Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 948
1.
Mol Biol Rep ; 51(1): 702, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822942

BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.


Bone Regeneration , Graphite , Osteoprotegerin , RANK Ligand , Rats, Wistar , Graphite/pharmacology , Animals , Bone Regeneration/drug effects , Rats , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Humans , Biocompatible Materials/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Actinobacteria/metabolism , Anti-Bacterial Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Signal Transduction/drug effects
2.
Carbohydr Polym ; 339: 122232, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823905

In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.


Alginates , Bone Regeneration , Chitosan , Hydrogels , Polyvinyl Alcohol , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Alginates/chemistry , Alginates/pharmacology , Polyvinyl Alcohol/chemistry , Tissue Scaffolds/chemistry , Humans , Bone Regeneration/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering/methods , Nanotubes, Carbon/chemistry , Osteoblasts/drug effects , Osteoblasts/cytology , Graphite/chemistry , Graphite/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Survival/drug effects , Cell Line
3.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Article En | MEDLINE | ID: mdl-38711614

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Copper , Doxorubicin , Graphite , Metal-Organic Frameworks , Prostatic Neoplasms , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Doxorubicin/pharmacology , Doxorubicin/chemistry , Animals , Humans , Cell Line, Tumor , Copper/chemistry , Copper/pharmacology , Graphite/chemistry , Graphite/pharmacology , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Drug Liberation , Reactive Oxygen Species/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice, Nude , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Xenograft Model Antitumor Assays
4.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791366

The rise in the antibiotic resistance of bacteria has increased scientific interest in the study of materials with unique mechanisms of antimicrobial action. This paper presents the results of studies on the antimicrobial activity of carbon materials and textiles decorated with them. A comparative analysis of the bactericidal and fungicidal activities of graphene oxide, electrochemically exfoliated multigraphene, carbon dots, and their combinations was performed. Microbiological studies on reference strains of E. coli, S. aureus, and C. albicans showed that graphene oxide inhibited growth with up to 98% efficiency. Electrochemically exfoliated multigraphene was less effective (up to 40%). This study found no significant antimicrobial activity of carbon dots and the combination of carbon dots with graphene oxide significantly weakened their effectiveness. However, the combination of electrochemically exfoliated multigraphene and carbon dots exhibits a synergistic effect (up to 76%). A study on the antimicrobial activity of decorated cotton textiles demonstrated the effectiveness of antimicrobial textiles with graphene oxide, electrochemically exfoliated multigraphene, and a combination of carbon dots with electrochemically exfoliated multigraphene.


Anti-Infective Agents , Cotton Fiber , Graphite , Graphite/chemistry , Graphite/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Carbon/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Textiles , Quantum Dots/chemistry
5.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791473

Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.


Apoptosis , Breast Neoplasms , Graphite , Oxidative Stress , Proteasome Inhibitors , Humans , Graphite/pharmacology , Graphite/chemistry , Apoptosis/drug effects , Oxidative Stress/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Proteasome Inhibitors/pharmacology , Female , Leupeptins/pharmacology , Drug Synergism , Mitochondria/drug effects , Mitochondria/metabolism
6.
Nanotechnology ; 35(32)2024 May 24.
Article En | MEDLINE | ID: mdl-38701766

