Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.015
Filter
1.
J Vis Exp ; (211)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39311607

ABSTRACT

The cartilage growth plates in the bones of children enable limb lengthening but are weak relative to the bone, making them prone to fracturing when bones are overloaded. Better treatments for severely fractured growth plates are needed because the response to injury is a bony bridge that prematurely fuses the growth plate, leading to stunted and/or crooked limbs. Murine models of growth plate injury are advantageous for mechanistic studies, but are challenging because it is difficult to visualize and precisely injure the small growth plates in young mice. We describe here an improved growth plate injury model using transgenic mice with tri-lineage fluorescent reporters for collagen types I, II, and X. These mice show native fluorescence associated with the three primary substrata of the growth plate. A growth plate injury similar to a Salter-Harris Type II injury is created reproducibly with a bur using the hypertrophic section of the growth plate as a reference during live imaging under fluorescence stereo microscopy guidance. Frozen histology analysis of the native fluorescence simplifies assessing the cellular response to injury. This methodology represents a substantial leap in growth plate injury research, providing a detailed and reproducible method for investigating pathology and evaluating new therapeutic strategies.


Subject(s)
Disease Models, Animal , Growth Plate , Mice, Transgenic , Animals , Growth Plate/pathology , Mice , Salter-Harris Fractures/pathology , Microscopy, Fluorescence/methods
2.
Sci Rep ; 14(1): 20136, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209899

ABSTRACT

Pregestational diabetes mellitus (PGDM) has an impact on fetal bone formation, but the underlying mechanism is still obscure. Although miRNAs have been extensively investigated throughout bone formation, their effects on fetal bone development caused by PGDM still need clarification. This study intends to examine the mechanism by which hyperglycemia impairs the bone formation of offspring via miR-322-5p (miR-322). In this study, miR-322 was selected by systemically screening utilizing bioinformatics and subsequent validation experiments. Using streptozotocin (STZ)-induced diabetic mice and ATDC5 cell lines, we found that miR-322 was abundantly expressed in the proliferative and hypertrophic zones of the growth plate, and its expression pattern was disturbed in the presence of hyperglycemia, suggesting that miR-322 is involved in the chondrocyte proliferation and differentiation in absence/presence of hyperglycemia. This observation was proved by manipulating miR-322 expression in ATDC5 cells by transfecting mimic and inhibitor of miR-322. Furthermore, Adamts5, Col12a1, and Cbx6 were identified as the potential target genes of miR-322, verified by the co-transfection of miR-322 inhibitor and the siRNAs, respectively. The evaluation criteria are the chondrocyte proliferation and differentiation and their relevant key gene expressions (proliferation: Sox9 and PthIh; differentiation: Runx2 and Col10a1) after manipulating the gene expressions in ATDC5 cells. This study revealed the regulative role miR-322 on chondrocyte proliferation and differentiation of growth plate by targeting Adamts5, Col12a1, and Cbx6 in hyperglycemia during pregnancy. This translational potential represents a promising avenue for advancing our understanding of bone-related complications in diabetic pregnancy and mitigating bone deficiencies in diabetic pregnant individuals, improving maternal and fetal outcomes.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrocytes , Diabetes Mellitus, Experimental , Diabetes, Gestational , Growth Plate , MicroRNAs , Animals , Female , Mice , Pregnancy , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Chondrocytes/metabolism , Chondrocytes/pathology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes, Gestational/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/pathology , Growth Plate/metabolism , Growth Plate/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Development ; 151(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39012257

ABSTRACT

The Forkhead box transcription factors FOXC1 and FOXC2 are expressed in condensing mesenchyme cells at the onset of endochondral ossification. We used the Prx1-cre mouse to ablate Foxc1 and Foxc2 in limb skeletal progenitor cells. Prx1-cre;Foxc1Δ/Δ;Foxc2Δ/Δ limbs were shorter than controls, with worsening phenotypes in distal structures. Cartilage formation and mineralization was severely disrupted in the paws. The radius and tibia were malformed, whereas the fibula and ulna remained unmineralized. Chondrocyte maturation was delayed, with fewer Indian hedgehog-expressing, prehypertrophic chondrocytes forming and a smaller hypertrophic chondrocyte zone. Later, progression out of chondrocyte hypertrophy was slowed, leading to an accumulation of COLX-expressing hypertrophic chondrocytes and formation of a smaller primary ossification center with fewer osteoblast progenitor cells populating this region. Targeting Foxc1 and Foxc2 in hypertrophic chondrocytes with Col10a1-cre also resulted in an expanded hypertrophic chondrocyte zone and smaller primary ossification center. Our findings suggest that FOXC1 and FOXC2 direct chondrocyte maturation towards hypertrophic chondrocyte formation. At later stages, FOXC1 and FOXC2 regulate function in hypertrophic chondrocyte remodeling to allow primary ossification center formation and osteoblast recruitment.


