MEDLINE | ID: mdl-38955498

ABSTRACT

The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-ß signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.


Subject(s)
Granulosa Cells , Oocytes , Ovarian Follicle , Transcriptome , Animals , Female , Oocytes/metabolism , Oocytes/growth & development , Oocytes/cytology , Mice , Granulosa Cells/metabolism , Granulosa Cells/cytology , Transcriptome/genetics , Ovarian Follicle/metabolism , Ovarian Follicle/growth & development , Ovarian Follicle/cytology , Cell Communication/genetics , Signal Transduction/genetics , Gene Expression Profiling/methods , DNA Methylation/genetics , Oogenesis/genetics
4.
Reprod Domest Anim ; 59(6): e14628, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828525

ABSTRACT

This study aimed to investigate the impact of the epidermal growth factor receptor ligands amphiregulin (AREG) and epiregulin (EREG) on the fundamental functions of feline ovarian granulosa cells. Granulosa cells isolated from feline ovaries were incubated with AREG and EREG (0, 0.1, 1 or 10 ng/mL). The effects of these growth factors on cell viability, proliferation (assessed through BrdU incorporation), nuclear apoptosis (evaluated through nuclear DNA fragmentation) and the release of progesterone and estradiol were determined using Cell Counting Kit-8 assays, BrdU analysis, TUNEL assays and ELISAs, respectively. Both AREG and EREG increased cell viability, proliferation and steroid hormone release and reduced apoptosis. The present findings suggest that these epidermal growth factor receptor ligands may serve as physiological stimulators of feline ovarian cell functions.


Subject(s)
Amphiregulin , Apoptosis , Epiregulin , Granulosa Cells , Animals , Cats , Female , Amphiregulin/metabolism , Amphiregulin/genetics , Cell Proliferation , Cell Survival , Cells, Cultured , Epiregulin/metabolism , Epiregulin/genetics , Estradiol/metabolism , Granulosa Cells/cytology , Granulosa Cells/metabolism , Progesterone/metabolism
5.
Reproduction ; 168(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38912966

ABSTRACT

In brief: This study reveals that orthotopic transplantation of 3D hUC-MSC spheroids is more effective than monolayer-cultured hUC-MSCs in improving POF and distinctly reducing oxidative stress through the paracrine effect, thereby preventing apoptosis and autophagy of GCs. Abstract: Premature ovarian failure (POF) is a common reproductive disease in women younger than 40 years old, and studies have demonstrated that the application of human umbilical cord mesenchymal stem cells (hUC-MSCs) is a promising therapy strategy for POF. Given the previously established therapeutic advantages of 3D MSC spheroids, and to evaluate their effectiveness, both 3D hUC-MSC spheroids and monolayer-cultured hUC-MSCs were employed to treat a cyclophosphamide-induced POF rat model through orthotopic transplantation. The effects of these two forms on POF were subsequently assessed by examining apoptosis, autophagy, and oxidative damage in ovarian granulosa cells (GCs). The results indicated that hUC-MSC spheroids exhibited superior treatment effects on resisting autophagy, apoptosis, and oxidative damage in GCs compared to monolayer-cultured hUC-MSCs. To further elucidate the impact of hUC-MSC spheroids in vitro, a H2O2-induced KGN cells model was established and co-cultured with both forms of hUC-MSCs. As expected, the hUC-MSC spheroids also exhibited superior effects in resisting apoptosis and autophagy caused by oxidative damage. Therefore, this study demonstrates that 3D hUC-MSC spheroids have potential advantages in POF therapy; however, the detailed mechanisms need to be further investigated. Furthermore, this study will provide a reference for the clinical treatment strategy of POF.