One of the global challenges for living things is to provide pollution and harmful microbes-free environment. In this study, magnetically retrievable spinel-structured manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) (MZF) was synthesized by a facile solvothermal method. Further, the MZF with different weight percentages (10 wt%, 50 wt%, and 80 wt%) were supported on reduced graphene oxide (rGO). The phase purity and morphology of MZF and MZF/rGO nanocomposite were confirmed by x-ray diffraction technique and scanning electron microscopy, respectively. The Fourier transform infrared spectroscopy, Raman, UV-visible spectroscopy, and thermogravimetric analyses of the as-synthesized nanocomposites were examined for the detection of various chemical groups, band gap, and thermal properties, respectively. The MZF/rGO nanocomposite exhibited significant antibacterial and antifungal activity againstEggerthella lenta, Enterococcus faecalis, Klebsiella pneumonia, Pseudomonas aeruginosa,andCandida albicanscompared to bare MZF and rGO. The high surface area of rGO plays a crucible role in antimicrobial analysis. Additionally, the antibacterial and antifungal activity is compared by synthesizing various metal ferrites such as MnFe2O4, ZnFe2O4, and Fe3O4. The 50 wt% MZF/rGO nanocomposite exhibits significantly high antibacterial activity. However, 10 wt% MZF/rGO nanocomposite shows good antifungal activity than Fe3O4, MnFe2O4, ZnFe2O4, MnZnFe2O4, 50 wt%, and 80 wt% MZF/rGO nanocomposites. These findings suggest that the prepared ferrite nanocomposites hold promise for microbial inhibition.


Bacteria , Ferric Compounds , Fungi , Graphite , Nanocomposites , Graphite/chemistry , Graphite/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Nanocomposites/chemistry , Fungi/drug effects , Bacteria/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Zinc/chemistry , Zinc/pharmacology , Aluminum Oxide , Magnesium Oxide
7.
ACS Appl Bio Mater ; 7(5): 3215-3226, 2024 May 20.
Article En | MEDLINE | ID: mdl-38695746

This study presents a tetra-substituted phthalonitrile derivative, namely, diethyl 2-(3,4-dicyano-2,5-bis(hexyloxy)-6-(4-(trifluoromethoxy)phenoxy)phenyl)malonate (a), cyclotetramerizing in the presence of some metal salts. The resultant hexadeca-substituted metal phthalocyanines [M= Co, Zn, InCl)] (b-d) were used for the modification of reduced graphene oxide for the first time. The effect of the phthalonitrile/metal phthalocyanines on biological features of reduced graphene oxide (rGO) was extensively examined by the investigation of antioxidant, antimicrobial, DNA cleavage, cell viability, and antibiofilm activities of nanobioagents (1-4). The results were compared with those of unmodified rGO (nanobioagent 5), as well. Modification of reduced graphene oxide with the synthesized compounds improved its antioxidant activity. The antioxidant activities of all the tested nanobioagents also enhanced as the concentration increased. The antibacterial activities of all the nanobioagents improved by applying the photodynamic therapeutic (PDT) method. All the phthalonitrile/phthalocyanine-based nanobioagents (especially phthalocyanine-based nanocomposites) exhibited DNA cleavage activities, and complete DNA fragmentation was observed for nanobioagents (1-4) at 200 mg/L. They can be used as potent antimicrobial and antimicrobial photodynamic therapy agents as well as Escherichia coli microbial cell inhibitors. As a result, the prepared nanocomposites can be considered promising candidates for biomedicine.


Anti-Bacterial Agents , Biocompatible Materials , Graphite , Indoles , Isoindoles , Materials Testing , Particle Size , Graphite/chemistry , Graphite/pharmacology , Indoles/chemistry , Indoles/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Microbial Sensitivity Tests , Cell Survival/drug effects , Escherichia coli/drug effects , Molecular Structure , Biofilms/drug effects , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Oxides/chemistry , Oxides/pharmacology
8.
J Colloid Interface Sci ; 670: 357-363, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38763031

