Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 802
1.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809465

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Alopecia Areata , Cell Proliferation , Hair Follicle , Interferon-gamma , Wnt Signaling Pathway , beta Catenin , Humans , Hair Follicle/drug effects , Hair Follicle/cytology , Hair Follicle/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Interferon-gamma/metabolism , beta Catenin/metabolism , Alopecia Areata/metabolism , Alopecia Areata/drug therapy , Alopecia Areata/pathology , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Janus Kinases/metabolism , Dermis/cytology , Dermis/drug effects , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Hair/drug effects , Hair/growth & development , Wnt-5a Protein/metabolism , Janus Kinase 1/metabolism , Signal Transduction/drug effects , STAT Transcription Factors/metabolism
2.
Genes (Basel) ; 15(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38790256

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Computational Biology , Mice, Inbred C57BL , Animals , Mice , Female , Computational Biology/methods , Filaggrin Proteins , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Oligonucleotide Array Sequence Analysis/methods , Skin/metabolism , Skin/drug effects , Hair/growth & development , Hair/drug effects , Hair/metabolism , Minoxidil/pharmacology , Gene Expression Profiling/methods
3.
Drug Discov Today ; 29(6): 104013, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705510

Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor ß (TRß) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRß in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRß agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRß agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.


Alopecia , Thyroid Hormone Receptors beta , Humans , Alopecia/drug therapy , Animals , Thyroid Hormone Receptors beta/agonists , Thyroid Hormone Receptors beta/metabolism , Structure-Activity Relationship , Drug Development/methods , Hair Follicle/drug effects , Hair Follicle/metabolism , Molecular Targeted Therapy
4.
Molecules ; 29(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38792149

This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-ß or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.


Alopecia , Hair , Phytochemicals , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alopecia/drug therapy , Alopecia/prevention & control , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Animals , Hair/drug effects , Hair/growth & development , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/growth & development , Cell Proliferation/drug effects
5.
FEBS Open Bio ; 14(6): 955-967, 2024 Jun.
Article En | MEDLINE | ID: mdl-38711215

Patterned hair loss (PHL) or androgenetic alopecia is a condition affecting about 50% of people worldwide. Several pharmacological medications have been developed over the years, but few studies have investigated their effectiveness. Therefore, new, safer and more effective strategies are required. Recent investigations showed that Annurca apple extract application could induce keratin production and promote hair growth thanks to the high amount of procyanidin B2 contained in. Hence, this study aimed to investigate the role of an Annurca apple extract in preventing PHL by testing it on human follicle dermal papilla cells (HFDPCs) for the first time. Treatment of HFDPCs with Annurca apple extract counteracted intracellular reactive oxygen species accumulation by increasing the activity of antioxidant enzymes such as superoxide dismutase 2 and catalase. Furthermore, treatment with Annurca apple extract increased ß-catenin and fibroblast growth factor 2, which are involved in hair growth stimulation. These data suggest that Annurca apple extract may be a potential therapeutically useful nutraceutical product for preventing or treating hair loss by reducing oxidative stress and inducing the expression of hair growth-related factors.


Alopecia , Malus , Oxidative Stress , Plant Extracts , Reactive Oxygen Species , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Alopecia/drug therapy , Alopecia/metabolism , Humans , Malus/chemistry , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Hair Follicle/drug effects , Hair Follicle/metabolism , Proanthocyanidins/pharmacology , Catechin/pharmacology , Superoxide Dismutase/metabolism , Cells, Cultured , Biflavonoids/pharmacology , Catalase/metabolism
6.
Arch Dermatol Res ; 316(5): 190, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775976

Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.