Subject(s)
Apoptosis , Autophagy , Disease Models, Animal , Granulosa Cells , Mesenchymal Stem Cells , Oxidative Stress , Primary Ovarian Insufficiency , Spheroids, Cellular , Female , Animals , Rats , Granulosa Cells/pathology , Granulosa Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/chemically induced , Humans , Mesenchymal Stem Cell Transplantation , Rats, Sprague-Dawley , Umbilical Cord/cytology , Cells, Cultured
6.
Front Endocrinol (Lausanne) ; 15: 1365260, 2024.
Article in English | MEDLINE | ID: mdl-38887270

ABSTRACT

Anti-Müllerian hormone (AMH) is a key paracrine/autocrine factor regulating folliculogenesis in the postnatal ovary. As antral follicles mature to the preovulatory stage, AMH production tends to be limited to cumulus cells. Therefore, the present study investigated the role of cumulus cell-derived AMH in supporting maturation and competence of the enclosed oocyte. Cumulus-oocyte complexes (COCs) were isolated from antral follicles of rhesus macaque ovaries for in vitro maturation with or without AMH depletion. Oocyte meiotic status and embryo cleavage after in vitro fertilization were assessed. In vitro maturation with AMH depletion was also performed using COCs from antral follicles of human ovarian tissue. Oocyte maturation and morphology were evaluated. The direct AMH action on mural granulosa cells of the preovulatory follicle was further assessed using human granulosa cells cultured with or without AMH supplementation. More macaque COCs produced metaphase II oocytes with AMH depletion than those of the control culture. However, preimplantation embryonic development after in vitro fertilization was comparable between oocytes derived from COCs cultured with AMH depletion and controls. Oocytes resumed meiosis in human COCs cultured with AMH depletion and exhibited a typical spindle structure. The confluency and cell number decreased in granulosa cells cultured with AMH supplementation relative to the control culture. AMH treatment did not induce cell death in cultured human granulosa cells. Data suggest that reduced AMH action in COCs could be beneficial for oocyte maturation. Cumulus cell-derived AMH is not essential for supporting oocyte competence or mural granulosa cell viability.


Subject(s)
Anti-Mullerian Hormone , Cumulus Cells , In Vitro Oocyte Maturation Techniques , Macaca mulatta , Oocytes , Anti-Mullerian Hormone/metabolism , Oocytes/metabolism , Oocytes/cytology , Oocytes/drug effects , Female , Cumulus Cells/metabolism , Cumulus Cells/cytology , Cumulus Cells/drug effects , Animals , Humans , In Vitro Oocyte Maturation Techniques/methods , Oogenesis/physiology , Oogenesis/drug effects , Cells, Cultured , Fertilization in Vitro/methods , Meiosis/physiology , Meiosis/drug effects , Granulosa Cells/metabolism , Granulosa Cells/cytology , Ovarian Follicle/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/physiology , Embryonic Development/physiology
7.
Cryo Letters ; 45(3): 177-184, 2024.
Article in English | MEDLINE | ID: mdl-38709189

ABSTRACT

BACKGROUND: Ovarian tissue cryopreservation for fertility preservation carries a risk of malignant cell re-seeding. Artificial ovary is a promising method to solve such a problem. However, ovary decellularization protocols are limited. Hence, further studies are necessary to get better ovarian decellularization techniques for the construction of artificial ovary scaffolds. OBJECTIVE: To establish an innovative decellularization technique for whole porcine ovaries by integrating liquid nitrogen with chemical agents to reduce the contact time between the scaffolds and chemical reagents. MATERIALS AND METHODS: Porcine ovaries were randomly assigned to three groups: novel decellularized group, conventional decellularized group and fresh group. The ovaries in the novel decellularized group underwent three cycles of freezing by liquid nitrogen and thawing at temperatures around 37 degree C before decellularization. The efficiency of the decellularization procedure was assessed through histological staining and DNA content analysis. The maintenance of ovarian decellularized extracellular matrix(ODECM) constituents was determined by analyzing the content of matrix proteins. Additionally, we evaluated the biocompatibility of the decellularized extracellular matrix(dECM) by observing the growth of granulosa cells on the ODECM scaffold in vitro. RESULTS: Hematoxylin and eosin staining, DAPI staining and DNA quantification techniques collectively confirm the success of the novel decellularization methods in removing cellular and nuclear components from ovarian tissue. Moreover, quantitative assessments of ODECM contents revealed that the novel decellularization technique preserved more collagen and glycosaminoglycan compared to the conventional decellularized group (P<0.05). Additionally, the novel decellularized scaffold exhibited a significantly higher number of granulosa cells than the conventional scaffold during in vitro co-culture (P<0.05). CONCLUSION: The novel decellularized method demonstrated high efficacy in eliminating DNA and cellular structures while effectively preserving the extracellular matrix. As a result, the novel decellularized method holds significant promise as a viable technique for ovarian decellularization in forthcoming studies. Doi.org/10.54680/fr24310110212.