Carbon dots (CDs) are carbon nano materials (CNMs) that find use across several biological applications because of their water solubility, biocompatible nature, eco-friendliness, and ease of synthesis. Additionally, their physiochemical properties can be chemically tuned for further optimization towards specific applications. Here, we investigate the efficacy of C70-derived Graphene Acid Quantum Dots (GAQDs) in mitigating the transformation of soluble, monomeric Hen Egg-White Lysozyme (HEWL) to mature fibrils during its amyloidogenic trajectory. Our findings reveal that GAQDs exhibit dose-dependent inhibition of HEWL fibril formation (up to 70 % at 5 mg/mL) without affecting mitochondrial membrane potential or inducing apoptosis at the same density. Furthermore, GAQDs scavenged reactive oxygen species (ROS); achieving a 50 % reduction in ROS levels at a mere 100 µg/mL when exposed to a standard free radical generator. GAQDs were not only found to be biocompatible with a human neuroblastoma-derived SHSY-5Y cell line but also rescued the cells from rotenone-induced apoptosis. The GAQD-tolerance of SHSY-5Y cells coupled with their ability to restitute cells from rotenone-dependent apoptosis, when taken in conjunction with the biocompatibility data, indicate that GAQDs possess neuroprotective potential. The data position this class of CNMs as promising candidates for resolving aberrant cellular outputs that associate with the advent and progress of multifactorial neurodegenerative disorders including Parkinson's (PD) and Alzheimer's diseases (AD) wherein environmental causes are implicated (95 % etiology). The data suggest that GAQDs are a multifunctional carbon-based sustainable nano-platform at the intersection of nanotechnology and neuroprotection for advancing green chemistry-derived, sustainable healthcare solutions.


Apoptosis , Graphite , Muramidase , Quantum Dots , Reactive Oxygen Species , Quantum Dots/chemistry , Humans , Graphite/chemistry , Graphite/pharmacology , Reactive Oxygen Species/metabolism , Muramidase/chemistry , Muramidase/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Animals , Particle Size , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Carbon/chemistry , Surface Properties , Membrane Potential, Mitochondrial/drug effects
9.
Sci Rep ; 14(1): 11535, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773159

In this study, a novel method for the fabrication of hesperidin/reduced graphene oxide nanocomposite (RGOH) with the assistance of gamma rays is reported. The different RGOHs were obtained by varying hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) solution. Hesperidin concentrations (25, 50, 100, and 200 wt.%) in graphene oxide (GO) were varied to produce the various RGOHs. Upon irradiation with 80 kGy from γ-Ray, the successful reduction of GO occurred in the presence of hesperidin. The reduction process was confirmed by different characterization techniques such as FTIR, XRD, HRTEM, and Raman Spectroscopy. A cytotoxicity study using the MTT method was performed to evaluate the cytotoxic-anticancer effects of arbitrary RGOH on Wi38, CaCo2, and HepG2 cell lines. The assessment of RGOH's anti-inflammatory activity, including the monitoring of IL-1B and IL-6 activities as well as NF-kB gene expression was done. In addition, the anti-invasive and antimetastatic properties of RGOH, ICAM, and VCAM were assessed. Additionally, the expression of the MMP2-9 gene was quantified. The assessment of apoptotic activity was conducted by the detection of gene expressions related to BCl2 and P53. The documentation of the JNK/SMAD4/MMP2 signaling pathway was ultimately accomplished. The findings of our study indicate that RGOH therapy has significant inhibitory effects on the JNK/SMAD4/MMP2 pathway. This suggests that it could be a potential therapeutic option for cancer.


Gamma Rays , Graphite , Hesperidin , Matrix Metalloproteinase 2 , Nanocomposites , Smad4 Protein , Humans , Graphite/chemistry , Graphite/pharmacology , Nanocomposites/chemistry , Hesperidin/pharmacology , Hesperidin/chemistry , Smad4 Protein/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Green Chemistry Technology/methods , Signal Transduction/drug effects , Caco-2 Cells , Hep G2 Cells , Cell Line, Tumor , MAP Kinase Kinase 4/metabolism
10.
Int J Biol Macromol ; 269(Pt 2): 131957, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692544

