ABSTRACT
Persistent organic pollutants were assessed in Humboldt Penguins ( Spheniscus humboldti) from the Punta San Juan Marine Protected Area, Peru, in the austral winter of 2009. Plasma samples from 29 penguins were evaluated for 31 polychlorinated biphenyl (PCB) congeners and 11 organochlorine pesticides (OCPs) by using gas chromatography coupled to an ion trap mass spectrometer and for 15 polybrominated diphenyl ether (PBDE) congeners by using gas chromatography coupled with high-resolution mass spectrometry. The detection rate for PCBs in the samples was 69%, with congeners 105, 118, 180, and 153 most commonly detected. The maximum ΣPCB concentration was 25 ng/g. The detection rate for DDT, DDD, and/or DDE was higher than for other OCP residues (90%; maximum concentration=10 ng/g). The detection rate for PBDEs was 86%, but most concentrations were low (maximum ΣPBDE concentration=3.81 ng/g). This crucial breeding population of S. humboldti was not exposed to contaminants at levels detrimental to health and reproductive success; however, the identified concentrations of legacy and recently emerged toxicants underscore the need for temporal monitoring and diligence to protect this endangered species in the face of regional human population and industrial growth. These results also provide key reference values for spatial comparisons throughout the range of this species.
Subject(s)
Halogenated Diphenyl Ethers/blood , Hydrocarbons, Chlorinated/blood , Pesticides/blood , Polychlorinated Biphenyls/blood , Spheniscidae/blood , Water Pollutants, Chemical/blood , Animals , PeruABSTRACT
The aim of this study was to perform a polybrominated diphenyl ethers (PBDEs) exposure assessment using blood samples collected from children living in the metropolitan area of Guadalajara, Jalisco, Mexico (GDL). Five congeners of PBDEs were analyzed using a gas chromatography/mass spectrometry technique. The blood concentrations of total PBDEs ranged from 5.50 to 169 ng/g lipid (42.0 ± 18.0 ng/g lipid; mean ± standard deviation). Regarding BDE congeners, the main congener (highest blood levels) was BDE99 (14.5 ± 5.50 ng/g lipid), followed by BDE100 (9.80 ± 3.40 ng/g lipid) and BDE154 (9.80 ± 5.90 ng/g lipid), and finally BDE153 (5.80 ± 2.30 ng/g lipid) and BDE47 (2.20 ± 1.20 ng/g lipid). In conclusion, blood PBDEs concentrations of concern were detected in this study, as blood levels were similar to the ones found in North America (the highest worldwide).
Subject(s)
Environmental Pollutants/blood , Flame Retardants/analysis , Halogenated Diphenyl Ethers/blood , Child , Cities , Environmental Monitoring , Female , Humans , Male , MexicoABSTRACT
Human biomonitoring (HBM) is an appreciated tool used to evaluate human exposure to environmental, occupational or lifestyle chemicals. Therefore, the aim of this study was to evaluate the exposure levels for environmental chemicals in urine and blood samples of children from San Luis Potosí, Mexico (SLP). This study identifies environmental chemicals of concern such as: arsenic (45.0 ± 15.0 µg/g creatinine), lead (5.40 ± 2.80 µg/dL), t,t-muconic acid (266 ± 220 µg/g creatinine), 1-hydroxypyrene (0.25 ± 0.15 µmol/mol creatinine), PBDEs (28.0 ± 15.0 ng/g lipid), and PCBs (33.0 ± 16.0 ng/g lipid). On the other hand, low mercury (1.25 ± 1.00 µg/L), hippuric acid (0.38 ± 0.15 µg/g creatinine) and total DDT (130 ± 35 ng/g lipid) exposure levels were found. This preliminary study showed the tool's utility, as the general findings revealed chemicals of concern. Moreover, this screening exhibited the need for HBM in the general population of SLP.