Subject(s)
Cryopreservation , Decellularized Extracellular Matrix , Nitrogen , Ovary , Tissue Scaffolds , Animals , Female , Nitrogen/chemistry , Swine , Ovary/cytology , Tissue Scaffolds/chemistry , Cryopreservation/methods , Decellularized Extracellular Matrix/chemistry , Tissue Engineering/methods , Granulosa Cells/cytology , Fertility Preservation/methods , Extracellular Matrix/chemistry , DNA/analysis , DNA/chemistry
8.
Zygote ; 32(2): 161-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465746

ABSTRACT

Environmental hypoxia adversely affects reproductive health in humans and animals at high altitudes. Therefore, how to alleviate the follicle development disorder caused by hypoxia exposure and to improve the competence of fertility in plateau non-habituated female animals are important problems to be solved urgently. In this study, a hypobaric hypoxic chamber was used for 4 weeks to simulate hypoxic conditions in female mice, and the effects of hypoxia on follicle development, proliferation and apoptosis of granulosa cells, reactive oxygen species (ROS) levels in MII oocyte and 2-cell rate were evaluated. At the same time, the alleviating effect of melatonin on hypoxic exposure-induced oogenesis damage was evaluated by feeding appropriate amounts of melatonin daily under hypoxia for 4 weeks. The results showed that hypoxia exposure significantly increased the proportion of antral follicles in the ovary, the number of proliferation and apoptosis granulosa cells in the follicle, and the level of ROS in MII oocytes, eventually led to the decline of oocyte quality. However, these defects were alleviated when melatonin was fed under hypoxia conditions. Together, these findings suggest that hypoxia exposure impaired follicular development and reduced oocyte quality, and that melatonin supplementation alleviated the fertility reduction induced by hypoxia exposure.


Subject(s)
Hypoxia , Melatonin , Ovarian Follicle , Melatonin/administration & dosage , Animals , Mice , Ovarian Follicle/cytology , Granulosa Cells/cytology , Ovary/cytology , Hypoxia/pathology , Embryonic Development , Stress, Physiological
9.
Cell Prolif ; 57(5): e13589, 2024 May.
Article in English | MEDLINE | ID: mdl-38192172

ABSTRACT

Human granulosa cells in different stages are essential for maintaining normal ovarian function, and granulosa cell defect is the main cause of ovarian dysfunction. To address this problem, it is necessary to induce functional granulosa cells at different stages in vitro. In this study, we established a reprogramming method to induce early- and late-stage granulosa cells with different steroidogenic abilities. We used an AMH-fluorescence-reporter system to screen candidate factors for cellular reprogramming and generated human induced granulosa-like cells (hiGC) by overexpressing FOXL2 and NR5A1. AMH-EGFP+ hiGC resembled human cumulus cells in transcriptome profiling and secreted high levels of oestrogen and progesterone, similar to late-stage granulosa cells at antral or preovulatory stage. Moreover, we identified CD55 as a cell surface marker that can be used to isolate early-stage granulosa cells. CD55+ AMH-EGFP- hiGC secreted high levels of oestrogen but low levels of progesterone, and their transcriptome profiles were more similar to early-stage granulosa cells. More importantly, CD55+ hiGC transplantation alleviated polycystic ovary syndrome (PCOS) in a mouse model. Therefore, hiGC provides a cellular model to study the developmental program of human granulosa cells and has potential to treat PCOS.


Subject(s)
Fibroblasts , Forkhead Box Protein L2 , Granulosa Cells , Steroidogenic Factor 1 , Female , Humans , Forkhead Box Protein L2/metabolism , Forkhead Box Protein L2/genetics , Granulosa Cells/metabolism , Granulosa Cells/cytology , Animals , Mice , Fibroblasts/metabolism , Fibroblasts/cytology , Steroidogenic Factor 1/metabolism , Steroidogenic Factor 1/genetics , Progesterone/metabolism , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Cellular Reprogramming , Cells, Cultured
10.
Nature ; 607(7919): 540-547, 2022 07.
Article in English | MEDLINE | ID: mdl-35794482

ABSTRACT

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.