In this study, graphene oxide (GO) was chemically modified utilizing concentrated nitric acid to produce a nitrated graphene oxide derivative (NGO) with enhanced oxidation level, improved dispersibility, and increased antibacterial activity. A double-layer composite hydrogel material (BC/PVA/NGO) with a core-shell structure was fabricated by utilizing bacterial cellulose (BC) and polyvinyl alcohol (PVA) binary composite hydrogel scaffold as the inner network template, and hydrophilic polymer (PVA) loaded with antibacterial material (NGO) as the outer network. The fabrication process involved physical crosslinking based on repeated freezing and thawing. The resulting BC/PVA/NGO hydrogel exhibited a porous structure, favorable mechanical properties, antibacterial efficacy, and biocompatibility. Subsequently, the performance of BC/PVA/NGO hydrogel in promoting wound healing was evaluated using a mouse skin injury model. The findings demonstrated that the BC/PVA/NGO hydrogel treatment group facilitated improved wound healing in the mouse skin injury model compared to the control group and the BC/PVA group. This enhanced wound healing capability was attributed primarily to the excellent antibacterial and tissue repair properties of the BC/PVA/NGO hydrogel.


Anti-Bacterial Agents , Cellulose , Graphite , Hydrogels , Polyvinyl Alcohol , Wound Healing , Graphite/chemistry , Graphite/pharmacology , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Animals , Cellulose/chemistry , Cellulose/pharmacology , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/drug effects
11.
Int J Biol Macromol ; 269(Pt 1): 132047, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702008

In our study, we developed a novel nanobiocomposite using graphene oxide (GO), casein (Cas), ZnAl layered double hydroxide (LDH), sodium alginate (Alg), and Fe3O4 magnetic nanoparticles. To synthesize the GO, we used a modified Hummer's method and then covalently functionalized its surface with Cas protein. The functionalized GO was combined with as-synthesized ZnAl LDH, and the composite was conjugated with alginate hydrogel through the gelation process. Finally, we magnetized the nanobiocomposite using in-situ magnetization. The nanobiocomposite was comprehensively characterized using FT-IR, FE-SEM, EDX, and XRD. Its biological potential was assessed through cell viability, hemolysis, and anti-biofilm assays, as well as its application in hyperthermia. The MTT assay showed high cell viability percentages for Hu02 cells after 24, 48, and 72 h of incubation. The nanobiocomposite had a hemolytic effect lower than 3.84 %, and the measured bacterial growth inhibition percentages of E. coli and S. aureus bacteria in the presence of the nanobiocomposite were 52.18 % and 55.72 %, respectively. At a concentration of 1 mg.mL-1 and a frequency of 400 kHz, the nanocomposite exhibits a remarkable specific absorption rate (SAR) of 67.04 W.g-1, showcasing its promising prospects in hyperthermia applications.


Alginates , Caseins , Graphite , Hydrogels , Hydroxides , Magnetite Nanoparticles , Graphite/chemistry , Graphite/pharmacology , Alginates/chemistry , Caseins/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Hydroxides/chemistry , Magnetite Nanoparticles/chemistry , Humans , Nanocomposites/chemistry , Cell Survival/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Hemolysis/drug effects , Staphylococcus aureus/drug effects , Zinc/chemistry , Zinc/pharmacology , Biofilms/drug effects
13.
ACS Appl Mater Interfaces ; 16(15): 18300-18310, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38574271

To tackle the proliferation of pathogenic microorganisms without relying on antibiotics, innovative materials boasting antimicrobial properties have been engineered. This study focuses on the development of graphene oxide/silver (GO/Ag) nanocomposites, derived from partially reduced graphene oxide adorned with silver nanoparticles. Various nanocomposites with different amounts of silver (GO/Ag-1, GO/Ag-2, GO/Ag-3, and GO/Ag-4) were synthesized, and their antibacterial efficacy was systematically studied. The silver nanoparticles were uniformly deposited on the partially reduced graphene oxide surface, exhibiting spherical morphologies with an average size of 25 nm. The nanocomposites displayed potent antibacterial properties against both gram-positive bacteria (S. aureus and B. subtilis) and gram-negative bacteria (E. coli and S. enterica) as confirmed by minimum inhibition concentration (MIC) studies and time-dependent experiments. The optimal MIC for Gram-positive bacteria was 62.5 µg/mL and for Gram-negative bacteria was 125 µg/mL for the GO/Ag nanocomposites. Bacterial cells that encountered the nanocomposite films exhibited significantly greater inhibitory effects compared to those exposed to conventional antibacterial materials. Furthermore, the cytotoxicity of these nanocomposites was assessed using human epithelial cells (HEC), revealing that GO/Ag-1 and GO/Ag-2 exhibited lower toxicity levels toward HEC and remained compatible even at higher dilution rates. This study underscores the potential of GO/Ag-based nanocomposites as versatile materials for antibacterial applications, particularly as biocompatible wound dressings, offering promising prospects for wound healing and infection control.


