Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.003
1.
BMC Genomics ; 25(1): 498, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773419

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.


Hair , Protein Isoforms , RNA-Seq , Skin , Transcriptome , Animals , Cattle/genetics , Skin/metabolism , Hair/metabolism , Hair/growth & development , Protein Isoforms/genetics , Protein Isoforms/metabolism , Hair Follicle/metabolism , Hair Follicle/growth & development , Gene Expression Profiling , Alternative Splicing , Sequence Analysis, RNA
2.
Genes (Basel) ; 15(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38790256

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Computational Biology , Mice, Inbred C57BL , Animals , Mice , Female , Computational Biology/methods , Filaggrin Proteins , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Oligonucleotide Array Sequence Analysis/methods , Skin/metabolism , Skin/drug effects , Hair/growth & development , Hair/drug effects , Hair/metabolism , Minoxidil/pharmacology , Gene Expression Profiling/methods
3.
Molecules ; 29(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38792149

This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-ß or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.


Alopecia , Hair , Phytochemicals , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alopecia/drug therapy , Alopecia/prevention & control , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry , Animals , Hair/drug effects , Hair/growth & development , Hair Follicle/drug effects , Hair Follicle/metabolism , Hair Follicle/growth & development , Cell Proliferation/drug effects
4.
Arch Dermatol Res ; 316(5): 190, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775976

Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.


Alopecia , Hair Follicle , Hair , Transcription Factors , Animals , Male , Mice , Hair/growth & development , Hair/drug effects , Hair Follicle/drug effects , Hair Follicle/growth & development , Humans , Alopecia/drug therapy , Transcription Factors/genetics , Transcription Factors/metabolism , Mice, Inbred BALB C , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/administration & dosage , Mice, Nude , Mice, Hairless , Disease Models, Animal , Glucocorticoids/pharmacology
5.
J Agric Food Chem ; 72(20): 11493-11502, 2024 May 22.
Article En | MEDLINE | ID: mdl-38738816

Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/ß-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated ß-catenin, a major factor of the Wnt/ß-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/ß-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.


Hair , Wnt Signaling Pathway , Animals , Mice , Hair/metabolism , Hair/growth & development , Hair/chemistry , Humans , Wnt Signaling Pathway/drug effects , Biotransformation , Fermentation , beta Catenin/metabolism , beta Catenin/genetics , Male , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Hair Follicle/metabolism , Hair Follicle/growth & development , Cell Proliferation/drug effects , Apoptosis/drug effects , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/growth & development
6.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739468

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Alopecia , Hair Follicle , Indoles , Polymers , Quercetin , Reactive Oxygen Species , Alopecia/drug therapy , Alopecia/pathology , Quercetin/pharmacology , Quercetin/administration & dosage , Quercetin/chemistry , Animals , Indoles/chemistry , Indoles/pharmacology , Hair Follicle/drug effects , Hair Follicle/growth & development , Polymers/chemistry , Mice , Reactive Oxygen Species/metabolism , Regeneration/drug effects , Humans , Hair/drug effects , Hair/growth & development , Cell Proliferation/drug effects , Cellular Microenvironment/drug effects , Disease Models, Animal , Male
7.
In Vivo ; 38(3): 1199-1202, 2024.
Article En | MEDLINE | ID: mdl-38688645

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Hair Follicle , Hair , Homocysteine , Methionine , Animals , Methionine/deficiency , Methionine/metabolism , Methionine/administration & dosage , Mice , Hair/growth & development , Hair/metabolism , Homocysteine/metabolism , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Mice, Inbred C57BL , Alopecia/metabolism , Alopecia/etiology , Alopecia/pathology , Disease Models, Animal , Diet , Keratinocytes/metabolism
8.
Genes (Basel) ; 15(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38674344