Subject(s)
Cell Lineage , Germ Cells , Ovary , Sex Differentiation , Single-Cell Analysis , Testis , Animals , Chromatin/genetics , Chromatin/metabolism , Female , Germ Cells/cytology , Germ Cells/metabolism , Granulosa Cells/cytology , Granulosa Cells/metabolism , Humans , Immunoglobulins , Macrophages/metabolism , Male , Membrane Glycoproteins , Membrane Proteins , Mice , Microscopy, Fluorescence , Ovary/cytology , Ovary/embryology , PAX8 Transcription Factor , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , Receptors, Immunologic , Sex Differentiation/genetics , Testis/cytology , Testis/embryology , Transcriptome
11.
Cell Death Dis ; 13(7): 579, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35787614

ABSTRACT

Endometriosis (EMs) occurs in approximately 50% of women with infertility. The main causes of EMs-related infertility are follicle dysplasia and reduced oocyte quality. Iron overload occurs in ovarian follicular fluid (FF) of patients with EMs, and this condition is associated with oocyte maturation disorder. However, the underlying molecular mechanism remains largely unknown. In the present study, we identified the mechanism underlying ferroptosis in ovarian granulosa cells and oocyte maturation failure in EMs based on a retrospective review of in vitro fertilization/intracytoplasmic sperm injection-frozen embryo transfer outcomes in infertile patients with EMs. Mouse granulosa cells were treated with EMs-related infertile patients' follicular fluid (EMFF) in vitro. Western blot analysis, quantitative polymerase chain reaction, fluorescence staining, and transmission electron microscopy were used to assess granulosa cells ferroptosis. The effects of exosomes were examined by nanoparticle tracking analysis, RNA-seq, and Western blot analysis. Finally, the therapeutic values of vitamin E and iron chelator (deferoxamine mesylate) in vivo were evaluated in an EMs-related infertility model. Patients with ovarian EMs experienced poorer oocyte fertility than patients with non-ovarian EMs. We observed that EMFF with iron overload-induced granulosa cell ferroptosis in vitro and in vivo. Mechanically, nuclear receptor coactivator four-dependent ferritinophagy was involved in this process. Notably, granulosa cells undergoing ferroptosis further suppressed oocyte maturation by releasing exosomes from granulosa cells. In therapeutic studies, vitamin E and iron chelators effectively alleviated EMs-related infertility models. Our study indicates a novel mechanism through which EMFF with iron overload induces ferroptosis of granulosa cells and oocyte dysmaturity in EMs-related infertility, providing a potential therapeutic strategy for EMs-related infertility.


Subject(s)
Endometriosis , Ferroptosis , Iron Overload , Animals , Deferoxamine/pharmacology , Endometriosis/complications , Female , Follicular Fluid , Granulosa Cells/cytology , Humans , Infertility, Female/complications , Iron , Iron Overload/complications , Mice , Oocytes/pathology , Vitamin E/pharmacology
12.
J Cell Physiol ; 237(7): 2969-2979, 2022 07.
Article in English | MEDLINE | ID: mdl-35578792

ABSTRACT

The ubiquitin-specific peptidase 9 X-linked (USP9X) is one of the highly conserved members belonging to the ubiquitin-specific proteases (USPs) family, which has been reported to control substrates-mediated biological functions through deubiquitinating and stabilizing substrates. Here, we have found that TGFBR2, the type II receptor of the transforming growth factor beta (TGF-ß) signaling pathway, is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells (GCs). Mechanically, USP9X positively influences the expression of TGFBR2 at different levels through two independent ways: (i) directly targets and deubiquitinates TGFBR2, which maintains the protein stability of TGFBR2 through avoiding degradation mediated by ubiquitin-proteasome system; (ii) indirectly maintains TGFBR2 messenger RNA (mRNA) expression via SMAD4/miR-143 axis. Specifically, SMAD4, another substrate of USP9X, acts as a transcription factor and suppresses miR-143 which inhibits the mRNA level of TGFBR2 by directly binding to its 3'-untranslated region. Functionally, the maintenance of TGFBR2 by USP9X activates the TGF-ß signaling pathway, which further represses GC apoptosis. Our study highlights a functional micro-regulatory network composed of deubiquitinase (USP9X), small noncoding RNA (miR-143) and the TGF-ß signaling pathway, which plays a crucial role in the regulation of GC apoptosis and female fertility.


