Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 319
Filter
1.
J Chem Inf Model ; 64(13): 5016-5027, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38920330

ABSTRACT

The intricate interaction between major histocompatibility complexes (MHCs) and antigen peptides with diverse amino acid sequences plays a pivotal role in immune responses and T cell activity. In recent years, deep learning (DL)-based models have emerged as promising tools for accelerating antigen peptide screening. However, most of these models solely rely on one-dimensional amino acid sequences, overlooking crucial information required for the three-dimensional (3-D) space binding process. In this study, we propose TransfIGN, a structure-based DL model that is inspired by our previously developed framework, Interaction Graph Network (IGN), and incorporates sequence information from transformers to predict the interactions between HLA-A*02:01 and antigen peptides. Our model, trained on a comprehensive data set containing 61,816 sequences with 9051 binding affinity labels and 56,848 eluted ligand labels, achieves an area under the curve (AUC) of 0.893 on the binary data set, better than state-of-the-art sequence-based models trained on larger data sets such as NetMHCpan4.1, ANN, and TransPHLA. Furthermore, when evaluated on the IEDB weekly benchmark data sets, our predictions (AUC = 0.816) are better than those of the recommended methods like the IEDB consensus (AUC = 0.795). Notably, the interaction weight matrices generated by our method highlight the strong interactions at specific positions within peptides, emphasizing the model's ability to provide physical interpretability. This capability to unveil binding mechanisms through intricate structural features holds promise for new immunotherapeutic avenues.


Subject(s)
Deep Learning , HLA-A2 Antigen , Peptides , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Peptides/chemistry , Peptides/metabolism , Humans , Protein Binding , Models, Molecular , Amino Acid Sequence , Protein Conformation
2.
Proteins ; 90(9): 1645-1654, 2022 09.
Article in English | MEDLINE | ID: mdl-35403257

ABSTRACT

The startling diversity in αß T-cell receptor (TCR) sequences and structures complicates molecular-level analyses of the specificity and sensitivity determining T-cell immunogenicity. A number of three-dimensional (3D) structures are now available of ternary complexes between TCRs and peptides: major histocompatibility complexes (pMHC). Here, to glean molecular-level insights we analyze structures of TCRs bound to human class I nonamer peptide-MHC complexes. Residues at peptide positions 4-8 are found to be particularly important for TCR binding. About 90% of the TCRs hydrogen bond with one or both of the peptide residues at positions 4 and 8 presented by MHC allele HLA-A2, and this number is still ~79% for peptides presented by other MHC alleles. Residue 8, which lies outside the previously-identified central peptide region, is crucial for TCR recognition of class I MHC-presented nonamer peptides. The statistics of the interactions also sheds light on the MHC residues important for TCR binding. The present analysis will aid in the structural modeling of TCR:pMHC complexes and has implications for the rational design of peptide-based vaccines and T-cell-based immunotherapies.


Subject(s)
Peptides , Receptors, Antigen, T-Cell , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , Humans , Major Histocompatibility Complex , Peptides/chemistry , Protein Binding , Receptors, Antigen, T-Cell/genetics
3.
J Biol Chem ; 298(3): 101684, 2022 03.
Article in English | MEDLINE | ID: mdl-35124005

ABSTRACT

Adoptive cell therapy with tumor-specific T cells can mediate durable cancer regression. The prime target of tumor-specific T cells are neoantigens arising from mutations in self-proteins during malignant transformation. To understand T cell recognition of cancer neoantigens at the atomic level, we studied oligoclonal T cell receptors (TCRs) that recognize a neoepitope arising from a driver mutation in the p53 oncogene (p53R175H) presented by the major histocompatibility complex class I molecule HLA-A2. We previously reported the structures of three p53R175H-specific TCRs (38-10, 12-6, and 1a2) bound to p53R175H and HLA-A2. The structures showed that these TCRs discriminate between WT and mutant p53 by forming extensive interactions with the R175H mutation. Here, we report the structure of a fourth p53R175H-specific TCR (6-11) in complex with p53R175H and HLA-A2. In contrast to 38-10, 12-6, and 1a2, TCR 6-11 makes no direct contacts with the R175H mutation, yet is still able to distinguish mutant from WT p53. Structure-based in silico mutagenesis revealed that the 60-fold loss in 6-11 binding affinity for WT p53 compared to p53R175H is mainly due to the higher energetic cost of desolvating R175 in the WT p53 peptide during complex formation than H175 in the mutant. This indirect strategy for preferential neoantigen recognition by 6-11 is fundamentally different from the direct strategies employed by other TCRs and highlights the multiplicity of solutions to recognizing p53R175H with sufficient selectivity to mediate T cell killing of tumor but not normal cells.