Subject(s)
Chondrocytes , Forkhead Transcription Factors , Growth Plate , Hypertrophy , Osteogenesis , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Chondrocytes/metabolism , Chondrocytes/cytology , Mice , Growth Plate/metabolism , Growth Plate/pathology , Growth Plate/embryology , Osteogenesis/genetics , Extremities/embryology , Extremities/pathology , Chondrogenesis/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Gene Expression Regulation, Developmental , Cell Differentiation , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Cartilage/metabolism , Cartilage/pathology , Cartilage/embryology
4.
BMC Musculoskelet Disord ; 25(1): 565, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033138

ABSTRACT

INTRODUCTION: Growth plate damage in long bones often results in progressive skeletal growth imbalance and deformity, leading to significant physical problems. Gangliosides, key glycosphingolipids in cartilage, are notably abundant in articular cartilage and regulate chondrocyte homeostasis. This suggests their significant roles in regulating growth plate cartilage repair. METHODS: Chondrocytes from 3 to 5 day-old C57BL/6 mice underwent glycoblotting and mass spectrometry. Based on the results of the glycoblotting analysis, we employed GD3 synthase knockout mice (GD3-/-), which lack b-series gangliosides. In 3-week-old mice, physeal injuries were induced in the left tibiae, with right tibiae sham operated. Tibiae were analyzed at 5 weeks postoperatively for length and micro-CT for growth plate height and bone volume at injury sites. Tibial shortening ratio and bone mineral density were measured by micro-CT. RESULTS: Glycoblotting analysis indicated that b-series gangliosides were the most prevalent in physeal chondrocytes among ganglioside series. At 3 weeks, GD3-/- exhibited reduced tibial shortening (14.7 ± 0.2 mm) compared to WT (15.0 ± 0.1 mm, P = 0.03). By 5 weeks, the tibial lengths in GD3-/- (16.0 ± 0.4 mm) closely aligned with sham-operated lengths (P = 0.70). Micro-CT showed delayed physeal bridge formation in GD3-/-, with bone volume measuring 168.9 ± 5.8 HU at 3 weeks (WT: 180.2 ± 3.2 HU, P = 0.09), but normalizing by 5 weeks. CONCLUSION: This study highlights that GD3 synthase knockout mice inhibit physeal bridge formation after growth plate injury, proposing a new non-invasive approach for treating skeletal growth disorders.


Subject(s)
Chondrocytes , Gangliosides , Growth Plate , Mice, Inbred C57BL , Mice, Knockout , Animals , Growth Plate/pathology , Growth Plate/metabolism , Gangliosides/metabolism , Chondrocytes/metabolism , Mice , Leg Length Inequality , Tibia/diagnostic imaging , Tibia/pathology , Tibia/metabolism , Tibia/growth & development , X-Ray Microtomography , Sialyltransferases/deficiency , Sialyltransferases/genetics , Sialyltransferases/metabolism , Disease Models, Animal
5.
Cells Dev ; 179: 203927, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38740089

ABSTRACT

Postnatal bone growth primarily relies on chondrocyte proliferation and osteogenic differentiation within the growth plate (GP) via endochondral ossification. Despite its importance, the GP is vulnerable to injuries, affecting 15-30 % of bone fractures. These injuries may lead to growth discrepancies, influence bone length and shape, and negatively affecting the patient's quality of life. This study aimed to investigate the molecular and cellular physiological and pathophysiological regeneration following sustained growth plate injury (GPI) in an ex vivo rat femur organotypic culture (OTC) model. Specifically, focusing on postnatal endochondral ossification process. 300 µm thick ex vivo bone cultures with a 2 mm long horizontal GPI was utilized. After 15 days of cultivation, gene expression analysis, histological and immunohistochemistry staining's were conducted to analyze key markers of endochondral ossification. In our OTCs we observed a significant increase in Sox9 expression due to GPI at day 15. The Ihh-PTHrP feedback loop was affected, favoring chondrocyte proliferation and maturation. Ihh levels increased significantly on day 7 and day 15, while PTHrP was downregulated on day 7. GPI had no impact on osteoclast number and activity, but gene expression analysis indicated OTCs' efforts to inhibit osteoclast differentiation and activation, thereby reducing bone resorption. In conclusion, our study provides novel insights into the molecular and cellular mechanisms underlying postnatal bone growth and regeneration following growth plate injury (GPI). We demonstrate that chondrocyte proliferation and differentiation play pivotal roles in the regeneration process, with the Ihh-PTHrP feedback loop modulating these processes. Importantly, our ex vivo rat femur organotypic culture model allows for the detailed investigation of these processes, providing a valuable tool for future research in the field of skeletal biology and regenerative medicine.