Subject(s)
Granulosa Cells/metabolism , MicroRNAs , Receptor, Transforming Growth Factor-beta Type II/genetics , Signal Transduction , Ubiquitin Thiolesterase/metabolism , 3' Untranslated Regions , Animals , Apoptosis , Female , Granulosa Cells/cytology , MicroRNAs/genetics , RNA, Messenger/genetics , Sus scrofa , Swine
13.
J Cell Physiol ; 237(8): 3278-3291, 2022 08.
Article in English | MEDLINE | ID: mdl-35578798

ABSTRACT

Protein neddylation inactivation is a novel topic in cancer research. However, there are few studies on the mechanism of neddylation underlying the development of sheep follicular granulosa cells (GCs). In this study, the development of follicular GCs in sheep was inactivated by MLN4924, a neddylation-specific inhibitor, which significantly attenuated the proliferation and cell index of sheep follicular GCs. Further, the inactivation of neddylation by MLN4924 caused the accumulation of the cullin ring ligase (CRLs) substrates Wee1 and c-Myc, which could upregulate NOXA protein expression. Meanwhile, the B-cell lymphoma/leukemia 2 (BCL2) family members Bcl-2 and MCL-1 were downregulated, subsequently inducing apoptosis in follicular GCs of sheep. Increasing Wee1 levels caused G2/M-phase arrest. The effects of neddylation inactivation on Akt, the JAK2/STAT3 signaling pathway, and Forkhead box class O(FOXO) family members were evaluated. Neddylation inactivation by MLN4924 increased the levels of phospho-Akt, JAK2, phospho-STAT3, and FOXO1 (p < 0.05) and decreased the levels of phospho-FOXO3a and STAT3 (p < 0.05). In addition, MLN4924 could alter the mitochondrial morphology of GCs, increase cellular glucose utilization and lactate production, increase reactive oxygen species (ROS) generation, and promote sheep follicular GCs glycolysis, thus causing changes in mitochondrial functions. Together, these findings point to an unrecognized role of neddylation in regulating follicular GCs proliferation in sheep.


Subject(s)
Apoptosis , Cell Cycle Checkpoints , Granulosa Cells , Protein Processing, Post-Translational , Animals , Cell Line, Tumor , Cell Proliferation , Cyclopentanes/pharmacology , Female , Granulosa Cells/cytology , Proto-Oncogene Proteins c-akt , Sheep
14.
Cancer Med ; 11(12): 2414-2426, 2022 06.
Article in English | MEDLINE | ID: mdl-35229987

ABSTRACT

This study is to explore the therapeutic effect and potential mechanisms of exosomal microRNAs (miRNAs) derived from the ovaries with primary ovarian insufficiency (POI). The POI mouse model was established by intraperitoneal injection of cyclophosphamide (CTX) and busulfan. The apoptosis of granulosa cells (GCs) incubated with exosomes extracted from ovarian tissues of control and POI groups was analyzed by flow cytometry. Then, high-throughput sequencing was performed to detect the difference of miRNAs profile in ovarian tissue-derived exosomes between the control and POI mice. The effect of differential miRNA on the apoptosis of CTX-induced ovarian GCs was analyzed by flow cytometry. The results showed that POI mouse model was successfully established. Exosomes extracted from ovarian of normal and POI group have different effects on apoptosis of GCs induced by CTX. miRNA-seq found that exosomal miR-122-5p in POI group increased significantly. miR-122-5p as the dominant miRNA targeting BCL9 was significantly upregulated in ovarian tissues of chemotherapy-induced POI group. Exosomes derived from the ovaries in the control group and miR-122-5p inhibitor group attenuated the apoptosis of primary cultured ovarian GCs. In conclusion, exosomal miR-122-5p promoted the apoptosis of ovarian GCs by targeting BCL9, suggested that miR-122-5p may function as a potential target to restore ovarian function.