Alopecia , Hair Follicle , Hair , Transcription Factors , Animals , Male , Mice , Hair/growth & development , Hair/drug effects , Hair Follicle/drug effects , Hair Follicle/growth & development , Humans , Alopecia/drug therapy , Transcription Factors/genetics , Transcription Factors/metabolism , Mice, Inbred BALB C , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/administration & dosage , Mice, Nude , Mice, Hairless , Disease Models, Animal , Glucocorticoids/pharmacology
7.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739468

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Alopecia , Hair Follicle , Indoles , Polymers , Quercetin , Reactive Oxygen Species , Alopecia/drug therapy , Alopecia/pathology , Quercetin/pharmacology , Quercetin/administration & dosage , Quercetin/chemistry , Animals , Indoles/chemistry , Indoles/pharmacology , Hair Follicle/drug effects , Hair Follicle/growth & development , Polymers/chemistry , Mice , Reactive Oxygen Species/metabolism , Regeneration/drug effects , Humans , Hair/drug effects , Hair/growth & development , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Disease Models, Animal , Male
8.
Environ Int ; 186: 108638, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593689

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Alopecia , Apoptosis , Microplastics , Oxidative Stress , Polystyrenes , Skin , Tight Junctions , Alopecia/chemically induced , Microplastics/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Animals , Mice , Polystyrenes/toxicity , Tight Junctions/drug effects , Tight Junctions/metabolism , Skin/drug effects , Skin/pathology , Hair Follicle/drug effects , Reactive Oxygen Species/metabolism
9.
Cell Signal ; 119: 111167, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604341

Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.


Autophagy , Hair , Animals , Mice , Humans , Autophagy/drug effects , Hair/growth & development , Hair/drug effects , Hair Follicle/drug effects , Hair Follicle/cytology , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Dermis/cytology , Dermis/drug effects , Transient Receptor Potential Channels/metabolism , Calcium Signaling/drug effects
10.
In Vivo ; 38(3): 1199-1202, 2024.
Article En | MEDLINE | ID: mdl-38688645

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Hair Follicle , Hair , Homocysteine , Methionine , Animals , Methionine/deficiency , Methionine/metabolism , Methionine/administration & dosage , Mice , Hair/growth & development , Hair/metabolism , Homocysteine/metabolism , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Mice, Inbred C57BL , Alopecia/metabolism , Alopecia/etiology , Alopecia/pathology , Disease Models, Animal , Diet , Keratinocytes/metabolism
11.
Biomed Pharmacother ; 174: 116503, 2024 May.
Article En | MEDLINE | ID: mdl-38565060

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Alopecia , Antlers , Bone Morphogenetic Protein 4 , Hair Follicle , Hair , Animals , Antlers/chemistry , Alopecia/drug therapy , Alopecia/pathology , Hair Follicle/drug effects , Hair Follicle/metabolism , Mice , Male , Bone Morphogenetic Protein 4/metabolism , Hair/drug effects , Hair/growth & development , Hedgehog Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Tissue Extracts/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Regeneration/drug effects , Deer , Smad5 Protein/metabolism
12.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 158-163, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678608

Dermal papilla cell (DPC) belongs to a specialized mesenchymal stem cell for hair follicle regeneration. Maintaining the ability of DPCs to stimulate hair in vitro culture is important for hair follicle morphogenesis and regeneration. As the third generation of platelet concentrate, injectable platelet-rich fibrin (i-PRF) is a novel biomaterial containing many growth factors and showing promising effects on tissue reconstruction. We aimed to explore the influences of i-PRF on the proliferative, migratory, as well as trichogenic ability of DPCs and compared the effects of i-PRF and platelet-rich plasma (PRP), the first generation of platelet concentrate. Both PRP and i-PRF facilitated DPCs proliferation, and migration, along with trichogenic inductivity as well as stimulated the TGF-ß/Smad pathway, while the impacts of i-PRF were more significant than PRP. A small molecule inhibitor of TGF-beta receptor I, Galunisertib, was also applied to treat DPCs, and it rescued the impacts of i-PRF on the proliferative, migratory, trichogenic inductivity, and proteins-associated with TGF-ß/Smad pathway in DPCs. These findings revealed that i-PRF had better effects than PRP in enhancing the proliferative, migratory, and hair-inducing abilities of DPCs by the TGF-ß/Smad pathway, which indicated the beneficial role of i-PRF in hair follicle regeneration.


