Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.037
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063205

ABSTRACT

Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.


Subject(s)
Fish Diseases , Flatfishes , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Phylogeny , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Flatfishes/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/genetics , Fish Diseases/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/genetics , Molecular Docking Simulation , Aeromonas salmonicida/immunology , Molecular Chaperones/metabolism , Molecular Chaperones/genetics
3.
Protein Sci ; 33(8): e5105, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39012012

ABSTRACT

The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.


Subject(s)
HSC70 Heat-Shock Proteins , HSP40 Heat-Shock Proteins , Protein Domains , Protein Folding , Humans , HSC70 Heat-Shock Proteins/metabolism , HSC70 Heat-Shock Proteins/chemistry , HSC70 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/genetics , Models, Molecular , Phosphorylation
4.
J Cell Mol Med ; 28(12): e18488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031896

ABSTRACT

MCM8 is a helicase, which participates in DNA replication and tumorigenesis and is upregulated in many human cancers, including lung cancer (LC); however, the function of MCM8 in LC tumour progression is unclear. In this study, we found that MCM8 was expressed at high levels in LC cells and tissues. Further, MCM8 upregulation was associated with advanced tumour grade and lymph node metastasis, and indicated poor prognosis. Silencing of MCM8 suppressed cell growth and migration in vitro and in vivo, while ectopic MCM8 expression promoted cell cycle progression, as well as cell migration, proliferation, and apoptosis. Mechanistically, DNAJC10 was identified as a downstream target of MCM8, using gene array and CO-IP assays. DNAJC10 overexpression combatted the inhibitory activity of MCM8 knockdown on LC progression, while silencing DNAJC10 alleviated the oncogenic function of MCM8 overexpression. MCM8 expression was positively correlated with that of DNAJC10 in LC samples from The Cancer Genome Atlas database, and DNAJC10 upregulation was also associated with poor overall survival of patients with LC. This study indicated that MCM8/DNAJC10 axis plays an important role in in LC development, and maybe as a new potential therapeutic target or a diagnostic biomarker for treating patients with LC.


Subject(s)
Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Minichromosome Maintenance Proteins , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Male , Animals , Female , Mice , Apoptosis/genetics , Up-Regulation/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Prognosis , Mice, Nude , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
5.
Anal Bioanal Chem ; 416(19): 4249-4260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850318

ABSTRACT

The identification and quantification of misfolded proteins from complex mixtures is important for biological characterization and disease diagnosis, but remains a major bioanalytical challenge. We have developed Hsp40 Affinity Profiling as a bioanalytical approach to profile protein stability in response to cellular stress. In this assay, we ectopically introduce the Hsp40 FlagDNAJB8H31Q into cells and use quantitative proteomics to determine how protein affinity for DNAJB8 changes in the presence of cellular stress, without regard for native clients. Herein, we evaluate potential approaches to improve the performance of this bioanalytical assay. We find that although intracellular crosslinking increases recovery of protein interactors, this is not enough to overcome the relative drop in DNAJB8 recovery. While the J-domain promotes Hsp70 association, it does not affect the yield of protein association with DNAJB8 under basal conditions. By contrast, crosslinking and J-domain ablation both substantially increase relative protein interactor recovery with the structurally distinct Class B Hsp40 DNAJB1 but are completely compensated by poorer yield of DNAJB1 itself. Cellular thermal stress promotes increased affinity between DNAJB8H31Q and interacting proteins, as expected for interactions driven by recognition of misfolded proteins. DNAJB8WT does not demonstrate such a property, suggesting that under stress misfolded proteins are handed off to Hsp70. Hence, we find that DNAJB8H31Q is still our most effective recognition element for the recovery of destabilized client proteins following cellular stress.


Subject(s)
HSP40 Heat-Shock Proteins , HSP40 Heat-Shock Proteins/metabolism , Humans , HEK293 Cells , Proteomics/methods , Protein Binding , HSP70 Heat-Shock Proteins/metabolism , Protein Stability , Protein Folding
6.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928416

ABSTRACT

A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.