Subject(s)
Exosomes , Granulosa Cells , MicroRNAs , Primary Ovarian Insufficiency , Transcription Factors , Animals , Apoptosis , Exosomes/genetics , Female , Granulosa Cells/cytology , Humans , Mice , MicroRNAs/genetics , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/therapy , Transcription Factors/genetics
15.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163399

ABSTRACT

Lysophosphatidylcholine (LPC), also known as lysolecithin, is one of the major components of oxidized low-density lipoproteins (ox-LDL). In the pathogenetic process of diverse diseases, LPC acts as a significant lipid mediator. However, no evidence shows that LPC can affect the female reproductive system. In our study, we found that LPC inhibited the cell viability of primary mouse ovarian granulosa cells. Meanwhile, LPC was shown to induce apoptosis, which is accompanied by an increase in apoptosis-related protein levels, such as cleaved caspase-3, cleaved caspase-8 and Bax, as well as a decrease in Bcl-2. The total numbers of early and late apoptotic cells also increased in the LPC-treated cells. These results indicated that LPC could induce apoptosis of mouse ovarian granulosa cells. Furthermore, the increase in autophagy-related protein levels and the number of autophagic vesicles suggested that LPC could induce autophagy. The inhibition of oxidative stress by N-acetyl-L-cysteine (NAC) could rescue the induction of apoptosis and autophagy by LPC, which indicated that oxidative stress was involved in LPC-induced apoptosis and autophagy. Interestingly, the inhibition of autophagy by 3-MA could reserve the inhibition of cell viability and the induction of apoptosis by LPC. In conclusion, oxidative stress was involved in LPC-induced apoptosis, whileautophagy of mouse ovarian granulosa cells and the inhibition of autophagy could alleviate LPC-induced apoptosis.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis , Autophagy , Granulosa Cells/metabolism , Lysophosphatidylcholines/metabolism , Animals , Female , Granulosa Cells/cytology , Mice
16.
Int J Mol Sci ; 23(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35163432

ABSTRACT

Ovarian granulosa cell (GC) apoptosis is the major cause of follicular atresia. Regulation of non-coding RNAs (ncRNAs) was proved to be involved in regulatory mechanisms of GC apoptosis. circRNAs have been recognized to play important roles in cellular activity. However, the regulatory network of circRNAs in follicular atresia has not been fully validated. In this study, we report a new circRNA, circSLC41A1, which has higher expression in healthy follicles compared to atretic follicles, and confirm its circular structure using RNase R treatment. The resistant function of circSLC41A1 during GC apoptosis was detected by si-RNA transfection and the competitive binding of miR-9820-5p by circSLC41A1 and SRSF1 was detected with a dual-luciferase reporter assay and co-transfection of their inhibitors or siRNA. Additionally, we predicted the protein-coding potential of circSLC41A1 and analyzed the structure of circSLC41A1-134aa. Our study revealed that circSLC41A1 enhanced SRSF1 expression through competitive binding of miR-9820-5p and demonstrated a circSLC41A1-miR-9820-5p-SRSF1 regulatory axis in follicular GC apoptosis. The study adds to knowledge of the post-transcriptional regulation of follicular atresia and provides insight into the protein-coding function of circRNA.


Subject(s)
Follicular Atresia/genetics , Granulosa Cells/cytology , MicroRNAs/genetics , RNA, Circular/genetics , Serine-Arginine Splicing Factors/genetics , Animals , Apoptosis , Cells, Cultured , Computational Biology , Female , Gene Expression Profiling/veterinary , Gene Expression Regulation , Granulosa Cells/chemistry , Sequence Analysis, RNA/veterinary , Swine
17.
Nat Commun ; 13(1): 131, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013308