Cell Movement , Cell Proliferation , Hair Follicle , Platelet-Rich Fibrin , Signal Transduction , Smad Proteins , Transforming Growth Factor beta , Signal Transduction/drug effects , Cell Proliferation/drug effects , Transforming Growth Factor beta/metabolism , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/cytology , Smad Proteins/metabolism , Humans , Platelet-Rich Fibrin/metabolism , Cell Movement/drug effects , Dermis/cytology , Dermis/metabolism , Dermis/drug effects , Cells, Cultured , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Platelet-Rich Plasma/metabolism , Injections
13.
J Microbiol Biotechnol ; 34(4): 812-827, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38480001

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.


Glycogen Synthase Kinase 3 beta , Hydrogen Peroxide , Oxidative Stress , Phloroglucinol , Proto-Oncogene Proteins c-akt , Signal Transduction , beta Catenin , Humans , Phloroglucinol/pharmacology , Phloroglucinol/analogs & derivatives , Oxidative Stress/drug effects , Hydrogen Peroxide/metabolism , Signal Transduction/drug effects , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphorylation/drug effects , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/cytology , Dermis/cytology , Dermis/metabolism , Dermis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Alopecia/drug therapy , Alopecia/metabolism
14.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38452090

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Adult Stem Cells , Cell Plasticity , Epidermis , Hair Follicle , Tretinoin , Wound Healing , Animals , Mice , Adult Stem Cells/cytology , Adult Stem Cells/physiology , Cell Lineage/drug effects , Cell Lineage/physiology , Cell Plasticity/drug effects , Cell Plasticity/physiology , Epidermis/drug effects , Epidermis/physiology , Hair Follicle/cytology , Hair Follicle/drug effects , Hair Follicle/physiology , Tretinoin/metabolism , Tretinoin/pharmacology , Wound Healing/drug effects , Wound Healing/physiology , Rejuvenation/physiology , Cell Culture Techniques , Neoplasms/pathology , Mice, Inbred C57BL
15.
Adv Mater ; 36(21): e2311459, 2024 May.
Article En | MEDLINE | ID: mdl-38346345

Hair loss is characterized by the inability of hair follicles (HFs) to enter the telogen-anagen transition (TAT) and lack of de novo HFs. Current pharmaceutical therapies and surgical modalities have been largely limited to regulating hair regrowth efficiently without side effects and lacking treatment compliance. Here, this work proposes a materiobiomodulation therapy (MBMT), wherein polydopamine (PDA) nanoparticles with redox activity can be modulated to have a stoichiometric ROS (H2O2) donating ability. These nanoparticles can intracellularly deliver ROS with high-efficiency via the clathrin-dependent endocytosis process. Utilizing homozygote transgenic HyPerion (a genetically-encoded H2O2 biosensor) mice, this work also achieves in vivo dynamic monitoring of intracellular H2O2 elevation induced by ROS donators. Subcutaneous administration with ROS donators results in rapid onset of TAT and subsequent hair regrowth with a specific ROS "hormesis effect." Mechanistically, ROS activate ß-catenin-dependent Wnt signaling, upregulating hair follicle stem cell expression. This work further develops a microneedles patch for transdermal ROS delivery, demonstrating long-term, low-dose ROS release. Unlike photobiomodulation therapy (PBMT), MBMT requires no external stimuli, providing a convenient and efficient approach for clinical hair loss treatment. This material-HF communication implicates new avenues in HF-related diseases, achieving targeted ROS delivery with minimal side effects.