Subject(s)
Cathepsin D , Dopaminergic Neurons , Endoplasmic Reticulum Stress , HSP40 Heat-Shock Proteins , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Apoptosis/genetics , Cathepsin D/metabolism , Cathepsin D/genetics , Cell Line, Tumor , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Down-Regulation , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Lysosomes/metabolism , Mitochondria/metabolism , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Up-Regulation
7.
Proc Natl Acad Sci U S A ; 121(24): e2320064121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833477

ABSTRACT

Synapse maintenance is essential for generating functional circuitry, and decrement in this process is a hallmark of neurodegenerative disease. Yet, little is known about synapse maintenance in vivo. Cysteine string protein α (CSPα), encoded by the Dnajc5 gene, is a synaptic vesicle chaperone that is necessary for synapse maintenance and linked to neurodegeneration. To investigate the transcriptional changes associated with synapse maintenance, we performed single-nucleus transcriptomics on the cortex of young CSPα knockout (KO) mice and littermate controls. Through differential expression and gene ontology analysis, we observed that both neurons and glial cells exhibit unique signatures in the CSPα KO brain. Significantly, all neuronal classes in CSPα KO brains show strong signatures of repression in synaptic pathways, while up-regulating autophagy-related genes. Through visualization of synapses and autophagosomes by electron microscopy, we confirmed these alterations especially in inhibitory synapses. Glial responses varied by cell type, with microglia exhibiting activation. By imputing cell-cell interactions, we found that neuron-glia interactions were specifically increased in CSPα KO mice. This was mediated by synaptogenic adhesion molecules, with the classical Neurexin1-Neuroligin 1 pair being the most prominent, suggesting that communication of glial cells with neurons is strengthened in CSPα KO mice to preserve synapse maintenance. Together, this study provides a rich dataset of transcriptional changes in the CSPα KO cortex and reveals insights into synapse maintenance and neurodegeneration.


Subject(s)
HSP40 Heat-Shock Proteins , Membrane Proteins , Mice, Knockout , Neurons , Synapses , Transcriptome , Animals , Synapses/metabolism , Mice , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Neurons/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neuroglia/metabolism
8.
J Cancer Res Clin Oncol ; 150(6): 315, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909166

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a high-grade and heterogeneous subtype of glioma that presents a substantial challenge to human health, characterized by a poor prognosis and low survival rates. Despite its known involvement in regulating leukemia and melanoma, the function and mechanism of DNAJC1 in GBM remain poorly understood. METHODS: Utilizing data from the TCGA, CGGA, and GEO databases, we investigated the expression pattern of DNAJC1 and its correlation with clinical characteristics in GBM specimens. Loss-of-function experiments were conducted to explore the impact of DNAJC1 on GBM cell lines, with co-culture experiments assessing macrophage infiltration and functional marker expression. RESULTS: Our analysis demonstrated frequent overexpression of DNAJC1 in GBM, significantly associated with various clinical characteristics including WHO grade, IDH status, chromosome 1p/19q codeletion, and histological type. Moreover, Kaplan‒Meier and ROC analyses revealed DNAJC1 as a negative prognostic predictor and a promising diagnostic biomarker for GBM patients. Functional studies indicated that silencing DNAJC1 impeded cell proliferation and migration, induced cell cycle arrest, and enhanced apoptosis. Mechanistically, DNAJC1 was implicated in stimulating extracellular matrix reorganization, triggering the epithelial-mesenchymal transition (EMT) process, and initiating immunosuppressive macrophage infiltration. CONCLUSIONS: Our findings underscore the pivotal role of DNAJC1 in GBM pathogenesis, suggesting its potential as a diagnostic and therapeutic target for this challenging disease.


Subject(s)
Brain Neoplasms , Disease Progression , Extracellular Matrix , Glioblastoma , Macrophages , Animals , Female , Humans , Male , Mice , Middle Aged , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/immunology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/immunology , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Macrophages/metabolism , Macrophages/pathology , Macrophages/immunology , Prognosis
9.
Cancer Res ; 84(16): 2626-2644, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38888469

ABSTRACT

Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer that is driven by the fusion of DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). PKA activity is controlled through regulatory proteins that both inhibit catalytic activity and control localization, and an excess of regulatory subunits ensures PRKACA activity is inhibited. Here, we found an increase in the ratio of catalytic to regulatory units in FLC patient tumors driven by DNAJB1::PRKACA using mass spectrometry, biochemistry, and immunofluorescence, with increased nuclear localization of the kinase. Overexpression of DNAJB1::PRKACA, ATP1B1::PRKACA, or PRKACA, but not catalytically inactive kinase, caused similar transcriptomic changes in primary human hepatocytes, recapitulating the changes observed in FLC. Consistently, tumors in patients missing a regulatory subunit or harboring an ATP1B1::PRKACA fusion were indistinguishable from FLC based on the histopathological, transcriptomic, and drug-response profiles. Together, these findings indicate that the DNAJB1 domain of DNAJB1::PRKACA is not required for FLC. Instead, changes in PKA activity and localization determine the FLC phenotype. Significance: Alterations leading to unconstrained protein kinase A signaling, regardless of the presence or absence of PRKACA fusions, drive the phenotypes of fibrolamellar hepatocellular carcinoma, reshaping understanding of the pathogenesis of this rare liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits , HSP40 Heat-Shock Proteins , Liver Neoplasms , Humans , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Gene Expression Regulation, Neoplastic , Sodium-Potassium-Exchanging ATPase
10.
Mol Cell ; 84(13): 2455-2471.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38908370

ABSTRACT

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Protein Biosynthesis , Protein Folding , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Protein Binding , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Models, Molecular , Protein Conformation , Peptidylprolyl Isomerase
11.
Protein Sci ; 33(7): e5068, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864739

ABSTRACT

Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.