Subject(s)
HLA-A2 Antigen , Immunotherapy, Adoptive , Neoplasms , Receptors, Antigen, T-Cell , Tumor Suppressor Protein p53 , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , Epitopes/immunology , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/immunology
4.
Nat Commun ; 13(1): 19, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013235

ABSTRACT

T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , COVID-19/virology , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Jurkat Cells , K562 Cells , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance/methods
5.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: mdl-34685626

ABSTRACT

The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.


Subject(s)
COVID-19/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/chemistry , HLA-A2 Antigen/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , CD8-Positive T-Lymphocytes/cytology , Crystallography, X-Ray , Cytokines/metabolism , Epitopes/chemistry , HLA-A2 Antigen/chemistry , Humans , Mutation , Peptides/chemistry , Protein Binding , Protein Denaturation , Protein Folding , Surface Plasmon Resonance , T-Lymphocytes, Cytotoxic/immunology
6.
Pak J Pharm Sci ; 34(1(Supplementary)): 345-352, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34275860

ABSTRACT

SARS-CoV-2, a new world coronavirus belonging to class Nidovirales of Coronaviridae family causes COVID-19 infection which is the leading cause of death worldwide. Currently there are no approved drugs and vaccines available for the prevention of COVID-19 infection, although couples of immunizations are being tested in clinical trials. However, the present efforts are focused on computational vaccination technique for evaluating candidates to design multi-epitope-based vaccine against pathogenic mechanism of novel SARS-COV-2. Based on recent published evidence, we recognized spike glycoprotein and envelope small membrane protein are the potential targets to combat the pathogenic mechanism of SARS-CoV-2. Similarly, in the present study we identified epitope of both B and T cell associated with these proteins. Extremely antigenic, conserve, immunogenic and nontoxic epitope of B and T cell of Spike protein are WPWYVWLGFI, SRVKNLNSSEGVPDLLV whereas the CWCARPTCIK and YCCNIVNVSL are associated with envelope small membrane protein were selected as potential candidate for vaccine designing. These epitopes show virtuous interaction with HLAA0201 during molecular docking analysis. Under simulation protocol the predicted vaccine candidates show stability. Collectively, this work provides novel potential candidates for epitope-based vaccine designing against COVID-19 infection.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Computational Biology/methods , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/chemistry , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , Humans , Immunogenicity, Vaccine , Models, Molecular , Molecular Docking Simulation , SARS-CoV-2/chemistry , Thermodynamics , Viral Proteins/immunology
7.
STAR Protoc ; 2(3): 100635, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34124695

ABSTRACT

Understanding T-cell responses requires identifying viral peptides presented by human leukocyte antigens (HLAs). X-ray crystallography can be used to visualize their presentation. This protocol describes the expression, purification, and crystallization of HLA-A∗02:01, one of the most frequent HLA in the global population in complex with peptides derived from the SARS-CoV-2 nucleocapsid protein. This protocol can be applied to different HLA class I molecules bound to other peptides. For complete details on the use and execution of this protocol, please refer to Szeto et al. (2021).


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , HLA-A2 Antigen/chemistry , Peptide Fragments/chemistry , SARS-CoV-2/metabolism , T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/isolation & purification , Coronavirus Nucleocapsid Proteins/metabolism , Crystallography, X-Ray , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/metabolism , Humans , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Phosphoproteins/chemistry , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism
8.
J Am Chem Soc ; 143(17): 6470-6481, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33881854

ABSTRACT

CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous ß-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-ß backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/ß-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/ß-peptides could be a source of potent and proteolytically stable variants of native antigens.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HLA-A2 Antigen/immunology , Amino Acid Sequence , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/immunology , HLA-A2 Antigen/chemistry , Humans , Lymphocyte Activation , Membrane Proteins/chemistry , Membrane Proteins/immunology , Peptides/chemical synthesis , Peptides/chemistry , Peptides/immunology , Protein Conformation, alpha-Helical , Structure-Activity Relationship , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/immunology
9.
Science ; 371(6533)2021 03 05.
Article in English | MEDLINE | ID: mdl-33649166