Hair Follicle , Indoles , Nanoparticles , Polymers , Reactive Oxygen Species , Animals , Hair Follicle/metabolism , Hair Follicle/drug effects , Mice , Indoles/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Alopecia/therapy , Hair/growth & development , Hair/drug effects , Wnt Signaling Pathway/drug effects , Humans , Mice, Transgenic
16.
J Med Food ; 27(5): 449-459, 2024 May.
Article En | MEDLINE | ID: mdl-38421731

Although hair loss contributes to various social and economic, research methods for material development are currently limited. In this study, we established a research model for developing materials for hair growth through the regulation of ß-catenin. We confirmed that 100 nM tegatrabetan (TG), a ß-catenin inhibitor, decreased the proliferation of human hair follicle dermal papilla cells (HFDPCs) at 72 h. In addition, TG-induced apoptosis suppressed the phosphorylation of GSK-3ß and Akt, translocation of ß-catenin from the cytosol to the nucleus, and the expression of cyclin D1. Interestingly, TG significantly increased the G2/M arrest in HFDPCs. Subcutaneous injection of TG suppressed hair growth and the number of hair follicles in C57BL/6 mice. Moreover, TG inhibited the expression of cyclin D1, ß-catenin, keratin 14, and Ki67. These results suggest that TG-induced inhibition of hair growth can be a promising model for developing new materials for enhancing ß-catenin-mediated hair growth.


Cell Proliferation , Cyclin D1 , Glycogen Synthase Kinase 3 beta , Hair Follicle , Hair , Mice, Inbred C57BL , Signal Transduction , beta Catenin , beta Catenin/metabolism , Animals , Humans , Hair Follicle/growth & development , Hair Follicle/metabolism , Hair Follicle/drug effects , Mice , Signal Transduction/drug effects , Cell Proliferation/drug effects , Hair/growth & development , Hair/drug effects , Hair/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Cyclin D1/metabolism , Cyclin D1/genetics , Apoptosis/drug effects , Male , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation
17.
Cutan Ocul Toxicol ; 43(2): 113-119, 2024 Jun.
Article En | MEDLINE | ID: mdl-38179974

OBJECTIVE: Chemotherapy induced alopecia (CIA) is one of the most common side effects in cancer patients, however; it doesn't have an effective pharmacological treatment yet. In this study we aimed to research the protective effect of newly developed HDDPiW-jSB solution on docetaxel (DTX) -induced rat alopecia model. MATERIAL AND METHODS: Docetaxel (10 mg/kg/week) was administered to the 6-8 months old rats for three weeks. HDDPiW-jSB solution was applied once or twice a week for 4 weeks beginning prior to one week before DTX. Rat hair follicles were evaluated with hematoxylin-eosin and immune-histochemical staining. RESULTS: In the first stage of this study, alopecia was successfully developed by DTX (10 mg/kg/three times) application. In the second stage of the study, application of HDDPiW-jSB solution, did not change the study parameters significantly on control group. The solution improved the anagen hair follicle count and Bcl-2 levels in the skin samples of DTX-induced alopecic rat groups, especially when applied twice weekly. Additionally, level of Caspase 3 was decreased. HDDPiW-jSB solution was safe when applied on the skin. CONCLUSION: Topical HDDPiW-jSB solution could be effective and safe for the protection of DTX-induced alopecia in rat models.


Alopecia , Antineoplastic Agents , Docetaxel , Hair Follicle , Animals , Alopecia/chemically induced , Alopecia/drug therapy , Alopecia/prevention & control , Hair Follicle/drug effects , Antineoplastic Agents/toxicity , Antineoplastic Agents/adverse effects , Male , Rats , Proto-Oncogene Proteins c-bcl-2/metabolism , Caspase 3/metabolism , Rats, Sprague-Dawley
18.
Int J Pharm ; 616: 121537, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35150848

Androgenetic alopecia (AGA) affects physical and mental health with limited therapeutic options. Novel materials and delivery methods have considerable potential to improve the current paradigm of treatment. In this study, we used a novel plant nanoparticle of safflower oil body (SOB) loaded with human fibroblast growth factor 10 (hFGF10) to target hair follicles and accelerate hair regeneration in AGA mice with few adverse effects. Our data revealed that the average particle size of SOB-hFGF10 was 226.73 ± 9.98 nm, with a spherical and uniform structure, and that SOB-hFGF10 was quicker to preferentially penetrate into hair follicles than hFGF2 alone. Using a mouse model of AGA, SOB-hFGF10 was found to significantly improve hair regeneration without any significant toxicity. Furthermore, SOB-hFGF10 inhibited dihydrotestosterone (DHT)-induced TNF-α, IL-1ß, and IL-6 overproduction in macrophages in relation to hair follicle microinflammation, thereby enhancing the proliferation of dermal papilla cells. Overall, this study provides an applicable therapeutic method through targeting hair follicles and reducing microinflammation to accelerate hair regeneration in AGA.


Alopecia/drug therapy , Fibroblast Growth Factor 10 , Nanoparticles , Safflower Oil , Carthamus tinctorius/chemistry , Drug Delivery Systems , Fibroblast Growth Factor 10/administration & dosage , Fibroblast Growth Factor 10/therapeutic use , Hair/growth & development , Hair Follicle/drug effects , Humans , Regeneration , Safflower Oil/chemistry
19.
Drug Deliv ; 29(1): 328-341, 2022 Dec.
Article En | MEDLINE | ID: mdl-35040730

To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM-TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM-TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 µM BIM, equivalent to 10 µM minoxidil. Moreover, BIM-TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM-TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM-TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM-TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.


Alopecia/pathology , Bimatoprost/pharmacology , Drug Delivery Systems , Hair Follicle/drug effects , Hair/drug effects , Administration, Topical , Animals , Antioxidants/chemistry , Bimatoprost/administration & dosage , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred C57BL , Minoxidil/pharmacology , Skin Absorption/drug effects , Skin Absorption/physiology , Solvents/chemistry
20.
Sci Rep ; 12(1): 1491, 2022 01 27.
Article En | MEDLINE | ID: mdl-35087085

Androgenic alopecia is a common type of hair loss, usually caused by testosterone metabolism generating dihydrotestosterone and hair follicular micro-inflammation. These processes induce dermal papilla cells to undergo apoptosis. Currently approved effective medications for alopecia are Finasteride, an oral 5α-reductase inhibitor, Minoxidil, a topical hair growth promoter, and Diclofenac, an anti-inflammatory agent, all of which, however, have several adverse side effects. In our study, we showed the bioactivity of Acanthus ebracteatus Vahl. (AE) extract performed by 95% ethanol, and verbascoside (VB), a biomarker of AE extract. Both AE extract and VB were studied for their effects on dermal papilla cell viability and the cell cycle by using MTT assay and flow cytometry. The effect of an anti-inflammatory activity of AE extract and VB on IL-1ß, NO, and TNF-α, released from LPS induced RAW 264.7 cells, and IL-1α and IL-6 released from irradiated dermal papilla cells were detected using ELISA technique. The preventive effect on dermal papilla cell apoptosis induced by testosterone was determined by MTT assay. In controlled in vitro assays it was found that AE extract and VB at various concentrations induced dermal papilla cell proliferation which was indicated by an increase in the number of cells in the S and G2/M phases of the cell cycle. AE extract at 250 µg/mL concentration or VB at 62.50 µg/mL concentration prevented cell apoptosis induced by testosterone at a statistically significant level. In addition, both AE extract and VB greatly inhibited the release of pro-inflammatory cytokines from RAW 264.7 and dermal papilla cells. The release of IL-1ß, TNF-α, and NO from RAW 264.7 cells, as well as IL-1α and IL-6 from dermal papilla cells, was also diminished by AE extract 250 µg/mL and VB 125 µg/mL. Our results indicate that AE extract and VB are promising ingredients for anti-hair loss applications. However, further clinical study is necessary to evaluate the effectiveness of AE extract and VB as treatment for actual hair loss.


Acanthaceae/chemistry , Alopecia/drug therapy , Glucosides/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Animals , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Glucosides/therapeutic use , Hair Follicle/drug effects , Humans , Macrophages , Mice , Phenols/therapeutic use , Plant Extracts/therapeutic use , RAW 264.7 Cells
...