Subject(s)
Chondrogenesis , Growth Plate , Animals , Growth Plate/pathology , Growth Plate/metabolism , Chondrogenesis/genetics , Rats , Chondrocytes/metabolism , Chondrocytes/pathology , Femur/pathology , Osteogenesis/genetics , Cell Differentiation , Cell Proliferation , Parathyroid Hormone-Related Protein/metabolism , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Organ Culture Techniques
6.
J Bone Miner Res ; 39(6): 765-774, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38590263

ABSTRACT

Achondroplasia (ACH), the most common form of disproportionate short stature, is caused by gain-of-function point mutations in fibroblast growth factor receptor 3 (FGFR3). Abnormally elevated activation of FGFR3 modulates chondrocyte proliferation and differentiation via multiple signaling pathways, such as the MAPK pathway. Using a mouse model mimicking ACH (Fgfr3Y367C/+), we have previously shown that daily treatment with infigratinib (BGJ398), a selective and orally bioavailable FGFR1-3 inhibitor, at a dose of 2 mg/kg, significantly increased bone growth. In this study, we investigated the activity of infigratinib administered at substantially lower doses (0.2 and 0.5 mg/kg, given once daily) and using an intermittent dosing regimen (1 mg/kg every 3 days). Following a 15-day treatment period, these low dosages were sufficient to observe significant improvement of clinical hallmarks of ACH such as growth of the axial and appendicular skeleton and skull development. Immunohistological labeling demonstrated the positive impact of infigratinib on chondrocyte differentiation in the cartilage growth plate and the cartilage end plate of the vertebrae. Macroscopic and microcomputed analyses showed enlargement of the foramen magnum area at the skull base, thus improving foramen magnum stenosis, a well-recognized complication in ACH. No changes in FGF23 or phosphorus levels were observed, indicating that the treatment did not modify phosphate homeostasis. This proof-of-concept study demonstrates that infigratinib administered at low doses has the potential to be a safe and effective therapeutic option for children with ACH.


Subject(s)
Achondroplasia , Disease Models, Animal , Growth Plate , Pyrimidines , Animals , Achondroplasia/drug therapy , Achondroplasia/pathology , Growth Plate/drug effects , Growth Plate/pathology , Growth Plate/metabolism , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Mice , Phenylurea Compounds/pharmacology , Phenylurea Compounds/administration & dosage , Bone Development/drug effects , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Dose-Response Relationship, Drug , Chondrocytes/drug effects , Chondrocytes/pathology , Chondrocytes/metabolism
7.
Environ Toxicol ; 39(6): 3314-3329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440912

ABSTRACT

BACKGROUND: Previous studies on the effects of microplastics (MPs) on bone in early development are limited. This study aimed to investigate the adverse effects of MPs on bone in young rats and the potential mechanism. METHODS: Three-week-old female rats were orally administered MPs for 28 days, and endoplasmic reticulum (ER) stress inhibitor salubrinal (SAL) and ER stress agonist tunicamycin (TM) were added to evaluate the effect of ER stress on toxicity of MPs. The indicators of growth and plasma markers of bone turnover were evaluated. Tibias were analyzed using micro-computed tomography (micro-CT). Histomorphological staining of growth plates was performed, and related gene expression of growth plate chondrocytes was tested. RESULTS: After exposure of MPs, the rats had decreased growth, shortened tibial length, and altered blood calcium and phosphorus metabolism. Trabecular bone was sparse according to micro-CT inspection. In the growth plate, the thickness of proliferative zone substantial reduced while the thickness of hypertrophic zone increased significantly, and the chondrocytes were scarce and irregularly arranged according to tibial histological staining. The transcription of the ER stress-related genes BIP, PERK, ATF4, and CHOP dramatically increased, and the transcription factors involved in chondrocyte proliferation, differentiation, apoptosis, and matrix secretion were aberrant according to RT-qPCR and western blotting. Moreover, the addition of TM showed higher percentage of chondrocyte death. Administration of SAL alleviated all of the MPs-induced symptoms. CONCLUSION: These results indicated that MPs could induce growth retardation and longitudinal bone damage in early development. The toxicity of MPs may attribute to induced ER stress and impaired essential processes of the endochondral ossification after MPs exposure.