ABSTRACT

TP53 (tumor protein p53) is the most commonly mutated cancer driver gene, but drugs that target mutant tumor suppressor genes, such as TP53, are not yet available. Here, we describe the identification of an antibody highly specific to the most common TP53 mutation (R175H, in which arginine at position 175 is replaced with histidine) in complex with a common human leukocyte antigen-A (HLA-A) allele on the cell surface. We describe the structural basis of this specificity and its conversion into an immunotherapeutic agent: a bispecific single-chain diabody. Despite the extremely low p53 peptide-HLA complex density on the cancer cell surface, the bispecific antibody effectively activated T cells to lyse cancer cells that presented the neoantigen in vitro and in mice. This approach could in theory be used to target cancers containing mutations that are difficult to target in conventional ways.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Neoplasms/therapy , Tumor Suppressor Protein p53/immunology , Alleles , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/therapeutic use , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/therapeutic use , Arginine/genetics , COS Cells , Chlorocebus aethiops , Female , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , Histidine/genetics , Humans , Immunization, Passive , Jurkat Cells , Lymphocyte Activation , Mice, Inbred NOD , Mutation , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
10.
Phys Chem Chem Phys ; 23(4): 2836-2845, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33470998

ABSTRACT

Melanoma is a type of skin cancer with increasing incidence worldwide and high lethality. Conventional forms of treatment are not effective in advanced cancer stages. Hence, immunotherapeutic approaches have been tested to modulate immune response against tumor cells. Some vaccine models using tumor-associated antigens (TAAs) such as glycoprotein 100 (gp100) have been studied, but their expected effectiveness has not been shown until now. Antigen immunogenicity is a crucial point to improve the immune response, and therefore mutations are inserted in peptide sequences. It is possible to understand the interactions which occur between peptides and immune system molecules through computer simulation, and this is essential in order to guide efficient vaccine models. In this work, we have calculated the interaction binding energies of crystallographic data based on modified gp100 peptides and HLA-A*0201 using density functional theory (DFT) and the molecular fractionation with conjugated caps (MFCC) approach. Our results show the most relevant residue-residue interactions, the impact of three mutations in their binding sites, and the main HLA-A*0201 amino acids for peptide-HLA binding.


Subject(s)
HLA-A2 Antigen/metabolism , gp100 Melanoma Antigen/metabolism , Computer Simulation , Density Functional Theory , HLA-A2 Antigen/chemistry , Humans , Models, Chemical , Mutation , Peptide Fragments , Protein Binding , Thermodynamics , gp100 Melanoma Antigen/chemistry , gp100 Melanoma Antigen/genetics
11.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468649

ABSTRACT

Presentation of peptides by class I MHC proteins underlies T cell immune responses to pathogens and cancer. The association between peptide binding affinity and immunogenicity has led to the engineering of modified peptides with improved MHC binding, with the hope that these peptides would be useful for eliciting cross-reactive immune responses directed toward their weak binding, unmodified counterparts. Increasing evidence, however, indicates that T cell receptors (TCRs) can perceive such anchor-modified peptides differently than wild-type (WT) peptides, although the scope of discrimination is unclear. We show here that even modifications at primary anchors that have no discernible structural impact can lead to substantially stronger or weaker T cell recognition depending on the TCR. Surprisingly, the effect of peptide anchor modification can be sensed by a TCR at regions distant from the site of modification, indicating a through-protein mechanism in which the anchor residue serves as an allosteric modulator for TCR binding. Our findings emphasize caution in the use and interpretation of results from anchor-modified peptides and have implications for how anchor modifications are accounted for in other circumstances, such as predicting the immunogenicity of tumor neoantigens. Our data also highlight an important need to better understand the highly tunable dynamic nature of class I MHC proteins and the impact this has on various forms of immune recognition.