Subject(s)
Environmental Exposure/analysis , Environmental Pollutants/metabolism , Arsenic/blood , Arsenic/urine , Child , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Environmental Pollutants/blood , Environmental Pollutants/urine , Female , Halogenated Diphenyl Ethers/blood , Halogenated Diphenyl Ethers/urine , Hippurates/blood , Hippurates/urine , Humans , Male , Mexico , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/urine , Pyrenes/blood , Pyrenes/urine , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolismABSTRACT
In the present study, trace elements and persistent organic pollutants (POPs) were quantified from Magnificent frigatebirds (Fregata magnificens) breeding at a southern Atlantic island. Stable isotope ratio of carbon (δ(13)C) and nitrogen (δ(15)N) were also measured to infer the role of foraging habitat on the contamination. For another group from the same colony, GPS tracks were recorded to identify potential foraging areas where the birds may get contaminated. Fourteen trace elements were targeted as well as a total of 40 individual POPs, including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). The concentration of Hg in the blood was up to 6 times higher in adults (5.81 ± 1.27 µg g(-1) dw.) than in nestlings (0.99 ± 0.23 µg g(-1) dw.). A similar pattern was found for POPs. ∑PCBs was the prevalent group both in adults (median 673, range 336-2801 pg g(-1) ww.) and nestlings (median 41, range 19-232 pg g(-1) ww.), followed by the sum of dichlorodiphenyltrichloroethanes and metabolites (∑DDTs), showing a median value of 220 (range 75-2342 pg g(-1) ww.) in adults and 25 (range 13-206 pg g(-1) ww.) in nestlings. The isotope data suggested that the accumulation of trace elements and POPs between adults and nestlings could be due to parental foraging in two different areas during incubation and chick rearing, respectively, or due to a shift in the feeding strategies along the breeding season. In conclusion, our work showed high Hg concentration in frigatebirds compared to non-contaminated seabird populations, while other trace elements showed lower values within the expected range in other seabird species. Finally, POP exposure was found generally lower than that previously measured in other seabird species.
Subject(s)
Birds/blood , Halogenated Diphenyl Ethers/blood , Hydrocarbons, Chlorinated/blood , Mercury/blood , Polychlorinated Biphenyls/blood , Animals , Appetitive Behavior , Environmental Monitoring , French Guiana , Pesticides/bloodABSTRACT
Studies in Mexico have demonstrated exposure to persistent organic pollutants (POPs) in people living in different sites through the country. However, studies evaluating exposure to POPs in people living in Mexico City (one of most contaminated places in the world) are scarce. Therefore, the aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) in the blood as exposure biomarkers in people living in Mexico City. A total of 123 participants (blood donors aged 20-60 years) were recruited during 2010 in Mexico City. Quantitative analyses of blood samples were performed using gas chromatography coupled with mass spectrometry. Levels of the assessed compounds ranged from non-detectable (Subject(s)
Environmental Exposure/analysis
, Environmental Pollutants/blood
, Adult
, DDT/blood
, Dichlorodiphenyl Dichloroethylene/blood
, Environmental Exposure/statistics & numerical data
, Female
, Halogenated Diphenyl Ethers/blood
, Humans
, Hydrocarbons, Chlorinated/blood
, Male
, Mexico
, Middle Aged
, Polychlorinated Biphenyls/blood
, Young Adult
ABSTRACT
Although the production and use of some persistent organic pollutants (POPs) have been banned or highly restricted, human exposure remains a subject of investigation due to their environmental persistence. Physiological changes during pregnancy may affect the disposition of POPs in the mother's body, and thus fetal exposure. Changes in serum concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) across pregnancy trimesters, and trans-placental transfer to the fetus were investigated. Seventy-nine pregnant women in Trujillo, Peru were recruited in the first trimester of pregnancy, and provided blood samples for the analysis of 35 PCB congeners, 9 OCPs, and 11 polybrominated biphenyl diethers (PBDEs). Subsequently, maternal blood samples were collected in the second (n=64) and third trimesters (n=59), and cord blood samples (n=50) were