Graphite , Metal Nanoparticles , Nanocomposites , Humans , Silver/pharmacology , Staphylococcus aureus , Escherichia coli , Oxides/pharmacology , Anti-Bacterial Agents/pharmacology , Graphite/pharmacology
14.
Nanotechnology ; 35(30)2024 May 07.
Article En | MEDLINE | ID: mdl-38640906

Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2%) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-vis) revealed that optical band gap energy of ZnO nanoparticles (∼3.2 eV) GO-ZnO nanosheets (∼2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth ofE. colibiofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.


Anti-Bacterial Agents , Escherichia coli , Graphite , Hydrogels , Polyesters , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Graphite/chemistry , Graphite/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Polyesters/chemistry , Polyesters/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Microbial Sensitivity Tests , Nanocomposites/chemistry , Ultrasonic Waves
15.
ACS Nano ; 18(16): 10829-10839, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38607639

The use of nanomaterials to improve plant immunity for sustainable agriculture is gaining increasing attention; yet, the mechanisms involved remain unclear. In contrast to metal-based counterparts, carbon-based nanomaterials do not release components. Determining how these carbon-based nanomaterials strengthen the resistance of plants to diseases is essential as well as whether shape influences this process. Our study compared single-walled carbon nanotubes (SWNTs) and graphene oxide (GO) infiltration against the phytopathogen Pseudomonas syringae pv tomato DC3000. Compared with plants treated with GO, plants primed with SWNTs showed a 29% improvement in the pathogen resistance. Upon nanopriming, the plant displayed wound signaling with transcriptional regulation similar to that observed under brushing-induced mechanostimulation. Compared with GO, SWNTs penetrated more greatly into the leaf and improved transport, resulting in a heightened wound response; this effect resulted from the tubular structure of SWNTs, which differed from the planar form of GO. The shape effect was further demonstrated by wrapping SWNTs with bovine serum albumin, which masked the sharp edges of SWNTs and resulted in a significant decrease in the overall plant wound response. Finally, we clarified how the local wound response led to systemic immunity through increased calcium ion signaling in distant plant areas, which increased the antimicrobial efficacy. In summary, our systematic investigation established connections among carbon nanomaterial priming, mechanostimulation, and wound response, revealing recognition patterns in plant immunity. These findings promise to advance nanotechnology in sustainable agriculture by strengthening plant defenses, enhancing resilience, and reducing reliance on traditional chemicals.


Graphite , Nanotubes, Carbon , Pseudomonas syringae , Pseudomonas syringae/drug effects , Nanotubes, Carbon/chemistry , Graphite/chemistry , Graphite/pharmacology , Plant Immunity/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Leaves/metabolism
16.
Int J Biol Macromol ; 267(Pt 2): 131549, 2024 May.
Article En | MEDLINE | ID: mdl-38626838