This study investigated the regulatory effect of alternative spliceosomes of the fibroblast growth factor 5 (FGF5) gene on hair follicle (HF) growth and development in rabbits. The FGF5 alternative spliceosomes (called FGF5-X1, FGF5-X2, FGF5-X3) were cloned. The overexpression vector and siRNA of spliceosomes were transfected into dermal papilla cells (DPCs) to analyze the regulatory effect on DPCs. The results revealed that FGF5-X2 and FGF5-X3 overexpression significantly decreased LEF1 mRNA expression (p < 0.01). FGF5-X1 overexpression significantly reduced CCND1 expression (p < 0.01). FGF5-X1 and FGF5-X2 possibly downregulated the expression level of FGF2 mRNA (p < 0.05), and FGF5-X3 significantly downregulated the expression level of FGF2 mRNA (p < 0.01). The FGF5 alternative spliceosomes significantly downregulated the BCL2 mRNA expression level in both cases (p < 0.01). FGF5-X1 and FGF5-X2 significantly increased TGFß mRNA expression (p < 0.01). All three FGF5 alternative spliceosomes inhibited DPC proliferation. In conclusion, the expression profile of HF growth and development-related genes can be regulated by FGF5 alternative spliceosomes, inhibiting the proliferation of DPCs and has an influence on the regulation of HF growth in rabbits. This study provides insights to further investigate the mechanism of HF development in rabbits via FGF5 regulation.


Fibroblast Growth Factor 5 , Hair Follicle , Animals , Rabbits , Hair Follicle/growth & development , Hair Follicle/metabolism , Fibroblast Growth Factor 5/genetics , Fibroblast Growth Factor 5/metabolism , Cell Proliferation/genetics , Alternative Splicing
9.
Genomics ; 116(3): 110844, 2024 May.
Article En | MEDLINE | ID: mdl-38608737

The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.


Cell Proliferation , Goats , Hair Follicle , Melatonin , Wnt Proteins , Animals , Hair Follicle/metabolism , Hair Follicle/cytology , Hair Follicle/growth & development , Goats/genetics , Goats/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Cells, Cultured
10.
Adv Sci (Weinh) ; 11(20): e2306703, 2024 May.
Article En | MEDLINE | ID: mdl-38561967

The dermis and epidermis, crucial structural layers of the skin, encompass appendages, hair follicles (HFs), and intricate cellular heterogeneity. However, an integrated spatiotemporal transcriptomic atlas of embryonic skin has not yet been described and would be invaluable for studying skin-related diseases in humans. Here, single-cell and spatial transcriptomic analyses are performed on skin samples of normal and hairless fetal pigs across four developmental periods. The cross-species comparison of skin cells illustrated that the pig epidermis is more representative of the human epidermis than mice epidermis. Moreover, Phenome-wide association study analysis revealed that the conserved genes between pigs and humans are strongly associated with human skin-related diseases. In the epidermis, two lineage differentiation trajectories describe hair follicle (HF) morphogenesis and epidermal development. By comparing normal and hairless fetal pigs, it is found that the hair placode (Pc), the most characteristic initial structure in HFs, arises from progenitor-like OGN+/UCHL1+ cells. These progenitors appear earlier in development than the previously described early Pc cells and exhibit abnormal proliferation and migration during differentiation in hairless pigs. The study provides a valuable resource for in-depth insights into HF development, which may serve as a key reference atlas for studying human skin disease etiology using porcine models.


Hair Follicle , Transcriptome , Animals , Swine/genetics , Swine/embryology , Hair Follicle/metabolism , Hair Follicle/embryology , Hair Follicle/growth & development , Transcriptome/genetics , Single-Cell Analysis/methods , Skin/metabolism , Skin/embryology , Cell Differentiation/genetics , Gene Expression Profiling/methods , Humans , Mice
11.
J Med Food ; 27(5): 449-459, 2024 May.
Article En | MEDLINE | ID: mdl-38421731

Although hair loss contributes to various social and economic, research methods for material development are currently limited. In this study, we established a research model for developing materials for hair growth through the regulation of ß-catenin. We confirmed that 100 nM tegatrabetan (TG), a ß-catenin inhibitor, decreased the proliferation of human hair follicle dermal papilla cells (HFDPCs) at 72 h. In addition, TG-induced apoptosis suppressed the phosphorylation of GSK-3ß and Akt, translocation of ß-catenin from the cytosol to the nucleus, and the expression of cyclin D1. Interestingly, TG significantly increased the G2/M arrest in HFDPCs. Subcutaneous injection of TG suppressed hair growth and the number of hair follicles in C57BL/6 mice. Moreover, TG inhibited the expression of cyclin D1, ß-catenin, keratin 14, and Ki67. These results suggest that TG-induced inhibition of hair growth can be a promising model for developing new materials for enhancing ß-catenin-mediated hair growth.