Subject(s)
HLA-A2 Antigen/chemistry , Peptides/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Th2 Cells/immunology , Allosteric Regulation , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Humans , Jurkat Cells , Kinetics , Models, Molecular , Peptides/genetics , Peptides/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Engineering , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Th2 Cells/cytology , Thermodynamics
12.
Mol Immunol ; 125: 43-50, 2020 09.
Article in English | MEDLINE | ID: mdl-32645549

ABSTRACT

The CD8 T cell response to the HLA-A2-restricted epitope LLWNGPMAV (LLW) of the non-structural protein 4b of Yellow Fever Virus (YFV) is remarkably immunodominant, highly prevalent and powerful in YFV-vaccinated humans. Here we used a combinatorial peptide library screening in the context of an A2/LLW-specific CD8 T cell clone to identify a superagonist that features a methionine to isoleucine substitution at position 7. Based on in silico modeling, the functional enhancement of this LLW-7I mutation was associated with alterations in the structural dynamics of the peptide in the major histocompatibility complex (pMHC) binding with the T cell receptor (TCR). While the TCR off-rate of LLW-7I pMHC is comparable to the wild type peptide, the rigidity of the 7I peptide seems to confer less entropy loss upon TCR binding. This LLW-7I superagonist is an example of improved functionality in human CD8 T cells associated with optimized ligand rigidity for TCR binding and not with changes in TCR:pMHC off-rate kinetics.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunodominant Epitopes/immunology , Receptors, Antigen, T-Cell/immunology , Viral Nonstructural Proteins/immunology , Yellow fever virus/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , Humans , Immunodominant Epitopes/chemistry , Models, Molecular , Mutation , Peptide Library , Protein Binding/immunology , Receptors, Antigen, T-Cell/chemistry
13.
Nat Commun ; 11(1): 2908, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518267

ABSTRACT

Adoptive cell therapy (ACT) with tumor-specific T cells can mediate cancer regression. The main target of tumor-specific T cells are neoantigens arising from mutations in self-proteins. Although the majority of cancer neoantigens are unique to each patient, and therefore not broadly useful for ACT, some are shared. We studied oligoclonal T-cell receptors (TCRs) that recognize a shared neoepitope arising from a driver mutation in the p53 oncogene (p53R175H) presented by HLA-A2. Here we report structures of wild-type and mutant p53-HLA-A2 ligands, as well as structures of three tumor-specific TCRs bound to p53R175H-HLA-A2. These structures reveal how a driver mutation in p53 rendered a self-peptide visible to T cells. The TCRs employ structurally distinct strategies that are highly focused on the mutation to discriminate between mutant and wild-type p53. The TCR-p53R175H-HLA-A2 complexes provide a framework for designing TCRs to improve potency for ACT without sacrificing specificity.


Subject(s)
Antigens, Neoplasm/chemistry , HLA-A2 Antigen/chemistry , Mutation , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/chemistry , Binding Sites , Biotinylation , Codon , Crystallography, X-Ray , Epitopes , Escherichia coli/metabolism , Humans , Immunotherapy, Adoptive , Ligands , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/metabolism , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Folding , Receptors, Antigen, T-Cell/metabolism , Software , Surface Plasmon Resonance
14.
J Biol Chem ; 295(33): 11486-11494, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32532817

ABSTRACT

T cell-mediated immunity is governed primarily by T cell receptor (TCR) recognition of peptide-human leukocyte antigen (pHLA) complexes and is essential for immunosurveillance and disease control. This interaction is generally stabilized by interactions between the HLA surface and TCR germline-encoded complementarity-determining region (CDR) loops 1 and 2, whereas peptide selectivity is guided by direct interactions with the TCR CDR3 loops. Here, we solved the structure of a newly identified TCR in complex with a clinically relevant peptide derived from the cancer testis antigen melanoma antigen-A4 (MAGE-A4). The TCR bound pHLA in a position shifted toward the peptide's N terminus. This enabled the TCR to achieve peptide selectivity via an indirect mechanism, whereby the TCR sensed the first residue of the peptide through HLA residue Trp-167, which acted as a tunable gateway. Amino acid substitutions at peptide position 1 predicted to alter the HLA Trp-167 side-chain conformation abrogated TCR binding, indicating that this indirect binding mechanism is essential for peptide recognition. These findings extend our understanding of the molecular rules that underpin antigen recognition by TCRs and have important implications for the development of TCR-based therapies.