After skin tissue trauma, wound infections caused by bacteria posed a great threat to skin repair. However, resistance to antibiotics, the current treatment of choice for bacterial infections, greatly affected the efficiency of anti-infection and wound healing. Therefore, there has been a critical need for the development of novel antimicrobial materials and advanced therapeutic methods to aid in skin repair. In this paper, rGO-PDA@ZIF-8 nanofillers were prepared by coating graphene oxide (GO) with dopamine (DA), followed by in situ growth of zeolite imidazolate framework-8 (ZIF-8). Using polyvinyl alcohol (PVA) and chitosan quaternary ammonium salt (CS) as matrix materials, along with polyethylene glycol (PEG) as a pore-forming agent, and rGO-PDA@ZIF-8 as an antimicrobial nano-filler, we successfully prepared rGO-PDA@ZIF-8/PVA/CS composite hydrogels with a directional macroporous structure using bidirectional freezing method and phase separation technique. This hydrogel exhibited excellent mechanical properties, good solubility and water retention capabilities. In addition, the hydrogel demonstrated excellent biocompatibility. Most notably, it not only exhibited excellent bactericidal effect against E. coli and S. aureus (99.1 % and 99.0 %, respectively) under the synergistic effect of intrinsic antibacterial activity and photothermal antibacterial, but also exhibited the ability to promote wound healing, making it a promising candidate for wound healing applications.


Anti-Bacterial Agents , Chitosan , Escherichia coli , Hydrogels , Polyvinyl Alcohol , Quaternary Ammonium Compounds , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Porosity , Graphite/chemistry , Graphite/pharmacology , Animals , Zeolites/chemistry , Zeolites/pharmacology , Mice , Microbial Sensitivity Tests
17.
Mol Biol Rep ; 51(1): 591, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683228

BACKGROUND: Graphene oxide nanosheets (GONS) are recognized for their role in enhancing drug delivery and effectiveness in cancer treatment. With colon cancer being a prevalent global issue and the significant side effects associated with chemotherapy, the primary treatment for colon cancer alongside surgery, there is a critical need for novel therapeutic strategies to support patients in combating this disease. Hesperetin (HSP), a natural compound found in specific fruits, exhibits anti-cancer properties. The aim of this study is to investigate the effect of GONS on the LS174t colon cancer cell line. METHODS: In this study, an anti-cancer nano-drug was synthesized by creating a hesperetin-graphene oxide nanocomposite (Hsp-GO), which was subsequently evaluated for its efficacy through in vitro cell toxicity assays. Three systems were investigated: HSP, GONS, and HSP-loaded GONS, to determine their cytotoxic and pro-apoptotic impacts on the LS174t colon cancer cell line, along with assessing the expression of BAX and BCL2. The morphology and properties of both GO and Hsp-GO were examined using scanning electron microscopy (SEM), X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR). RESULTS: The Hsp-GO nanocomposite displayed potent cytotoxic and pro-apoptotic effects on LS174t colon cancer cells, outperforming individual treatments with HSP or GONS. Cell viability assays showed a significant decrease in cell viability with Hsp-GO treatment. Analysis of BAX and BCL2 expression revealed elevated BAX and reduced BCL2 levels in Hsp-GO treated cells, indicating enhanced apoptotic activity. Morphological analysis confirmed successful Hsp-GO synthesis, while structural integrity was supported by X-ray diffraction and FTIR analyses. CONCLUSIONS: These study highlight the potential of Hsp-GO as a promising anti-cancer nano-drug for colon cancer therapy.


Colonic Neoplasms , Drug Delivery Systems , Graphite , Hesperidin , Graphite/chemistry , Graphite/pharmacology , Humans , Hesperidin/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Cell Line, Tumor , Drug Delivery Systems/methods , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Nanocomposites/chemistry , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
18.
ACS Appl Bio Mater ; 7(5): 2911-2923, 2024 May 20.
Article En | MEDLINE | ID: mdl-38619913

Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.