ABSTRACT

Folliculogenesis is a complex biological process involving a central oocyte and its surrounding somatic cells. Three-dimensional chromatin architecture is an important transcription regulator; however, little is known about its dynamics and role in transcriptional regulation of granulosa cells during chicken folliculogenesis. We investigate the transcriptomic dynamics of chicken granulosa cells over ten follicular stages and assess the chromatin architecture dynamics and how it influences gene expression in granulosa cells at three key stages: the prehierarchical small white follicles, the first largest preovulatory follicles, and the postovulatory follicles. Our results demonstrate the consistency between the global reprogramming of chromatin architecture and the transcriptomic divergence during folliculogenesis, providing ample evidence for compartmentalization rearrangement, variable organization of topologically associating domains, and rewiring of the long-range interaction between promoter and enhancers. These results provide key insights into avian reproductive biology and provide a foundational dataset for the future in-depth functional characterization of granulosa cells.


Subject(s)
Avian Proteins/genetics , Chickens/genetics , Chromatin/ultrastructure , Granulosa Cells/metabolism , Oogenesis/genetics , Transcriptome , Animals , Avian Proteins/classification , Avian Proteins/metabolism , Chickens/growth & development , Chickens/metabolism , Chromatin/chemistry , Enhancer Elements, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Ontology , Granulosa Cells/cytology , Molecular Sequence Annotation , Oocytes/cytology , Oocytes/metabolism , Promoter Regions, Genetic
18.
Gene ; 812: 146097, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34902510

ABSTRACT

Multiple Wilms tumor gene 1 (WT1) splicing variants are expressed in mammals, and these variants regulate tumorigenesis and mediate the development of multiple tissues and organs, including gonads. However, WT1 splicing variants (+KTS or -KTS) are expressed in only two nonmammalian vertebrates, and unexpectedly, their functions in chicken ovaries remain elusive. Progesterone (P4) secreted by chicken granulosa cells (GCs) participates in various physiological processes and plays an important role in maintaining reproductive performance. The purpose of this study was to investigate the effect of WT1(+KTS) and WT1(-KTS) on chicken P4 secretion in preovulatory GCs. First, we detected WT1 mRNA expression in GCs from follicles of different developmental stages by Quantitative real-time PCR (RT-qPCR) and found that WT1 mRNA expression was considerably increased in preovulatory GCs compared with prehierarchical GCs. Primary cells collected from preovulatory follicles were treated with WT1(+KTS) or WT1(-KTS) overexpression vectors and subsequently cultured in the absence or presence of follicle-stimulating hormone (FSH). The mRNA levels of FSH-receptor (FSHR) and steroidogenesis genes were determined by RT-qPCR, and the P4 levels in the cell supernatants were measured by radioimmunoassay (RIA). Both WT1(+KTS) and WT1(-KTS) significantly decreased P4 secretion due to a reduction in FSHR, STAR and CYP11A1 mRNA levels. Western blotting revealed that ERK1/2 and BRAF phosphorylation levels were suppressed after overexpression of WT1(+KTS) or WT1(-KTS), whereas total protein and mRNA levels were not significantly changed. In addition, CREB protein and phosphorylation levels were inhibited after overexpression of WT1(+KTS) or WT1(-KTS). In conclusion, WT1(+KTS) and WT1(-KTS) inhibited CREB protein activity and significantly reduced FSHR, STAR and CYP11A1 mRNA levels, which subsequently suppressed FSH-induced P4 secretion in preovulatory GCs by modulating ERK1/2 signaling.


Subject(s)
Follicle Stimulating Hormone/metabolism , Granulosa Cells/cytology , Progesterone/pharmacology , WT1 Proteins/genetics , WT1 Proteins/metabolism , Alternative Splicing , Animals , Cell Differentiation/drug effects , Cells, Cultured , Cholesterol Side-Chain Cleavage Enzyme/genetics , Female , Gene Expression Regulation/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , MAP Kinase Signaling System/drug effects , Phosphoproteins/genetics , Real-Time Polymerase Chain Reaction , Receptors, FSH/genetics , Up-Regulation
19.
Gene ; 813: 146120, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34915048