Subject(s)
Endoplasmic Reticulum Stress , Growth Plate , Microplastics , Polystyrenes , Animals , Endoplasmic Reticulum Stress/drug effects , Growth Plate/drug effects , Growth Plate/pathology , Female , Rats , Microplastics/toxicity , Polystyrenes/toxicity , Rats, Sprague-Dawley , Osteogenesis/drug effects , Chondrocytes/drug effects , Tibia/drug effects , Tibia/pathology
8.
J Orthop Res ; 42(4): 737-744, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37971288

ABSTRACT

Failure of endochondral ossification due to interruption of the vascular supply to the epiphyseal cartilage is a critical step in the development of osteochondritis dissecans (OCD). Herein we describe the vascular architecture of the distal humeral epiphyseal cartilage in pigs and identify characteristic features that have been associated with sites predisposed to OCD development across species. Distal humeral specimens were harvested from pigs (n = 5, ages = 1, 10, 18, 30, and, 42 days old) and imaged at 9.4T magnetic resonance imaging (MRI) using a 3D gradient recalled echo sequence. The MRI data were processed using a quantitative susceptibility mapping (QSM) pipeline to visualize the vascular architecture. Specimens were also evaluated histologically to identify the presence of ischemic epiphyseal cartilage necrosis (osteochondrosis [OC]-latens) and associated failure of endochondral ossification (OC-manifesta). The QSM data enabled visualization of two distinct vascular beds arising from the perichondrium at the lateral and medial aspects of the distal humeral epiphysis. Elongated vessels originating from these beds coursed axially to supply the lateral and medial thirds of epiphyseal cartilage. At 18 days of age and older, a shift from perichondrial to transosseous blood supply was noted axially, which appeared more pronounced on the lateral side. This shift coincided with histologic identification of OC-latens (30- and 42-day-old specimens) and OC-manifesta (18- and 42-day-old specimens) lesions in the corresponding regions. The vascular anatomy and its evolution at the distal humeral epiphysis closely resembles that previously reported at predilection sites of knee OCD, suggesting a shared pathophysiology between the knee and elbow joints.


Subject(s)
Osteochondritis Dissecans , Osteochondrosis , Osteonecrosis , Animals , Swine , Osteochondritis Dissecans/diagnostic imaging , Osteochondritis Dissecans/etiology , Growth Plate/pathology , Osteochondrosis/pathology , Cartilage/pathology , Osteonecrosis/pathology
9.
J Orthop Res ; 41(9): 1974-1984, 2023 09.
Article in English | MEDLINE | ID: mdl-36722419

ABSTRACT

Recent investigations suggest that physeal morphologic features have a major role in the capital femoral epiphysis stability and slipped capital femoral epiphysis (SCFE) pathology, with a smaller epiphyseal tubercle and larger peripheral cupping of the femoral epiphysis being present in hips with progressive SCFE compared to healthy controls. Yet, little is known on the causal versus remodeling nature of these associations. This study aimed to use preoperative magnetic resonance imaging (MRI) of patients with unilateral SCFE to perform a comparison of the morphology of the epiphyseal tubercle, metaphyseal fossa, and peripheral cupping in hips with SCFE versus the contralateral uninvolved hips. Preoperative MRIs from 22 unilateral SCFE patients were used to quantify the morphological features of the epiphyseal tubercle (height, width, and length), metaphyseal fossa (depth, width, and length), and peripheral cupping height in three dimension. The quantified anatomical features were compared between hips with SCFE and the contralateral uninvolved side across the whole cohort and within SCFE severity subgroups using paired t-test. We found significantly smaller epiphyseal tubercle heights (p < 0.001) across all severities of SCFE when compared to their uninvolved contralateral side. There was a marginally smaller metaphyseal fossa length (p = 0.05) in SCFE hips compared to their contralateral uninvolved hips, with mild SCFE hips specifically having smaller fossa and epiphyseal lengths (p < 0.05) than their contralateral uninvolved side. There were no side-to-side differences in any other features of the epiphyseal tubercle, metaphyseal fossa and peripheral cupping across all severities (p > 0.05). These findings suggest a potential causal role of epiphyseal tubercle in SCFE pathogenesis.


Subject(s)
Hip Joint , Slipped Capital Femoral Epiphyses , Humans , Hip Joint/diagnostic imaging , Hip Joint/pathology , Slipped Capital Femoral Epiphyses/diagnostic imaging , Slipped Capital Femoral Epiphyses/pathology , Femur/diagnostic imaging , Femur/pathology , Epiphyses/diagnostic imaging , Epiphyses/pathology , Growth Plate/pathology , Retrospective Studies
10.
Osteoarthritis Cartilage ; 31(6): 766-774, 2023 06.
Article in English | MEDLINE | ID: mdl-36696941