Subject(s)
Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Neoplasm Proteins/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Antigens, Neoplasm/chemistry , Crystallography, X-Ray , HLA-A2 Antigen/chemistry , Humans , Models, Molecular , Neoplasm Proteins/chemistry , Peptides/chemistry , Peptides/immunology , Protein Conformation , Receptors, Antigen, T-Cell, alpha-beta/chemistry
15.
FEBS J ; 287(17): 3777-3793, 2020 09.
Article in English | MEDLINE | ID: mdl-32134551

ABSTRACT

Most biomolecular interactions are typically thought to increase the (local) rigidity of a complex, for example, in drug-target binding. However, detailed analysis of specific biomolecular complexes can reveal a more subtle interplay between binding and rigidity. Here, we focussed on the human leucocyte antigen (HLA), which plays a crucial role in the adaptive immune system by presenting peptides for recognition by the αß T-cell receptor (TCR). The role that the peptide plays in tuning HLA flexibility during TCR recognition is potentially crucial in determining the functional outcome of an immune response, with obvious relevance to the growing list of immunotherapies that target the T-cell compartment. We have applied high-pressure/temperature perturbation experiments, combined with molecular dynamics simulations, to explore the drivers that affect molecular flexibility for a series of different peptide-HLA complexes. We find that different peptide sequences affect peptide-HLA flexibility in different ways, with the peptide cargo tuning a network of correlated motions throughout the pHLA complex, including in areas remote from the peptide-binding interface, in a manner that could influence T-cell antigen discrimination.


Subject(s)
HLA-A2 Antigen/chemistry , Peptides/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Allosteric Regulation , Allosteric Site , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , HLA-A2 Antigen/metabolism , Humans , Insulin/chemistry , Models, Molecular , Molecular Dynamics Simulation , Motion , Peptides/metabolism , Pressure , Protein Binding , Protein Conformation , Protein Precursors/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Temperature , beta 2-Microglobulin/chemistry , beta 2-Microglobulin/metabolism
16.
J Biol Chem ; 295(21): 7193-7210, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32184355

ABSTRACT

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in preformed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08, and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12-mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic, and computational analyses suggested that this 12-mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from preformed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1/MHCI/peptide complex. Similarly, no interactions between ERAP1 and purified peptide-loading complex were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution along with the dynamic nature of peptide binding to MHCI are sufficient to explain ERAP1 processing of antigenic peptide precursors.


Subject(s)
Aminopeptidases/chemistry , HLA-A2 Antigen/chemistry , HLA-B Antigens/chemistry , Minor Histocompatibility Antigens/chemistry , Oligopeptides/chemistry , Aminopeptidases/genetics , Catalytic Domain , HLA-A2 Antigen/genetics , HLA-B Antigens/genetics , Humans , Minor Histocompatibility Antigens/genetics
17.
Mol Immunol ; 120: 101-112, 2020 04.
Article in English | MEDLINE | ID: mdl-32113130

ABSTRACT

Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.


Subject(s)
Histocompatibility Antigens Class I/immunology , Adaptive Immunity , Amino Acid Sequence , Antigen Presentation/immunology , Binding Sites , Cytomegalovirus Infections/immunology , Epstein-Barr Virus Infections/immunology , HIV Infections/immunology , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Immunologic Surveillance , Killer Cells, Natural/immunology , Models, Molecular , Polymorphism, Genetic , Protein Conformation , Salmonella Infections/immunology , Sequence Homology, Amino Acid , T-Lymphocytes/immunology , Tuberculosis/immunology , HLA-E Antigens
18.
J Infect Dis ; 221(3): 474-482, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31560392