Cell Proliferation , Cyclin D1 , Glycogen Synthase Kinase 3 beta , Hair Follicle , Hair , Mice, Inbred C57BL , Signal Transduction , beta Catenin , beta Catenin/metabolism , Animals , Humans , Hair Follicle/growth & development , Hair Follicle/metabolism , Hair Follicle/drug effects , Mice , Signal Transduction/drug effects , Cell Proliferation/drug effects , Hair/growth & development , Hair/drug effects , Hair/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Cyclin D1/metabolism , Cyclin D1/genetics , Apoptosis/drug effects , Male , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation
12.
J Invest Dermatol ; 144(6): 1223-1237.e10, 2024 Jun.
Article En | MEDLINE | ID: mdl-38159590

The Wnt/ß-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/ß-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/ß-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial ß-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/ß-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high ß-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of ß-catenin, suggesting that the level of epithelial Wnt/ß-catenin signaling activity may contribute to the choice between skin appendage identities.


Cell Differentiation , Mammary Glands, Animal , Morphogenesis , Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Mice , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/embryology , Mammary Glands, Animal/growth & development , Female , Wnt Signaling Pathway/physiology , Hair Follicle/embryology , Hair Follicle/metabolism , Hair Follicle/cytology , Hair Follicle/growth & development , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental
13.
J Cell Biol ; 223(2)2024 02 05.
Article En | MEDLINE | ID: mdl-38051393

Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.


Basement Membrane , Collagen Type IV , Extracellular Matrix , Animals , Mice , Basement Membrane/growth & development , Collagen Type IV/genetics , Collagen Type IV/metabolism , Extracellular Matrix/metabolism , Fluorescent Dyes , Hair Follicle/growth & development , Stem Cells
14.
Cells ; 11(24)2022 12 15.
Article En | MEDLINE | ID: mdl-36552830

Alopecia is a common medical condition affecting both sexes. Dermal papilla (DP) cells are the primary source of hair regeneration in alopecia patients. Therapeutic applications of extracellular vesicles (EVs) are restricted by low yields, high costs, and their time-consuming collection process. Thus, engineered nanovesicles (eNVs) have emerged as suitable therapeutic biomaterials in translational medicine. We isolated eNVs by the serial extrusion of fibroblasts (FBs) using polycarbonate membrane filters and serial and ultracentrifugation. We studied the internalization, proliferation, and migration of human DP cells in the presence and absence of FB-eNVs. The therapeutic potential of FB-eNVs was studied on ex vivo organ cultures of human hair follicles (HFs) from three human participants. FB-eNVs (2.5, 5, 7.5, and 10 µg/mL) significantly enhanced DP cell proliferation, with the maximum effect observed at 7.5 µg/mL. FB-eNVs (5 and 10 µg/mL) significantly enhanced the migration of DP cells at 36 h. Western blotting results suggested that FB-eNVs contain vascular endothelial growth factor (VEGF)-a. FB-eNV treatment increased the levels of PCNA, pAKT, pERK, and VEGF-receptor-2 (VEGFR2) in DP cells. Moreover, FB-eNVs increased the human HF shaft size in a short duration ex vivo. Altogether, FB-eNVs are promising therapeutic candidates for alopecia.


Hair Follicle , Female , Humans , Male , Alopecia/therapy , Alopecia/metabolism , Cells, Cultured , Dermis/cytology , Fibroblasts , Hair Follicle/growth & development , Vascular Endothelial Growth Factor A/metabolism , Nanoparticles , Extracellular Vesicles
15.
Biomed Pharmacother ; 150: 112996, 2022 Jun.
Article En | MEDLINE | ID: mdl-35462338