ABSTRACT

OBJECTIVE: To determine the effects of acute (≤7 days) femoral head ischemia on the proximal femoral growth plate and metaphysis in a piglet model of Legg-Calvé-Perthes disease (LCPD). We hypothesized that qualitative and quantitative histological assessment would identify effects of ischemia on endochondral ossification. DESIGN: Unilateral femoral head ischemia was surgically induced in piglets, and femurs were collected for histological assessment at 2 (n = 7) or 7 (n = 5) days post-ischemia. Samples were assessed qualitatively, and histomorphometry of the growth plate zones and primary spongiosa was performed. In a subset of samples at 7 days, hypertrophic chondrocytes were quantitatively assessed and immunohistochemistry for TGFß1 and Indian hedgehog was performed. RESULTS: By 2 days post-ischemia, there was significant thinning of the proliferative and hypertrophic zones, by 63 µm (95% CI -103, -22) and -19 µm (95% CI -33, -5), respectively. This thinning persisted at 7 days post-ischemia. Likewise, at 7 days post-ischemia, the primary spongiosa was thinned to absent by an average of 311 µm (95% CI -542, -82) in all ischemic samples. TGFß1 expression was increased in the hypertrophic zone at 7 days post-ischemia. CONCLUSIONS: Alterations to the growth plate zones and metaphysis occurred by 2 days post-ischemia and persisted at 7 days post-ischemia. Our findings suggest that endochondral ossification may be disrupted at an earlier time point than previously reported and that growth disruption may occur in the piglet model as occurs in some children with LCPD.


Subject(s)
Legg-Calve-Perthes Disease , Animals , Swine , Legg-Calve-Perthes Disease/pathology , Femur Head/pathology , Growth Plate/pathology , Hedgehog Proteins , Ischemia
11.
Knee Surg Sports Traumatol Arthrosc ; 31(7): 2936-2943, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36538059

ABSTRACT

PURPOSE: The purpose of the study was to evaluate the effect of skeletal age and lesion size, location, and grade on the success of nonoperative treatment for juvenile osteochondritis dissecans (OCD). It is hypothesized that skeletal maturity, including a combination of maturation phenotypes, correlates with nonoperative lesion healing. METHODS: The clinical and radiographic data on 52 patients aged 7-20 years treated for OCD of the distal femur between 2010 and 2019 were retrospectively reviewed. Knee radiographs were assessed for number of lesions present and lesion location, size, and stage. Assessments of skeletal maturation were performed on all antero-posterior knee radiographs using the Roche, Wainer, and Thissen (RWT) method. Patients were categorized as healed if they demonstrated no pain on clinical examination. The relationship between skeletal maturity and nonoperative lesion healing was determined using Spearman rank correlations on available variables. RESULTS: Neither chronological nor skeletal age was associated with surgical status (Rho = 0.03, n.s., and Rho = 0.13, n.s., respectively) or the healing status of nonoperatively treated OCD lesions (Rho = 0.44, n.s., and Rho = 0.03, n.s., respectively). Epiphyseal fusion status of the distal femoral physis was moderately correlated with nonoperative healing, but was not statistically significant (lateral femoral physis: Rho = 0.43, p = 0.05; medial femoral physis: Rho = 0.43, n.s.). Lesion length correlated with surgical status (Rho = - 0.38, p = 0.009). CONCLUSION: The extent of fusion of the distal femoral physis (multi-stage grading) may be more strongly correlated with nonoperative healing than other markers of skeletal maturity or chronological age. Clinicians can use this as an additional radiographic sign when considering nonoperative treatment for juvenile OCD lesions in the distal femur. OCD lesion length and physeal fusion status appear to be more important for healing than patient age.


Subject(s)
Epiphyses , Osteochondritis Dissecans , Humans , Retrospective Studies , Epiphyses/diagnostic imaging , Osteochondritis Dissecans/diagnostic imaging , Osteochondritis Dissecans/therapy , Growth Plate/pathology , Femur/diagnostic imaging , Femur/pathology
12.
Eur J Med Res ; 27(1): 313, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575508

ABSTRACT

Epiphyseal plate injury, a common problem in pediatric orthopedics, may result in poor bone repair or growth defects. Epiphyseal plate, also known as growth plate is a layer of hyaline cartilage tissue between the epiphysis and metaphyseal and has the ability to grow longitudinally. Under normal physiological conditions, the epiphyseal plate has a certain axial resistance to stress, but it is fragile in growth phase and can be damaged by excessive stress, leading to detachment or avulsion of the epiphysis, resulting in life-long devastating consequences for patients. There is an obvious inflammatory response in the phase of growth plate injury, the limited physiological inflammatory response locally favors tissue repair and the organism, but uncontrolled chronic inflammation always leads to tissue destruction and disease progression. Interleukin-1ß (IL-1ß), as representative inflammatory factors, not only affect the inflammatory phase response to bone and soft tissue injury, but have a potentially important role in the later repair phase, though the exact mechanism is not fully understood. At present, epiphyseal plate injuries are mainly treated by corrective and reconstructive surgery, which is highly invasive with limited effectiveness, thus new therapeutic approaches are urgently needed, so a deeper understanding and exploration of the pathological mechanisms of epiphyseal plate injuries at the cellular molecular level is an entry point. In this review, we fully introduced the key role of IL-1 in the progression of epiphyseal plate injury and repair, deeply explored the mechanism of IL-1 on the molecular transcript level and endocrine metabolism of chondrocytes from multiple aspects, and summarized other possible mechanisms to provide theoretical basis for the clinical treatment and in-depth study of epiphyseal plate injury in children.


Subject(s)
Chondrocytes , Growth Plate , Child , Humans , Growth Plate/metabolism , Growth Plate/pathology , Interleukin-1beta , Epiphyses
13.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232897

ABSTRACT

Flexible spine tethering is a relatively novel fusionless surgical technique that aims to correct scoliosis based on growth modulation due to the pressure exerted on the vertebral body epiphyseal growth plate. The correction occurs in two phases: immediate intraoperative and postoperative with growth. The aim of this study was to evaluate the reactivation of vertebral growth plate function after applying corrective forces. The rat tail model was used. Asymmetric compression and distraction of caudal growth plates were performed using a modified external fixation apparatus. Radiological and histopathological data were analysed. After three weeks of correction, the activity of the structures increased across the entire growth plate width, and the plate was thickened. The height of the hypertrophic layer and chondrocytes on the concave side doubled in height. The height of chondrocytes and the cartilage thickness on the concave and central sides after the correction did not differ statistically significantly from the control group. Initiation of the correction of scoliosis in the growing spine, with relief of the pressure on the growth plate, allows the return of the physiological activity of the growth cartilage and restoration of the deformed vertebral body.


Subject(s)
Scoliosis , Animals , Disease Models, Animal , Growth Plate/pathology , Rats , Spine/pathology , Vertebral Body
14.
Clin Med (Lond) ; 22(4): 373-375, 2022 07.
Article in English | MEDLINE | ID: mdl-35882489

ABSTRACT

Oligoarticular juvenile idiopathic arthritis (JIA) and tubercular arthritis in children can present in a similar way as monoarthritis. Patients with musculoskeletal tuberculosis may not have the classical constitutional symptoms. Moreover, microbiological evidence of infection may not be found in all patients. In such cases, features on imaging aid in the diagnosis. We present a case of an 8-year-old girl who had inflammation in the right knee. Investigations showed negative results for autoimmune markers. Synovial fluid examination did not reveal any evidence of tuberculosis. However, magnetic resonance imaging of the knee joint showed inflammation around the distal growth plate of the femur, away from the knee joint. The suspicion of tuberculosis was strengthened by the presence of left hilar lymphadenopathy on chest X-ray and positive result on tuberculin skin sensitivity test. The patient showed remarkable clinical and radiological recovery with anti-tubercular therapy. Peculiar features on imaging may help in differentiating infections from inflammatory arthritides, even in the absence of microbiological evidence of infection.


Subject(s)
Arthritis, Juvenile , Osteomyelitis , Arthritis, Juvenile/diagnosis , Arthritis, Juvenile/pathology , Child , Female , Growth Plate/diagnostic imaging , Growth Plate/pathology , Humans , Inflammation , Knee Joint/diagnostic imaging , Knee Joint/pathology , Magnetic Resonance Imaging/methods , Osteomyelitis/diagnosis
15.
Osteoarthritis Cartilage ; 30(9): 1244-1253, 2022 09.
Article in English | MEDLINE | ID: mdl-35644462

ABSTRACT

OBJECTIVE: To determine if the quantitative MRI techniques T2 and T1ρ mapping are sensitive to ischemic injury to epiphyseal cartilage in vivo in a piglet model of Legg-Calvé-Perthes disease using a clinical 3T MRI scanner. We hypothesized that T2 and T1ρ relaxation times would be increased in the epiphyseal cartilage of operated vs contralateral-control femoral heads 1 week following onset of ischemia. DESIGN: Unilateral femoral head ischemia was surgically induced in eight piglets. Piglets were imaged 1 week post-operatively in vivo at 3T MRI using a magnetization-prepared 3D fast spin echo sequence for T2 and T1ρ mapping and a 3D gradient echo sequence for cartilage segmentation. Ischemia was confirmed in all piglets using gadolinium contrast-enhanced MRI. Median T2 and T1ρ relaxation times were measured in the epiphyseal cartilage of the ischemic and control femoral heads and compared using paired t-tests. Histological assessment was performed on a subset of five piglets. RESULTS: T2 and T1ρ relaxation times were significantly increased in the epiphyseal cartilage of the operated vs control femoral heads (ΔT2 = 11.9 ± 3.7 ms, 95% CI = [8.8, 15.0] ms, P < 0.0001; ΔT1ρ = 12.8 ± 4.1 ms, 95% CI = [9.4, 16.2] ms, P < 0.0001). Histological assessment identified chondronecrosis in the hypertrophic and deep proliferative zones within ischemic epiphyseal cartilage. CONCLUSIONS: T2 and T1ρ mapping are sensitive to ischemic injury to the epiphyseal cartilage in vivo at clinical 3T MRI. These techniques may be clinically useful to assess injury and repair to the epiphyseal cartilage to better stage the extent of ischemic damage in Legg-Calvé-Perthes disease.