collected at delivery. There were statistically significant changes across trimesters (p<0.05) for both fresh weight (increase) and lipid adjusted concentrations (decrease) of hexachlorobenzene (HCB), 2,2-Bis(4-chlorophenyl)-1,1-dichloroethene (p,p'-DDE), PCB-74, 118, 138-158, 153, 170, 180 and 194. Fresh weight concentrations of these POPs increased from first to third trimester by 10-28%. On the other hand lipid adjusted concentrations decreased from first to third trimester by 16-28%. Serum lipids increased from first to third trimester by 53% indicating the dilution of the POPs in the lipids. Concentrations of 2,2-Bis(4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT), its metabolite p,p'-DDE, PCB-118, 138-158, 153, 170 and 180 above their limits of detection were measured in >60% of cord serum samples. Intra-individual correlations in maternal serum concentrations were high for most of the POPs (ρ=0.62-0.99; p<0.05) while correlations between maternal and cord serum concentrations were also high (ρ=0.68-0.99; p<0.05). Results indicate that the disposition in the body and blood concentrations of POPs may change during pregnancy, and show trans-placental transfer of DDT, DDE and PCBs.
Subject(s)
Environmental Pollutants/blood , Fetal Blood/chemistry , Halogenated Diphenyl Ethers/blood , Maternal Exposure , Polychlorinated Biphenyls/blood , Adolescent , Adult , Environmental Pollutants/pharmacokinetics , Female , Halogenated Diphenyl Ethers/pharmacokinetics , Humans , Maternal-Fetal Exchange , Middle Aged , Peru , Polychlorinated Biphenyls/pharmacokinetics , Pregnancy , Pregnancy Trimesters , Surveys and Questionnaires , Tissue Distribution , Young AdultABSTRACT
The purpose of this study was to measure levels of polybrominated diphenyl ethers (PBDEs) in the blood of children (50 individuals) living in Guadalajara, Jalisco, Mexico. We analyzed six PBDE congeners by gas chromatography-mass spectrometry. Total PBDE levels ranged from not detectable (nd) to 15.2 µg/L on a whole-weight basis and from nd to 6,435 ng/g lipid on a lipid-weight basis. The dominant congener in our study was BDE-153, followed by BDE-154, BDE-99, BDE-100, and BDE-47. Levels of BDE-209 were below the detection limit. Our data indicate that children living in the areas studied in this work are exposed to high levels of PBDEs.
Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Flame Retardants/metabolism , Halogenated Diphenyl Ethers/blood , Child , Environmental Exposure/analysis , Gas Chromatography-Mass Spectrometry , Humans , Mexico , Polybrominated Biphenyls/bloodABSTRACT
Here we report the first measurements of polybrominated diphenyl ethers (PBDE 47, 99, and 153) alongside 11 organochlorine pesticides (OCPs) and 28 polychlorinated biphenyls (PCBs) in the plasma of albatross from breeding colonies distributed across a large spatial east-west gradient in the North Pacific Ocean. North Pacific albatross are wide-ranging, top-level consumers that forage in pelagic regions of the North Pacific Ocean, making them an ideal sentinel species for detection and distribution of marine contaminants. Our work on contaminant burdens in albatross tissue provides information on transport of persistent organic pollutants (POPs) to the remote North Pacific and serves as a proxy for regional environmental quality. We sampled black-footed (Phoebastria nigripes; n = 20) and Laysan albatross (P. immutabilis; n = 19) nesting on Tern Island, Hawaii, USA, and Laysan albatross (n = 16) nesting on Guadalupe Island, Mexico. Our results indicate that North Pacific albatross are highly exposed to both PCBs and OCPs, with levels ranging from 8.8 to 86.9 ng/ml wet weight and 7.4 to 162.3 ng/ml wet weight, respectively. A strong significant gradient exists between Laysan albatross breeding in the Eastern Pacific, having approximately 1.5-fold and 2.5-fold higher levels for PCBs and OCPs, respectively, compared to those from the Central Pacific. Interspecies levels of contaminants within the same breeding site also showed high variation, with Tern black-footed albatross having approximately threefold higher levels of both PCBs and OCPs than Tern Laysan albatross. Surprisingly, while PBDEs are known to travel long distances and bioaccumulate in wildlife of high trophic status, we detected these three PBDE congeners only at trace levels ranging from not detectable (ND) to 0.74 ng/ml wet weight in these albatross.