Subject(s)
Escherichia coli Proteins , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Heat-Shock Proteins , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Protein Folding , Escherichia coli/genetics , Escherichia coli/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics
12.
Physiol Plant ; 176(3): e14374, 2024.
Article in English | MEDLINE | ID: mdl-38837422

ABSTRACT

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Subject(s)
Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
13.
Vet Microbiol ; 295: 110165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936156

ABSTRACT

Pseudorabies virus (PRV) effectively utilizes numerous host proteins and pathways to establish a successful infection. Consequently, it becomes imperative to investigate novel host factors implicated in viral infections to gain a deeper understanding of PRV pathogenesis. In this study, we reveal that the host heat shock protein, DNAJB8, functions as a negative regulator in PRV replication. Our findings indicated that both mRNA and protein levels of DNAJB8 were downregulated in cells infected with PRV. Further analysis demonstrated that overexpressing DNAJB8 suppressed PRV replication, whereas its knockdown enhanced viral replication. From a mechanistic perspective, DNAJB8 promoted cellular autophagy, subsequently impeding viral replication. Additionally, we discovered that the transcription factor SOX30 regulated DNAJB8 expression, thereby influencing viral replication. Collectively, these findings enhance our comprehension of the roles played by DNAJB8 and SOX30 in viral replication, broadening our knowledge of virus-host interactions.


Subject(s)
Autophagy , HSP40 Heat-Shock Proteins , Herpesvirus 1, Suid , Virus Replication , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Cell Line , Swine , Host-Pathogen Interactions , Pseudorabies/virology
14.
J Biol Chem ; 300(6): 107346, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718859

ABSTRACT

Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Molecular Chaperones , Endoplasmic Reticulum Chaperone BiP/metabolism , Endoplasmic Reticulum Chaperone BiP/genetics , Animals , Hydrogen-Ion Concentration , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Mice , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/chemistry , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/chemistry , Protein Aggregates
15.
Stem Cell Res ; 77: 103427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696852

ABSTRACT

The DNAJC19 gene, a member of DNAJ heat shock protein (Hsp40) family, is localized within the inner mitochondrial membrane (IMM) and plays a crucial role in regulating the function and localization of mitochondrial Hsp70 (MtHsp70). Mutations in the DNAJC19 gene cause Dilated Cardiomyopathy with Ataxia Syndrome (DCMA). The precise mechanisms underlying the DCMA phenotype caused by DNAJC19 mutations remain poorly understood, and effective treatment modalities were lacking unitl recently. By using CRISPR-Cas9 gene editing technology, this study generated a DNAJC19-knockout (DNAJC19-KO) human embryonic stem cell line (hESC), which will be a useful tool in studying the pathogenesis of DCMA.


Subject(s)
CRISPR-Cas Systems , HSP40 Heat-Shock Proteins , Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Gene Knockout Techniques , Cell Line , Homozygote
16.
FASEB J ; 38(9): e23630, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713100

ABSTRACT

Heat shock proteins (HSPs) are a group of highly conserved proteins found in a wide range of organisms. In recent years, members of the HSP family were overexpressed in various tumors and widely involved in oncogenesis, tumor development, and therapeutic resistance. In our previous study, DNAJC24, a member of the DNAJ/HSP40 family of HSPs, was found to be closely associated with the malignant phenotype of hepatocellular carcinoma. However, its relationship with other malignancies needs to be further explored. Herein, we demonstrated that DNAJC24 exhibited upregulated expression in LUAD tissue samples and predicted poor survival in LUAD patients. The upregulation of DNAJC24 expression promoted proliferation and invasion of LUAD cells in A549 and NCI-H1299 cell lines. Further studies revealed that DNAJC24 could regulate the PI3K/AKT signaling pathway by affecting AKT phosphorylation. In addition, a series of experiments such as Co-IP and mass spectrometry confirmed that DNAJC24 could directly interact with PCNA and promoted the malignant phenotypic transformation of LUAD. In conclusion, our results suggested that DNAJC24 played an important role in the progression of LUAD and may serve as a specific prognostic biomarker for LUAD patients. The DNAJC24/PCNA/AKT axis may be a potential target for future individualized and precise treatment of LUAD patients.