Subject(s)
Cartilage, Articular , Legg-Calve-Perthes Disease , Animals , Cartilage/pathology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Femur Head/diagnostic imaging , Femur Head/pathology , Growth Plate/diagnostic imaging , Growth Plate/pathology , Ischemia/diagnostic imaging , Ischemia/etiology , Legg-Calve-Perthes Disease/diagnostic imaging , Legg-Calve-Perthes Disease/pathology , Magnetic Resonance Imaging/methods , Swine
16.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055123

ABSTRACT

X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.


Subject(s)
Familial Hypophosphatemic Rickets/pathology , Fibroblast Growth Factor-23/metabolism , Growth Plate/pathology , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Calcitriol/pharmacology , Calcitriol/therapeutic use , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factor-23/drug effects , Growth Hormone/pharmacology , Growth Hormone/therapeutic use , Growth Plate/drug effects , Growth Plate/growth & development , Humans , Up-Regulation
17.
J Orthop Res ; 40(2): 484-494, 2022 02.
Article in English | MEDLINE | ID: mdl-33788301

ABSTRACT

This study investigated the sensitivity of T1ρ and T2 relaxation time mapping to detect acute ischemic injury to the secondary ossification center (SOC) and epiphyseal cartilage of the femoral head in a piglet model of Legg-Calvé-Perthes disease. Six piglets underwent surgery to induce global right femoral head ischemia and were euthanized 48 h later. Fresh operated and contralateral-control femoral heads were imaged ex vivo with T1, T2, and T1ρ mapping using a 9.4T magnetic resonance imaging scanner. The specimens were imaged a second time after a freeze/thaw cycle and then processed for histology. T1, T2, and T1ρ measurements in the SOC, epiphyseal cartilage, articular cartilage, and metaphysis were compared between operated and control femoral heads using paired t tests. The effects of freeze/thaw, T1ρ spin-lock frequency, and fat saturation were also investigated. Five piglets with histologically confirmed ischemic injury were quantitatively analyzed. T1ρ was increased in the SOC (101 ± 15 vs. 73 ± 16 ms; p = 0.0026) and epiphyseal cartilage (84.9 ± 9.2 vs. 74.3 ± 3.6 ms; p = 0.031) of the operated versus control femoral heads. T2 was also increased in the SOC (28.7 ± 2.0 vs. 22.7 ± 1.7; p = 0.0037) and epiphyseal cartilage (57.4 ± 4.7 vs. 49.0 ± 2.7; p = 0.0041). No changes in T1 were detected. The sensitivities of T1ρ and T2 mapping in detecting ischemic injury were maintained after a freeze/thaw cycle, and T1ρ sensitivity was maintained after varying spin-lock frequency and applying fat saturation. In conclusion, T1ρ and T2 mapping are sensitive in detecting ischemic injury to the SOC and epiphyseal cartilage of the femoral head as early as 48 h after ischemia induction.


Subject(s)
Cartilage, Articular , Legg-Calve-Perthes Disease , Animals , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Femur Head/diagnostic imaging , Femur Head/pathology , Growth Plate/pathology , Ischemia/diagnostic imaging , Ischemia/etiology , Legg-Calve-Perthes Disease/diagnostic imaging , Legg-Calve-Perthes Disease/pathology , Magnetic Resonance Imaging/methods , Swine
18.
J Am Vet Med Assoc ; 260(3): 341-349, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34968182