CXCL12 and its receptors, which are highly expressed in the skin, are associated with various cutaneous diseases, including androgenic alopecia. However, their expression and role during the hair cycle are unknown. This study aims to investigate the expression of CXCL12 and its receptor, CXCR4, in the vicinity of hair follicles and their effect on hair growth. CXCL12 was highly expressed in dermal fibroblasts (DFs) and its level was elevated throughout the catagen and telogen phases of the hair cycle. CXCR4 is expressed in the dermal papilla (DP) and outer root sheath (ORS). In hair organ culture, hair loss was induced by recombinant CXCL12 therapy, which delayed the telogen-to-anagen transition and decreased hair length. In contrast, the suppression of CXCL12 using a neutralizing antibody and siRNA triggered the telogen-to-anagen transition and increased hair length in hair organ culture. Neutralization of CXCR7, one of the two receptors for CXCL12, only slightly affected hair growth. However, inhibition of CXCR4, the other receptor for CXCL12, increased hair growth to a considerable extent. In addition, in hair organ culture, the conditioned medium from DFs with CXCL12 siRNA considerably increased the hair length and induced proliferation of DP and ORS cells. CXCL12, through CXCR4 activation, increased STAT3 and STAT5 phosphorylation in DP and ORS cells. In contrast, blocking CXCL12 and CXCR4 decreased the phosphorylation of STAT3 and STAT5. In summary, these findings suggest that CXCL12 inhibits hair growth via the CXCR4/STAT signaling pathway and that CXCL12/CXCR4 pathway inhibitors are a promising treatment option for hair growth.


Chemokine CXCL12 , Hair , Receptors, CXCR4 , Alopecia/metabolism , Chemokine CXCL12/metabolism , Hair/growth & development , Hair/metabolism , Hair Follicle/growth & development , Hair Follicle/metabolism , Humans , RNA, Small Interfering/metabolism , Receptors, CXCR4/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction
16.
Gene ; 820: 146257, 2022 Apr 30.
Article En | MEDLINE | ID: mdl-35143949

Hair follicle development in Tan sheep differs significantly between the birth and Er-mao periods, but the underlying molecular mechanism is still unclear. We profiled the skin transcriptomes of Tan sheep in the birth and Er-mao periods via RNA-seq technology. The Tan sheep examined consisted of three sheep in the birth period and three sheep in the Er-mao period. A total of 364 differentially expressed genes (DEGs) in the skin of Tan sheep between the birth period and the Er-mao period were identified, among which 168 were upregulated and 196 were downregulated. Interestingly, the FOS proto-oncogene (FOS) (fold change = 22.67, P value = 2.15*10^-44) was the most significantly differentially expressed gene. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the FOS gene was significantly enriched in the signaling pathway related to hair follicle development. Immunohistochemical analysis showed that the FOS gene was expressed in the skin of Chinese Tan sheep at the birth and Er-mao periods, with significantly higher expression in the Er-mao period. Our findings suggest that the FOS gene promotes hair follicle development in Tan sheep.


Hair Follicle/growth & development , Hair Follicle/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Sheep/genetics , Skin/metabolism , Transcriptome , Animals , China , Gene Expression Profiling/methods , Gene Expression Regulation , Genome , Male , Proto-Oncogene Proteins c-fos/genetics , Tissue Culture Techniques/methods
17.
Gene ; 818: 146247, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35085710

As the largest subgroup of intermediate filament proteins, keratins are divided into two types of subfamily. Currently, the molecular mechanism of keratins in several animals has been reported but is limited in yak. Here, 53 different kinds of keratins were identified in the yak genome, including 23 type I and 30 type II keratins. Bioinformatics analysis in this study revealed that multiple phosphorylation sites were identified among all the family members. And the subcellular localization of these proteins was predicted to be in the nucleus, cytoskeleton, and cytoplasm. All keratin family proteins were unstable and the scores of instability coefficient were higher than 40. Phylogenetic analysis showed that high consistency results of the sequence conservation and grouping were found in the genomes of yak, sheep, cattle, mouse, rat, and human. Based on the expression patterns obtained from the transcriptome data, keratin genes (KRTs) were grouped into five clusters, and results also showed that KRTs were highly activated in skin tissues during the hair cycle in yak. Among the five clusters, Cluster II contained the most KRTs, which was the main expression pattern of the yak hair follicle cycle, followed by Cluster III. These results indicated the transition period from telogen to anagen and catagen to telogen were highly dynamic in yak. Gene expression correlation analysis showed that KRTs exhibited a strong correlation (mainly positive correlation) throughout the hair follicle development cycle. And the identification of hub KRTs in specific modules related to hair follicle development in this study was performed using the Weight Gene Co-Expression Network Analysis (WGCNA). Specific modules that include KRTs were darkgreen (KRT40), darkgrey (KRT5), turquoise (KRT1, KRT2, KRT10), bisque4 (KRT4), thistle2 (KRT9, KRT39), and yellowgreen (KRT24). The interaction network showed that these genes were found to be related to the regulation of cell cycle, melanogenesis, hair follicle development, keratinocyte proliferation. Our study provides theoretical support for the study of the evolutionary relationship and molecular mechanism of keratin family in B. grunnien.


Cattle/genetics , Gene Expression Regulation , Genome , Keratins/genetics , Multigene Family , Amino Acid Motifs , Amino Acid Sequence , Animals , Gene Expression Profiling , Gene Regulatory Networks , Hair Follicle/growth & development , Keratins/chemistry , Phosphorylation , Phylogeny , Protein Structure, Secondary
18.
J Invest Dermatol ; 142(6): 1737-1748.e5, 2022 06.
Article En | MEDLINE | ID: mdl-34922948

Patients suffering from large scars such as burn victims not only encounter aesthetic challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles rarely regenerate within the healing wound. Because they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic hair follicle morphogenesis and are particularly involved in wound healing because they orchestrate extracellular matrix remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog signaling. In this study, we show that Hedgehog signaling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, whereas Hedgehog signaling in papillary fibroblasts is essential to induce de novo hair follicle formation within the healing wound.


Hair Follicle , Hedgehog Proteins , Regeneration , Signal Transduction , Wound Healing , Dermis/metabolism , Fibroblasts/metabolism , Hair Follicle/growth & development , Hedgehog Proteins/physiology , Humans , Quality of Life , Regeneration/physiology , Wound Healing/physiology
19.
Genes (Basel) ; 12(12)2021 11 29.
Article En | MEDLINE | ID: mdl-34946875

Hair follicle development and wool shedding in sheep are poorly understood. This study investigated the population structures and genetic differences between sheep with different wool types to identify candidate genes related to these traits. We used Illumina ovine SNP 50K chip genotyping data of 795 sheep populations comprising 27 breeds with two wool types, measuring the population differentiation index (Fst), nucleotide diversity (θπ ratio), and extended haplotype homozygosity among populations (XP-EHH) to detect the selective signatures of hair sheep and fine-wool sheep. The top 5% of the Fst and θπ ratio values, and values of XP-EHH < -2 were considered strongly selected SNP sites. Annotation showed that the PRX, SOX18, TGM3, and TCF3 genes related to hair follicle development and wool shedding were strongly selected. Our results indicated that these methods identified important genes related to hair follicle formation, epidermal differentiation, and hair follicle stem cell development, and provide a meaningful reference for further study on the molecular mechanisms of economically important traits in sheep.


Hair Follicle/growth & development , Sheep/genetics , Wool , Animals , DNA Mutational Analysis/veterinary , Genome-Wide Association Study/veterinary , Genotyping Techniques/veterinary , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Principal Component Analysis , Sheep/growth & development , Sheep, Domestic , Species Specificity , Wool/growth & development
20.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article En | MEDLINE | ID: mdl-34948002

Ever since the discoveries that human hair follicles (HFs) display the functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis, exhibit elements of the hypothalamic-pituitary-thyroid axis, and even generate melatonin and prolactin, human hair research has proven to be a treasure chest for the exploration of neurohormone functions. However, growth hormone (GH), one of the dominant neurohormones of human neuroendocrine physiology, remains to be fully explored in this context. This is interesting since it has long been appreciated clinically that excessive GH serum levels induce distinct human skin pathology. Acromegaly, or GH excess, is associated with hypertrichosis, excessive androgen-independent growth of body hair, and hirsutism in females, while dysfunctional GH receptor-mediated signaling (Laron syndrome) is associated with alopecia and prominent HF defects. The outer root sheath keratinocytes have recently been shown to express functional GH receptors. Furthermore, and contrary to its name, recombinant human GH is known to inhibit female human scalp HFs' growth ex vivo, likely via stimulating the expression of the catagen-inducing growth factor, TGF-ß2. These limited available data encourage one to systematically explore the largely uncharted role of GH in human HF biology to uncover nonclassical functions of this core neurohormone in human skin physiology.


Hair Follicle/growth & development , Human Growth Hormone/blood , Skin/metabolism , Female , Hair Follicle/metabolism , Human Growth Hormone/metabolism , Humans , Receptors, Somatotropin/metabolism
...