ABSTRACT

BACKGROUND: The re-emergence of mumps among vaccinated young adults has become a global issue. Besides waning of antibody responses, suboptimal induction of T-cell responses may reduce protection. In a recent study, we observed a dominant polyfunctional CD8+ T-cell response after natural mumps virus (MuV) infection that was not present after vaccination. Unraveling the MuV epitope repertoire can provide insight in the specificity, functionality, and breadth of the T-cell response against MuV. METHODS: Peptides were eluted from human leukocyte antigen (HLA) class I molecules of MuV-infected cells and characterized by advanced mass spectrometry. Selected identified MuV peptides were tested for in vitro and ex vivo immunogenicity. RESULTS: In this study, we identified a broad landscape of 83 CD8+ T-cell epitopes of MuV, 41 of which were confirmed based on synthetic peptide standards. For 6 epitopes, we showed induction of an HLA-A*02-restriced CD8+ T-cell response. Moreover, robust T-cell responses against 5 selected MuV epitopes could be detected in all tested mumps patients using peptide/HLA-A*02:01 dextramers. CONCLUSIONS: The identified CD8+ T-cell epitopes will help to further characterize MuV-specific T-cell immunity after natural MuV infection or vaccination. These MuV epitopes may provide clues for a better understanding of, and possibly for preventing, mumps vaccine failure.We identified for the first time 41 mumps virus (MuV)-specific HLA-A*02 epitopes. For 6 epitopes, CD8+ T-cell responses were confirmed in T cells derived from several mumps cases, and MuV-specific CD8+ T cells could be identified by peptide/dextramer staining.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Mumps virus/immunology , Mumps/immunology , Tandem Mass Spectrometry/methods , Cells, Cultured , Chromatography, Reverse-Phase/methods , Epitopes, T-Lymphocyte/chemistry , Genotype , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , Humans , Interferon-gamma/biosynthesis , Mumps/pathology , Mumps/virology , Mumps virus/genetics , Peptides/chemistry , Peptides/immunology , Young Adult
19.
Cell Rep ; 29(6): 1621-1632.e3, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31693900

ABSTRACT

Understanding how peptide selection is controlled on different major histocompatibility complex class I (MHC I) molecules is pivotal for determining how variations in these proteins influence our predisposition to infectious diseases, cancer, and autoinflammatory conditions. Although the intracellular chaperone TAPBPR edits MHC I peptides, it is unclear which allotypes are subjected to TAPBPR-mediated peptide editing. Here, we examine the ability of 97 different human leukocyte antigen (HLA) class I allotypes to interact with TAPBPR. We reveal a striking preference of TAPBPR for HLA-A, particularly for supertypes A2 and A24, over HLA-B and -C molecules. We demonstrate that the increased propensity of these HLA-A molecules to undergo TAPBPR-mediated peptide editing is determined by molecular features of the HLA-A F pocket, specifically residues H114 and Y116. This work reveals that specific polymorphisms in MHC I strongly influence their susceptibility to chaperone-mediated peptide editing, which may play a significant role in disease predisposition.


Subject(s)
HLA-A Antigens/chemistry , HLA-A Antigens/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Antigen Presentation , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , HLA-A24 Antigen/chemistry , HLA-A24 Antigen/metabolism , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , HLA-C Antigens/metabolism , HeLa Cells , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin Allotypes , Immunoglobulins/genetics , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Peptides/chemistry , Peptides/metabolism , Polymorphism, Genetic , Protein Binding , Protein Domains/genetics
20.
Proc Natl Acad Sci U S A ; 116(34): 16943-16948, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31315981

ABSTRACT

The T cell receptor (TCR)-peptide-MHC (pMHC) interaction is the only antigen-specific interaction during T lymphocyte activation. Recent work suggests that formation of catch bonds is characteristic of activating TCR-pMHC interactions. However, whether this binding behavior is an intrinsic feature of the molecular bond, or a consequence of more complex multimolecular or cellular responses, remains unclear. We used a laminar flow chamber to measure, first, 2D TCR-pMHC dissociation kinetics of peptides of various activating potency in a cell-free system in the force range (6 to 15 pN) previously associated with catch-slip transitions and, second, 2D TCR-pMHC association kinetics, for which the method is well suited. We did not observe catch bonds in dissociation, and the off-rate measured in the 6- to 15-pN range correlated well with activation potency, suggesting that formation of catch bonds is not an intrinsic feature of the TCR-pMHC interaction. The association kinetics were better explained by a model with a minimal encounter duration rather than a standard on-rate constant, suggesting that membrane fluidity and dynamics may strongly influence bond formation.


Subject(s)
HLA-A2 Antigen/chemistry , Models, Chemical , Receptors, Antigen, T-Cell/chemistry , Cell-Free System , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Humans , Kinetics , Protein Binding , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
SELECTION OF CITATIONS
SEARCH DETAIL