ABSTRACT

OBJECTIVE: To describe clinical, imaging, gross, and histopathological abnormalities associated with osteochondral necrosis of the femoral condyles in foals and identify features suggestive of a common pathogenesis. ANIMALS: 8 Thoroughbred foals euthanized with a presumptive diagnosis of necrosis of the femoral condyles. PROCEDURES: Postmortem CT was performed on all distal femoral epiphyseal samples. The articular epiphyseal cartilage complex (AECC) of affected distal femurs was examined grossly and histologically, focusing on lesions of interest identified on CT images. RESULTS: 7 foals were between 9 and 23 days old at the time of euthanasia; 1 foal was 85 days old. Concurrent illness (neonatal maladjustment syndrome, neonatal isoerythrolysis, or infection such as enteritis and omphalitis) was diagnosed in 7 foals. The characteristic antemortem radiographic and postmortem CT finding was a crescent-shaped osteochondral flap displaced from the affected medial femoral condyle. Synovial fluid cytology from affected joints was either within normal limits or consistent with mild inflammation. Histologically, all lesions were characterized by osteochondral necrosis and detachment of the AECC. In 6 foals, polymorphonuclear cells were found within growth cartilage canals, representing septic cartilage canals. CLINICAL RELEVANCE: Osteochondral necrosis was interpreted to be secondary to bacterial colonization of the distal femoral AECC, evidenced by septic cartilage canals identified in 6 of 8 foals. This uncommon condition was previously thought to arise from an ischemic event, but the disease process was not well understood. An improved understanding of the pathogenesis of osteochondral necrosis is the first step in formulating more successful preventative and treatment strategies.


Subject(s)
Horse Diseases , Animals , Femur/pathology , Growth Plate/pathology , Horse Diseases/pathology , Horses , Necrosis/veterinary
19.
Front Endocrinol (Lausanne) ; 12: 734988, 2021.
Article in English | MEDLINE | ID: mdl-34745003

ABSTRACT

The purpose of this study was to investigate growth plate dynamics in surgical and loading murine models of osteoarthritis, to understand whether abnormalities in these dynamics are associated with osteoarthritis development. 8-week-old C57BL/6 male mice underwent destabilisation of medial meniscus (DMM) (n = 8) surgery in right knee joints. Contralateral left knee joints had no intervention (controls). In 16-week-old C57BL/6 male mice (n = 6), osteoarthritis was induced using non-invasive mechanical loading of right knee joints with peak force of 11N. Non-loaded left knee joints were internal controls. Chondrocyte transiency in tibial articular cartilage and growth plate was confirmed by histology and immunohistochemistry. Tibial subchondral bone parameters were measured using microCT and correlated to 3-dimensional (3D) growth plate bridging analysis. Higher expression of chondrocyte hypertrophy markers; Col10a1 and MMP13 were observed in tibial articular cartilage chondrocytes of DMM and loaded mice. In tibial growth plate, Col10a1 and MMP13 expressions were widely expressed in a significantly enlarged zone of proliferative and hypertrophic chondrocytes in DMM (p=0.002 and p<0.0001, respectively) and loaded (both p<0.0001) tibiae of mice compared to their controls. 3D quantification revealed enriched growth plate bridging and higher bridge densities in medial compared to lateral tibiae of DMM and loaded knee joints of the mice. Growth plate dynamics were associated with increased subchondral bone volume fraction (BV/TV; %) in medial tibiae of DMM and loaded knee joints and epiphyseal trabecular bone volume fraction in medial tibiae of loaded knee joints. The results confirm articular cartilage chondrocyte transiency in a surgical and loaded murine models of osteoarthritis. Herein, we reveal spatial variation of growth plate bridging in surgical and loaded osteoarthritis models and how these may contribute to anatomical variation in vulnerability of osteoarthritis development.


Subject(s)
Bone Development/physiology , Growth Plate/physiopathology , Osteoarthritis, Knee/physiopathology , Animals , Cartilage, Articular/pathology , Cartilage, Articular/physiopathology , Chondrocytes/pathology , Chondrocytes/physiology , Disease Models, Animal , Disease Progression , Growth Plate/pathology , Knee Joint/pathology , Male , Mice , Mice, Inbred C57BL , Osteoarthritis, Knee/pathology , X-Ray Microtomography
20.
Pan Afr Med J ; 39: 235, 2021.
Article in French | MEDLINE | ID: mdl-34659608

ABSTRACT

Foreign body entrapment in growth plate cartilage is a rare disease. It often occurs in patients with epiphyseal separation. Its diagnosis is radiological, based on brain magnetic resonance imaging (MRI). We here report a case of a 13-year-old girl who presented with a painful left post traumatic knee. The clinical examination and the standard radiographs performed were in favor of a Salter-Harris type 1 epiphyseal detachment. The first-line treatment, which consisted of immobilization in a cast for three weeks, was unsatisfactory. Faced with this therapeutic failure, an MRI was performed and demonstrated an incarceration of a foreign body in the conjugation cartilage. Secondary management was based on surgery, without sequelae.


Subject(s)
Epiphyses/diagnostic imaging , Growth Plate/diagnostic imaging , Knee Injuries/complications , Periosteum/diagnostic imaging , Adolescent , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/surgery , Epiphyses/injuries , Female , Growth Plate/pathology , Humans , Knee Injuries/diagnostic imaging , Magnetic Resonance Imaging , Periosteum/pathology
SELECTION OF CITATIONS
SEARCH DETAIL