ABSTRACT

Apoptosis of ovarian granular cells is closely related with weakening fertility of women. Hence, resisting apoptosis of human ovarian granular cells is of important significance. According to previous studies, DAPI fluorescence staining experiment and Western Blot test of Caspase-3 demonstrate that small peptides from Periplaneta americana (SPPA) can improve hydrogen peroxide (H2O2) -induced apoptosis of human ovarian granular cells (KGN cells). However, the molecular mechanism of SPPA resistance against apoptosis of granular cells still remains unknown. In this study, key genes and signaling pathways for SPPA to resist H2O2-induced apoptosis of KGN cells were determined through transcriptome sequencing (RNA-seq). Experiments were divided into three groups, namely, the control group, H2O2 group and H2O2 + SPPA group. A total of 1196 differentially expressed genes (DEGs) were screened by comparing the control group and the H2O2 group, and 2805 DEGs were screened by comparing the H2O2 group and H2O2 + SPPA group. It is important to note that 87 overlapping genes were identified upregulating in H2O2 exposure, but downregulating in SPPA repair. Another 151 overlapping genes were identified downregulating in H2O2 exposure, but upregulating in SPPA repair. These 238 overlapping genes have significant enrichment in multiple KEGG pathways. Among them, 13 genes play significant roles in SPPA resistance process of cell apoptosis: EIF3D, RAN, UPF1 and EIF2B4 participate in RNA transport; ACTG1, SIPA1 and CTNND1 participate in Leukocyte transendothelial migration; S100A7, S100A9, RELA and IL17RE participate in IL-17 signaling pathway; BCL2L13, EIF2AK3 and RELA participate in Mitophapy-animal. Ten genes were selected for florescence quantitative PCR (qPCR) verification and the expression level was consistent with sequencing results. Finally, a control network of SPPA resistance against the H2O2-induced KGN cell apoptosis was built based on the target genes screened by the RNA-seq technology. This study provides a direction and some references to further understand the molecular mechanism of SPPA resistance against the H2O2-induced KGN cell apoptosis.


Subject(s)
Granulosa Cells/drug effects , Hydrogen Peroxide/pharmacology , Peptides/pharmacology , Periplaneta/chemistry , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Death/drug effects , Cell Line , Drug Interactions , Eukaryotic Initiation Factor-3/genetics , Female , Gene Expression , Granulosa Cells/cytology , Granulosa Cells/metabolism , Humans , Insect Proteins/chemistry , Insect Proteins/pharmacology , Oxidative Stress/drug effects , Peptides/chemistry , RNA-Seq , Signal Transduction , Transcriptome
20.
Theriogenology ; 180: 94-102, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34959084

ABSTRACT

Porcine 17-hydroxysteroid dehydrogenase type 14 (HSD17B14) and FSH reporter (FSHR) genes play important roles in the metabolism of steroid hormones and the apoptosis of ovarian granulosa cells (GCs). Our bioinformatics analyses and the dual luciferase reporter assays indicated that porcine miR-20b and miR-31 target the 3'-UTR region of HSD17B14 gene, and miR-31 also targets the 3'-UTR region of FSHR gene. Overexpression of porcine HSD17B14 gene promoted the conversion from estradiol (E2) to estrone (E1) and increased the apoptosis of porcine GCs. Overexpression of miR-20b down-regulated the mRNA and protein expression level of HSD17B14 gene, decreased the concentration of progesterone (P4) and E1, increased E2, as well as reduced apoptosis of GCs. Moreover, overexpression of miR-31 also down-regulated the protein expression level of HSD17B14 gene, decreased the concentration of P4 and E1, and increased E2. However, miR-31 promoted apoptosis of GCs by targeting to the 3'-UTR of porcine FSHR gene. Taken together, we found that both porcine miR-20b and miR-31 target HSD17B14 gene, but miR-31 also targets FSHR gene to regulate the metabolism of steroid hormones and the apoptosis of porcine ovarian GCs. These findings expand the epigenetic regulatory mechanism of porcine miR-31 and miR-20b in ovarian GCs.


Subject(s)
17-Hydroxysteroid Dehydrogenases/metabolism , Apoptosis , Granulosa Cells , MicroRNAs , Receptors, FSH/metabolism , Animals , Estradiol , Estrone , Female , Granulosa Cells/cytology , MicroRNAs/genetics , Swine
SELECTION OF CITATIONS
SEARCH DETAIL