Subject(s)
Birds/blood , Halogenated Diphenyl Ethers/blood , Hydrocarbons, Chlorinated/blood , Pesticide Residues/blood , Polychlorinated Biphenyls/blood , Animals , Environmental Monitoring , Environmental Pollutants/blood , Hawaii , Mexico , Pacific OceanABSTRACT
BACKGROUND: Polybrominated diphenyl ethers (PBDE), which are used as flame retardants, have been found to be higher in residents of California than of other parts of the United States. OBJECTIVES: We aimed to investigate the role of immigration to California on PBDE levels in Latino children. METHODS: We compared serum PBDE concentrations in a population of first-generation Mexican-American 7-year-old children (n = 264), who were born and raised in California [Center for Health Analysis of Mothers and Children of Salinas (CHAMACOS) study], with 5-year-old Mexican children (n = 283), who were raised in the states in Mexico where most CHAMACOS mothers had originated (Proyecto Mariposa). RESULTS: On average, PBDE serum concentrations in the California Mexican-American children were three times higher than their mothers' levels during pregnancy and seven times higher than concentrations in the children living in Mexico. The PBDE serum concentrations were higher in the Mexican-American children regardless of length of time their mother had resided in California or the duration of the child's breast-feeding. These data suggest that PBDE serum concentrations in these children resulted primarily from postnatal exposure. CONCLUSIONS: Latino children living in California have much higher PBDE serum levels than their Mexican counterparts. Given the growing evidence documenting potential health effects of PBDE exposure, the levels in young children noted in this study potentially present a major public health challenge, especially in California. In addition, as PBDEs are being phased out and replaced by other flame retardants, the health consequences of these chemical replacements should be investigated and weighed against their purported fire safety benefits.
Subject(s)
Halogenated Diphenyl Ethers/blood , California , Child , Child, Preschool , DDT/blood , Dichlorodiphenyl Dichloroethylene/blood , Female , Flame Retardants , Humans , Male , Mexican Americans , PregnancyABSTRACT
Flame retardants (FRs) constitute a group of compounds that are added to materials in order to suppress, reduce, or delay fire. At present the most used FRs are the polybrominated diphenyl ethers (PBDEs), and diverse studies have found individuals exposed to them. However, few studies have reported data in children. The objective of this report was to assess PBDEs levels in children of six communities in México. During the year 2006 we analyzed a total of 173 healthy children (aged 6-13 years old). Plasma samples were taken and quantified (gas chromatography/mass spectrometer) for PBDEs. Six PBDEs congeners (BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-209) were quantified in blood serum. We detected exposure to PBDEs in all the communities. The total PBDEs levels ranged from no detectable (nd) to 43.4 ng g(-1) lipid, the dominant PBDE congener was BDE-47, followed by BDE-100, BDE-99 and BDE-153, whereas the levels of BDE-209 were below LOD. Children living in an industrial and urban area (Cd. Juarez, Chih) had the highest levels of PBDEs, approximately two times that of children living in El Refugio, S.L.P. (a rural area) or in Milpillas, S.L.P. (municipal landfill) and 4-5 times higher than levels found in children living in San Luis Potosi, S.L.P. (urban area), in Chihuahua, Chih. (urban area), and San Juan Tilapa, Edo. Mex. (municipal landfills). Results cannot be generalized since the communities selected are not representative of the Mexican population. However, they do indicate that Mexican children are exposed to PBDEs.