Anti-Bacterial Agents , Graphite , Materials Testing , Nitrogen Compounds , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Graphite/chemistry , Graphite/pharmacology , Nitrogen Compounds/chemistry , Nitrogen Compounds/pharmacology , Purines/chemistry , Purines/pharmacology , Particle Size , Escherichia coli/drug effects , Textiles/microbiology , Masks , Microbial Sensitivity Tests , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Staphylococcus aureus/drug effects , Humans
19.
ACS Appl Bio Mater ; 7(5): 3388-3402, 2024 May 20.
Article En | MEDLINE | ID: mdl-38660938

In the present investigation, natural bone-derived hydroxyapatite (HA, 2 wt %) and/or exfoliated graphene (Gr, 0.1 wt %)-embedded polydimethylsiloxane (PDMS) elastomeric films were prepared using a vascular method. The morphology, mechanical properties, crystallinity, and chemical structure of the composite films were evaluated. The in vitro biodegradation kinetics of the films indicates their adequate physiological stability. Most of the results favored PDMS/HA/Gr as a best composite scaffold having more than 703% elongation. A simulation study of the microfluidic vascular channel of the PDMS/HA/Gr scaffold suggests that the pressure drop at the outlet became greater (from 1.19 to 0.067 Pa) unlike velocity output (from 0.071 to 0.089 m/s), suggesting a turbulence-free laminar flow. Our bioactive scaffold material, PDMS/HA/Gr, showed highest cytotoxicity toward the lung cancer and breast cancer cells through Runx3 protein-mediated cytotoxic T lymphocyte (CTL) generation. Our data and predicted mechanism also suggested that the PDMS/HA/Gr-supported peripheral blood mononuclear cells (PBMCs) not only increased the generation of CTL but also upregulated the expression of RUNX3. Since the PDMS/HA/Gr scaffold-supported Runx3 induced CTL generation caused maximum cell cytotoxicity of breast cancer (MCF-7) and lung cancer (A549) cells, PDMS/HA/Gr can be treated as an excellent potential candidate for CTL-mediated cancer therapy.


Biocompatible Materials , Dimethylpolysiloxanes , Durapatite , Graphite , Materials Testing , Nanocomposites , Tissue Scaffolds , Durapatite/chemistry , Durapatite/pharmacology , Graphite/chemistry , Graphite/pharmacology , Humans , Dimethylpolysiloxanes/chemistry , Nanocomposites/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Particle Size , Carcinogenesis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Cell Proliferation/drug effects
20.
Int J Biol Macromol ; 266(Pt 2): 131277, 2024 May.
Article En | MEDLINE | ID: mdl-38565366

Bacteria-infected wound healing has attracted widespread attention in biomedical engineering. Wound dressing is a potential strategy for repairing infectious wounds. However, the development of wound dressing with appropriate physiochemical, antibacterial, and hemostatic properties, remains challenging. Hence, there is a motivation to develop new synthetic dressings to improve bacteria-infected wound healing. Here, we fabricate a biocompatible sponge through the covalent crosslinking of collagen (Col), quaternized chitosan (QCS), and graphene oxide (GO). The resulting Col-QCS-GO sponge shows an elastic modulus of 1.93-fold higher than Col sponge due to enhanced crosslinking degree by GO incorporation. Moreover, the fabricated Col-QCS-GO sponge shows favorable porosity (84.30 ± 3.12 %), water absorption / retention (2658.0 ± 113.4 % / 1114.0 ± 65.7 %), and hemostasis capacities (blood loss <50.0 mg). Furthermore, the antibacterial property of the Col-QCS-GO sponge under near-infrared (NIR) irradiation is significantly enhanced (the inhibition rates are 99.9 % for S. aureus and 99.9 % for E. coli) due to the inherent antibacterial properties of QCS and the photothermal antibacterial capabilities of GO. Finally, the Col-QCS-GO+NIR sponge exhibits the lowest percentage of wound area (9.05 ± 1.42 %) at day 14 compared to the control group (31.61 ± 1.76 %). This study provides new insights for developing innovative sponges for bacteria-infected wound healing.


Anti-Bacterial Agents , Chitosan , Graphite , Hemostatics , Wound Healing , Animals , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Collagen/chemistry , Collagen/pharmacology , Escherichia coli/drug effects , Graphite/chemistry , Graphite/pharmacology , Hemostasis/drug effects , Hemostatics/pharmacology , Hemostatics/chemistry , Porosity , Staphylococcus aureus/drug effects , Wound Healing/drug effects
...