Subject(s)
Cell Proliferation , HSP40 Heat-Shock Proteins , Proliferating Cell Nuclear Antigen , Proto-Oncogene Proteins c-akt , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
17.
Hum Mol Genet ; 33(14): 1195-1206, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38621658

ABSTRACT

Mutations in DNAJB6 are a well-established cause of limb girdle muscular dystrophy type D1 (LGMD D1). Patients with LGMD D1 develop progressive muscle weakness with histology showing fibre damage, autophagic vacuoles, and aggregates. Whilst there are many reports of LGMD D1 patients, the role of DNAJB6 in the muscle is still unclear. In this study, we developed a loss of function zebrafish model in order to investigate the role of Dnajb6. Using a double dnajb6a and dnajb6b mutant model, we show that loss of Dnajb6 leads to a late onset muscle weakness. Interestingly, we find that adult fish lacking Dnajb6 do not have autophagy or myofibril defects, however, they do show mitochondrial changes and damage. This study demonstrates that loss of Dnajb6 causes mitochondrial defects and suggests that this contributes to muscle weakness in LGMD D1. These findings expand our knowledge of the role of Dnajb6 in the muscle and provides a model to screen novel therapies for LGMD D1.


Subject(s)
Disease Models, Animal , HSP40 Heat-Shock Proteins , Mitochondria , Molecular Chaperones , Muscle Weakness , Muscular Dystrophies, Limb-Girdle , Zebrafish , Animals , Humans , Autophagy/genetics , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Muscle Weakness/genetics , Muscle Weakness/pathology , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Nerve Tissue Proteins , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
18.
Nucleic Acids Res ; 52(11): 6253-6268, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38613392

ABSTRACT

MicroRNAs (miRNAs) are essential regulators of several biological processes. They are loaded onto Argonaute (AGO) proteins to achieve their repressive function, forming the microRNA-Induced Silencing Complex known as miRISC. While several AGO proteins are expressed in plants and animals, it is still unclear why specific AGOs are strictly binding miRNAs. Here, we identified the co-chaperone DNJ-12 as a new interactor of ALG-1, one of the two major miRNA-specific AGOs in Caenorhabditis elegans. DNJ-12 does not interact with ALG-2, the other major miRNA-specific AGO, and PRG-1 and RDE-1, two AGOs involved in other small RNA pathways, making it a specific actor in ALG-1-dependent miRNA-mediated gene silencing. The loss of DNJ-12 causes developmental defects associated with defective miRNA function. Using the Auxin Inducible Degron system, a powerful tool to acutely degrade proteins in specific tissues, we show that DNJ-12 depletion hampers ALG-1 interaction with HSP70, a chaperone required for miRISC loading in vitro. Moreover, DNJ-12 depletion leads to the decrease of several miRNAs and prevents their loading onto ALG-1. This study uncovers the importance of a co-chaperone for the miRNA function in vivo and provides insights to explain how different small RNAs associate with specific AGO in animals.


Subject(s)
Argonaute Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , HSP40 Heat-Shock Proteins , MicroRNAs , Molecular Chaperones , Animals , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Protein Binding , RNA-Binding Proteins , HSP40 Heat-Shock Proteins/metabolism
19.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648719

ABSTRACT

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Subject(s)
Drosophila Proteins , HSP40 Heat-Shock Proteins , Memory, Long-Term , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Memory, Long-Term/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mushroom Bodies/metabolism , Protein Multimerization , Transcription Factors/metabolism , Transcription Factors/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
20.
ACS Chem Neurosci ; 15(9): 1732-1737, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38640082

ABSTRACT

For many chaperones, a propensity to self-assemble correlates with function. The highly efficient amyloid suppressing chaperone DNAJB6b has been reported to oligomerize. A key question is whether the DNAJB6b self-assemblies or their subunits are active units in the suppression of amyloid formation. Here, we address this question using a nonmodified chaperone. We use the well-established aggregation kinetics of the amyloid ß 42 peptide (Aß42) as a readout of the amyloid suppression efficiency. The experimental setup relies on the slow dissociation of DNAJB6b assemblies upon dilution. We find that the dissociation of the chaperone assemblies correlates with its ability to suppress fibril formation. Thus, the data show that the subunits of DNAJB6b assemblies rather than the large oligomers are the active forms in amyloid suppression. Our results provide insights into how DNAJB6b operates as a chaperone and illustrate the importance of established assembly equilibria and dissociation rates for the design of kinetic experiments.


Subject(s)
Amyloid beta-Peptides , HSP40 Heat-Shock Proteins , Molecular Chaperones , HSP40 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Amyloid beta-Peptides/metabolism , Nerve Tissue Proteins/metabolism , Amyloid/metabolism , Peptide Fragments/metabolism , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL