Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.806
1.
Sci China Life Sci ; 67(6): 1155-1169, 2024 Jun.
Article En | MEDLINE | ID: mdl-38811441

CFIRL is a long noncoding RNA (lncRNA), we previously identified as the most significantly upregulated lncRNA in the failing hearts of patients with dilated cardiomyopathy (DCM). In this study, we determined the function of CFIRL and its role in DCM. Real-time polymerase chain reaction and in situ hybridization assays revealed that CFIRL was primarily localized in the nucleus of cardiac fibroblasts and robustly increased in failing hearts. Global knockdown or fibroblast-specific knockout of CFIRL attenuated transverse aortic constriction (TAC)-induced cardiac dysfunction and fibrosis in vivo. Overexpression of CFIRL in vitro promoted fibroblast proliferation and aggravated angiotensin II-induced differentiation to myofibroblasts. CFIRL knockdown attenuated these effects. Mechanistically, RNA pull-down assay and gene expression profiling revealed that CFIRL recruited ENO1, a newly identified noncanonical transcriptional factor, to activate IL-6 transcription. IL-6 exerted a paracrine effect on cardiomyocytes to promote cardiac hypertrophy, which can be prevented by CFIRL knockdown. These findings uncover the critical role of CFIRL, a fibroblast-associated lncRNA, in heart failure by facilitating crosstalk between fibroblasts and cardiomyocytes. CFIRL knockdown might be a potent strategy to prevent cardiac remodeling in heart failure, particularly in DCM.


Cardiomyopathy, Dilated , Fibroblasts , Fibrosis , Myocytes, Cardiac , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Animals , Fibroblasts/metabolism , Male , Humans , Myocytes, Cardiac/metabolism , Mice , Cell Proliferation , Interleukin-6/metabolism , Interleukin-6/genetics , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Myofibroblasts/metabolism , Heart Failure/genetics , Heart Failure/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Cell Differentiation , Gene Knockdown Techniques
2.
Eur J Med Res ; 29(1): 303, 2024 May 30.
Article En | MEDLINE | ID: mdl-38812041

BACKGROUND: Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS: A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS: BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS: GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.


Exosomes , Ferroptosis , Heart Failure , Mesenchymal Stem Cells , RNA, Long Noncoding , Ferroptosis/genetics , Animals , Rats , Heart Failure/metabolism , Heart Failure/therapy , Heart Failure/genetics , Mesenchymal Stem Cells/metabolism , Exosomes/metabolism , RNA, Long Noncoding/genetics , Male , Hippo Signaling Pathway , Rats, Sprague-Dawley , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Oxidative Stress , Apoptosis , Disease Models, Animal
3.
J Am Heart Assoc ; 13(11): e032201, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38780193

BACKGROUND: Pulmonary hypertension and right ventricular (RV) dysfunction are major prognostic determinants in patients with heart failure with preserved ejection fraction (HFpEF). The underlying pathomechanisms remain unknown. In this context, we sought to study the pathogenesis of pulmonary hypertension and RV dysfunction in a rat model of obesity-associated HFpEF. METHODS AND RESULTS: HFpEF was induced in obesity-prone rats fed a high-fat diet (n=13) and compared with obesity-resistant rats fed with standard chow (n=9). After 12 months, the animals underwent echocardiographic and hemodynamic evaluation followed by tissue sampling for pathobiological assessment. HFpEF rats presented mild RV pressure overload (with increased RV systolic pressure and pulmonary vascular resistance). No changes in pulmonary artery medial thickness and ex vivo vasoreactivity (to acetylcholine and endothelin-1) were observed and RNA sequencing analysis failed to identify gene clustering in HFpEF lungs. However, released nitric oxide levels were decreased in HFpEF pulmonary artery, while lung expression of preproendothelin-1 was increased. In HFpEF rats, RV structure and function were altered, with RV enlargement, decreased RV fractional area change and free wall longitudinal fractional shortening, together with altered right ventricle-pulmonary artery coupling (estimated by tricuspid annular plane systolic excursion/systolic pulmonary artery pressure). Hypertrophy and apoptosis (evaluated by transferase biotin- dUTP nick-end labeling staining) were increased in right and left ventricles of HFpEF rats. There was an inverse correlation between tricuspid annular plane systolic excursion/systolic pulmonary artery pressure and RV apoptotic rate. Plasma levels of soluble suppression of tumorigenicity-2, interleukin-1ß, -6 and -17A were increased in HFpEF rats. CONCLUSIONS: Obesity-associated HFpEF in rats spontaneously evolves to pulmonary hypertension-HFpEF associated with impaired right ventricle-pulmonary artery coupling that appears disproportionate to a slight increase in RV afterload.


Disease Models, Animal , Heart Failure , Pulmonary Artery , Stroke Volume , Ventricular Dysfunction, Right , Ventricular Function, Right , Animals , Heart Failure/physiopathology , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/genetics , Pulmonary Artery/physiopathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Stroke Volume/physiology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/genetics , Male , Ventricular Function, Right/physiology , Rats , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/metabolism , Heart Ventricles/pathology , Obesity/physiopathology , Obesity/complications , Obesity/metabolism , Diet, High-Fat
4.
Sci Rep ; 14(1): 10645, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724583

Dyslipidaemias is the leading risk factor of several major cardiovascular diseases (CVDs), but there is still a lack of sufficient evidence supporting a causal role of lipoprotein subspecies in CVDs. In this study, we comprehensively investigated several lipoproteins and their subspecies, as well as other metabolites, in relation to coronary heart disease (CHD), heart failure (HF) and ischemic stroke (IS) longitudinally and by Mendelian randomization (MR) leveraging NMR-measured metabolomic data from 118,012 UK Biobank participants. We found that 123, 110 and 36 analytes were longitudinally associated with myocardial infarction, HF and IS (FDR < 0.05), respectively, and 25 of those were associated with all three outcomes. MR analysis suggested that genetically predicted levels of 70, 58 and 7 analytes were associated with CHD, HF and IS (FDR < 0.05), respectively. Two analytes, ApoB/ApoA1 and M-HDL-C were associated with all three CVD outcomes in the MR analyses, and the results for M-HDL-C were concordant in both observational and MR analyses. Our results implied that the apoB/apoA1 ratio and cholesterol in medium size HDL were particularly of importance to understand the shared pathophysiology of CHD, HF and IS and thus should be further investigated for the prevention of all three CVDs.


Cardiovascular Diseases , Mendelian Randomization Analysis , Humans , Cardiovascular Diseases/genetics , Male , Female , Risk Factors , Middle Aged , Magnetic Resonance Spectroscopy/methods , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Aged , Cholesterol, HDL/blood , Coronary Disease/genetics , Metabolomics/methods , Apolipoprotein B-100/genetics , Ischemic Stroke/genetics , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Heart Failure/genetics
5.
Funct Integr Genomics ; 24(3): 102, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760573

Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.


Biomarkers , Exosomes , Heart Failure , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Heart Failure/genetics , Heart Failure/metabolism , Biomarkers/metabolism , Exosomes/metabolism , Exosomes/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism
6.
BMC Mol Cell Biol ; 25(1): 16, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750444

BACKGROUND: Oxidative stress is implicated in the pathogenesis of heart failure. Dual oxidase 1 (DUOX1) might be important in heart failure development through its mediating role in oxidative stress. This study was designed to evaluate the potential role of DUOX1 in heart failure. MATERIALS AND METHODS: AC16 cells were treated with 2 µmol/L of doxorubicin (DOX) for 12, 24, and 48 h to construct a heart failure model. DUOX1 overexpression and silencing in AC16 cell were established. DUOX1 expression was detected by Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Pyroptosis and reactive oxygen species (ROS) production were measured by flow cytometry. RESULTS: Increased DUOX1 expression levels were observed after DOX treatment for 24 h in AC16 cells. DUOX1 silencing inhibited DOX-induced pyroptosis and ROS production. The release of IL-1ß, IL-18, and lactate dehydrogenase (LDH), and expression levels of pyroptosis-related proteins were also decreased. DUOX1 overexpression increased pyroptosis, ROS production, IL-1ß, IL-18, and LDH release, and pyroptosis-related protein expression. N-acetyl-cysteine (NAC) significantly reversed DUOX1-induced pyroptosis, ROS, and related factors. CONCLUSION: These results suggest that DUOX1-derived genotoxicity could promote heart failure development. In the process, oxidative stress and pyroptosis may be involved in the regulation of DUOX1 in heart failure.


Caspase 1 , Doxorubicin , Dual Oxidases , Heart Failure , Oxidative Stress , Pyroptosis , Reactive Oxygen Species , Up-Regulation , Heart Failure/metabolism , Heart Failure/genetics , Dual Oxidases/metabolism , Dual Oxidases/genetics , Reactive Oxygen Species/metabolism , Humans , Doxorubicin/pharmacology , Caspase 1/metabolism , Cell Line , Interleukin-18/metabolism , Interleukin-1beta/metabolism
7.
J Am Heart Assoc ; 13(10): e033565, 2024 May 21.
Article En | MEDLINE | ID: mdl-38757491

BACKGROUND: The genetic basis of hypertrophic cardiomyopathy (HCM) is complex, and the relationship between genotype status and clinical outcome is incompletely resolved. METHODS AND RESULTS: We assessed a large international HCM cohort to define in contemporary terms natural history and clinical consequences of genotype. Consecutive patients (n=1468) with established HCM diagnosis underwent genetic testing. Patients with pathogenic (or likely pathogenic) variants were considered genotype positive (G+; n=312; 21%); those without definite disease-causing mutations (n=651; 44%) or variants of uncertain significance (n=505; 35%) were considered genotype negative (G-). Patients were followed up for a median of 7.8 years (interquartile range, 3.5-13.4 years); HCM end points were examined by cumulative event incidence. Over follow-up, 135 (9%) patients died, 33 from a variety of HCM-related causes. After adjusting for age, all-cause and HCM-related mortality did not differ between G- versus G+ patients (hazard ratio [HR], 0.78 [95% CI, 0.46-1.31]; P=0.37; HR, 0.93 [95% CI, 0.38-2.30]; P=0.87, respectively). Adverse event rates, including heart failure progression to class III/IV, heart transplant, or heart failure death, did not differ (G- versus G+) when adjusted for age (HR, 1.20 [95% CI, 0.63-2.26]; P=0.58), nor was genotype independently associated with sudden death event risk (HR, 1.39 [95% CI, 0.88-2.21]; P=0.16). In multivariable analysis, age was the only independent predictor of all-cause and HCM-related mortality, heart failure progression, and sudden death events. CONCLUSIONS: In this large consecutive cohort of patients with HCM, genotype (G+ or G-) was not a predictor of clinical course, including all-cause and HCM-related mortality and risk for heart failure progression or sudden death. G+ status should not be used to dictate clinical management or predict outcome in HCM.


Cardiomyopathy, Hypertrophic , Genotype , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/mortality , Cardiomyopathy, Hypertrophic/diagnosis , Male , Female , Middle Aged , Adult , Mutation , Phenotype , Disease Progression , Risk Factors , Genetic Predisposition to Disease , Aged , Genetic Testing/methods , Prognosis , Time Factors , Heart Failure/genetics , Heart Failure/mortality , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/epidemiology , Heart Transplantation
8.
Medicine (Baltimore) ; 103(20): e38175, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758877

Varicose veins and heart failure (HF) are increasingly prevalent. Although numbers of observational studies have indicated that varicose veins might contribute to the risk of HF, the causal relationship between them remains unclear due to the uncontrolled confounding factors and reverse causation bias. Therefore, this study aimed to explore the potential causal relationship between varicose veins and HF. Based on publicly released genome-wide association studies (GWAS), gene correlation was assessed using linkage disequilibrium score (LDSC) regression, and we conducted a two-sample Mendelian randomization (TSMR) analysis to infer the causal relationship. We performed the Inverse variance weighted (IVW) method as the primary analysis, and used Weighted median, MR-Egger, weighted mode, simple mode, and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods to detect and correct for horizontal pleiotropy. LDSC revealed there was a positive genetic correlation between varicose veins and HF (rg = 0.1726184, Se = 0.04511803, P = .0001). The results of the IVW method indicated that genetically predicted varicose veins were associated with an increased risk of HF (odds ratio (OR) = 1.03; 95% confidence interval (CI): 1.01-1.06; P = .009). Our findings illustrated the significant causal effect of varicose veins on HF, suggesting that people with varicose veins might have a higher risk of HF. The results provided a novel and important perspective into the development mechanism of HF.


Genome-Wide Association Study , Heart Failure , Mendelian Randomization Analysis , Varicose Veins , Humans , Varicose Veins/genetics , Varicose Veins/epidemiology , Mendelian Randomization Analysis/methods , Heart Failure/genetics , Heart Failure/epidemiology , Polymorphism, Single Nucleotide , Linkage Disequilibrium , Genetic Predisposition to Disease
9.
J Cardiothorac Surg ; 19(1): 271, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702771

BACKGROUND: MicroRNA-200b-3p (miR-200b-3p) plays a pivotal role in inflammatory responses and is implicated in various inflammatory disorders. In this study, we aim to explore the role of miR-200b-3p in the inflammatory response in heart failure (HF). METHODS: Patients diagnosed with heart failure and age-matched healthy controls were studied. Peripheral blood samples from participants were collected for RNA-seq analysis to explore the expression profile of miR-200b-3p. The predictive value of miR-200b-3p and ZEB1 in the prognosis of heart failure was evaluated by analyzing the receiver operating characteristic (ROC) curve. Bioinformatics analysis and double luciferase reporter gene analysis were used to confirm the interaction between miR-200b-3p and ZEB1. Real-time quantitative polymerase chain reaction (QRT-PCR) was used to detect the expression levels of miR-200b-3p and ZEB1 in cardiopulmonary bypass. Additionally, the effects of miR-200b-3p on myocardial cell line (H9c2) injury were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS: In the extracardiac circulation of HF patients, miR-200b-3p expression was significantly reduced, while ZEB1 levels were notably elevated. Analysis of the ROC curve revealed that miR-200b-3p and ZEB1 have predictive value in the prognosis of HF patients. The double luciferase reporter experiment demonstrated that miR-200b-3p binds to ZEB1 and inhibits its expression. Overexpression of miR-200b-3p demonstrated a remarkable ability to alleviate inflammation and inhibit the damage to myocardial cells in vivo. CONCLUSION: MiR-200b-3p can target and inhibit ZEB1, reducing the inflammatory reaction of myocardial cells. The miR-200b-3p/ZEB1 network may be helpful in preventing and treating HF.


Heart Failure , Inflammation , MicroRNAs , Zinc Finger E-box-Binding Homeobox 1 , Humans , Zinc Finger E-box-Binding Homeobox 1/genetics , MicroRNAs/genetics , Heart Failure/genetics , Male , Inflammation/genetics , Inflammation/metabolism , Female , Middle Aged , Gene Expression Regulation
10.
PLoS One ; 19(5): e0301112, 2024.
Article En | MEDLINE | ID: mdl-38771893

BACKGROUND: Previous studies revealed that sleep disorders are potential risk factors for cardiovascular diseases, such as obstructive sleep apnea and rapid eye movement (REM) sleep behavior disorder (RBD). However, the causal associations between RBD and cardiovascular diseases remained unknown. MATERIALS AND METHODS: We used the latest and largest summary-level genome-wide association studies of RBD, stroke and its subtypes, coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF) to select genetic variants as the instrumental variables. Mendelian randomization (MR) analysis was performed to test the causal associations between RBD and the cardiovascular diseases above. Inverse variance weighted method was used as the main analysis. RESULTS: After multiple comparisons, genetically predicted RBD was significantly associated with the risk of HF [odds ratio (OR) = 1.033, 95% CI 1.013-1.052, p = 0.001]. Leave-one-out analysis further supported the robustness of the causal association. Furthermore, we identified a suggestive association between genetically predicted MI and RBD (OR = 0.716, 95% CI 0.546-0.940, p = 0.016). However, in our study no associations were identified of RBD with CAD or stroke and its subtypes. CONCLUSION: Our study highlighted the potential associations between RBD and cardiovascular diseases at genetic level, including HF and MI. More studies were required to clarify the biological mechanisms involved the associations.


Cardiovascular Diseases , Genome-Wide Association Study , Mendelian Randomization Analysis , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/genetics , Cardiovascular Diseases/genetics , Myocardial Infarction/genetics , Risk Factors , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Heart Failure/genetics , Stroke/genetics
11.
J Tradit Chin Med ; 44(3): 448-457, 2024 Jun.
Article En | MEDLINE | ID: mdl-38767628

OBJECTIVE: Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.


Drug Combinations , Drugs, Chinese Herbal , Fibrosis , Heart Failure , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/administration & dosage , Rats , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/etiology , Male , Fibrosis/drug therapy , Humans , Myocardium/metabolism , Myocardium/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Signal Transduction/drug effects , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/metabolism
13.
PLoS One ; 19(5): e0304379, 2024.
Article En | MEDLINE | ID: mdl-38809848

OBJECTIVE: To determine whether a bidirectional causal relationship exists between major depressive disorder (MDD) and heart failure (HF). METHODS: Our two-sample bidirectional Mendelian randomization (MR) study consisted of two parts. In the first part, we conducted a forward MR analysis where MDD was considered as the exposure and HF as the outcome. In the second part, a reverse MR analysis was performed, treating HF as the exposure and MDD as the outcome. Summary data on MDD and HF were obtained from the IEU Open GWAS database. RESULTS: Based on the results of the MR-Egger regression intercept test, there was no evidence of horizontal pleiotropy in this study. Furthermore, the IVW results consistently suggested estimates of causal effect values. The findings revealed that individuals with MDD had a 16.9% increased risk of HF compared to those without MDD (OR = 1.169, 95%CI: 1.044-1.308, P = 0.007). However, there was no evidence to support that HF would increase the risk of MDD (OR = 1.012, 95%CI: 0.932-1.099, P = 0.773). Heterogeneity in SNPs of MDD and HF was observed through the heterogeneity test and funnel plot. Additionally, the leave-one-out method did not identify any instances where a single SNP was biased toward or dependent on causation. CONCLUSION: Our study provides evidence supporting a one-way causal relationship between MDD and HF. Specifically, MDD increases the risk of developing HF. However, our findings did not provide any evidence suggesting that HF increases the risk of developing MDD.


Depressive Disorder, Major , Heart Failure , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Humans , Depressive Disorder, Major/genetics , Heart Failure/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Risk Factors
14.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Article En | MEDLINE | ID: mdl-38782919

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


DEAD-box RNA Helicases , Heart Failure , Myocytes, Cardiac , Animals , Humans , Mice , Apoptosis/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Dynamins/genetics , Dynamins/metabolism , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/metabolism , Homeostasis/genetics , Mice, Knockout , Mice, Transgenic , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism
15.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791190

Heart failure with preserved ejection fraction (HFpEF) is more prevalent in post- compared to pre-menopausal women. The underlying mechanisms are not fully understood. Data in humans is confounded by age and co-morbidities. We investigated the effects of ovariectomy and estrogen replacement on the left ventricular (LV) gene expression of pro-inflammatory and pro-fibrotic factors involved in HFpEF and putative regulating miRNAs. Nine-week-old C57BL/6 female mice were subjected to ovariectomy (OVX) or SHAM operation. OVX and SHAM groups were sacrificed 1-, 6-, and 12-weeks post-surgery (T1/SHAM; T1/OVX; T6/SHAM; T6/OVX, T12/SHAM). 17ß-estradiol (E2) or vehicle (VEH) was then administered to the OVX groups for 6 weeks (T12/OVX/E2; T12/OVX/VEH). Another SHAM group was sacrificed 12-weeks post-surgery. RNA and miRNAs were extracted from the LV apex. An early 3-fold increase in the gene expression of IL-1α, IL-6, Mmp9, Mmp12, Col1α1, and Col3α1 was observed one-week post-surgery in T1/OVX vs. T1/SHAM, but not at later time points. miRNA-26a was lower in T1/OVX vs. T1/SHAM and was inversely correlated with Col1α1 and Col3α1 expression 1-week post-surgery (r = -0.79 p < 0.001; r = -0.6 p = 0.007). miRNAs-26a, 29b, and 133a were significantly higher, while Col1α1, Col3α1, IL-1α, IL-6, Tnfα, Mmp12, and FasL gene expression was significantly lower in E2- compared to vehicle-treated OVX mice. miRNA-26a was inversely correlated with Col3α1 in T12/OVX/ E2 (r = -0.56 p = 0.02). OVX triggered an early increase in the gene expression of pro-inflammatory and pro-fibrotic factors, highlighting the importance of the early phase post-cessation of ovarian function. E2 replacement therapy, even if it was not immediately initiated after OVX, reversed these unfavorable changes and upregulated cardiac miRNA-26a, previously unknown to be affected by menopausal status.


Collagen Type I , Estradiol , Heart Ventricles , Mice, Inbred C57BL , MicroRNAs , Ovariectomy , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Estradiol/pharmacology , Mice , Collagen Type I/genetics , Collagen Type I/metabolism , Heart Ventricles/metabolism , Heart Ventricles/drug effects , Collagen Type III/genetics , Collagen Type III/metabolism , Gene Expression Regulation/drug effects , Down-Regulation/drug effects , Heart Failure/genetics , Heart Failure/metabolism , Collagen Type I, alpha 1 Chain/metabolism , Up-Regulation/drug effects , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Estrogen Replacement Therapy
16.
Cardiovasc Diabetol ; 23(1): 118, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566143

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are increasingly recognized for their role in reducing the risk and improving the prognosis of heart failure (HF). However, the precise mechanisms involved remain to be fully delineated. Evidence points to their potential anti-inflammatory pathway in mitigating the risk of HF. METHODS: A two-sample, two-step Mendelian Randomization (MR) approach was employed to assess the correlation between SGLT-2 inhibition and HF, along with the mediating effects of inflammatory biomarkers in this relationship. MR is an analytical methodology that leverages single nucleotide polymorphisms as instrumental variables to infer potential causal inferences between exposures and outcomes within observational data frameworks. Genetic variants correlated with the expression of the SLC5A2 gene and glycated hemoglobin levels (HbA1c) were selected using datasets from the Genotype-Tissue Expression project and the eQTLGen consortium. The Genome-wide association study (GWAS) data for 92 inflammatory biomarkers were obtained from two datasets, which included 14,824 and 575,531 individuals of European ancestry, respectively. GWAS data for HF was derived from a meta-analysis that combined 26 cohorts, including 47,309 HF cases and 930,014 controls. Odds ratios (ORs) and 95% confidence interval (CI) for HF were calculated per 1 unit change of HbA1c. RESULTS: Genetically predicted SGLT-2 inhibition was associated with a reduced risk of HF (OR 0.42 [95% CI 0.30-0.59], P < 0.0001). Of the 92 inflammatory biomarkers studied, two inflammatory biomarkers (C-X-C motif chemokine ligand 10 [CXCL10] and leukemia inhibitory factor) were associated with both SGLT-2 inhibition and HF. Multivariable MR analysis revealed that CXCL10 was the primary inflammatory cytokine related to HF (MIP = 0.861, MACE = 0.224, FDR-adjusted P = 0.0844). The effect of SGLT-2 inhibition on HF was mediated by CXCL10 by 17.85% of the total effect (95% CI [3.03%-32.68%], P = 0.0183). CONCLUSIONS: This study provides genetic evidence supporting the anti-inflammatory effects of SGLT-2 inhibitors and their beneficial impact in reducing the risk of HF. CXCL10 emerged as a potential mediator, offering a novel intervention pathway for HF treatment.


Genome-Wide Association Study , Heart Failure , Humans , Glycated Hemoglobin , Mendelian Randomization Analysis , Inflammation/diagnosis , Inflammation/drug therapy , Inflammation/genetics , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/genetics , Anti-Inflammatory Agents , Biomarkers , Glucose , Sodium
17.
Gigascience ; 132024 Jan 02.
Article En | MEDLINE | ID: mdl-38573186

BACKGROUND: Cardiovascular research heavily relies on mouse (Mus musculus) models to study disease mechanisms and to test novel biomarkers and medications. Yet, applying these results to patients remains a major challenge and often results in noneffective drugs. Therefore, it is an open challenge of translational science to develop models with high similarities and predictive value. This requires a comparison of disease models in mice with diseased tissue derived from humans. RESULTS: To compare the transcriptional signatures at single-cell resolution, we implemented an integration pipeline called OrthoIntegrate, which uniquely assigns orthologs and therewith merges single-cell RNA sequencing (scRNA-seq) RNA of different species. The pipeline has been designed to be as easy to use and is fully integrable in the standard Seurat workflow.We applied OrthoIntegrate on scRNA-seq from cardiac tissue of heart failure patients with reduced ejection fraction (HFrEF) and scRNA-seq from the mice after chronic infarction, which is a commonly used mouse model to mimic HFrEF. We discovered shared and distinct regulatory pathways between human HFrEF patients and the corresponding mouse model. Overall, 54% of genes were commonly regulated, including major changes in cardiomyocyte energy metabolism. However, several regulatory pathways (e.g., angiogenesis) were specifically regulated in humans. CONCLUSIONS: The demonstration of unique pathways occurring in humans indicates limitations on the comparability between mice models and human HFrEF and shows that results from the mice model should be validated carefully. OrthoIntegrate is publicly accessible (https://github.com/MarianoRuzJurado/OrthoIntegrate) and can be used to integrate other large datasets to provide a general comparison of models with patient data.


Heart Failure , Humans , Animals , Mice , Heart Failure/genetics , Transcriptome , Stroke Volume , Energy Metabolism , RNA
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 321-324, 2024 Mar 15.
Article Zh | MEDLINE | ID: mdl-38557387

The male patient, one day old, was admitted to the hospital due to hypoglycemia accompanied by apnea appearing six hours after birth. The patient had transient hypoglycemia early after birth, and acute heart failure suddenly occurred on the eighth day after birth. Laboratory tests showed significantly reduced levels of adrenocorticotropic hormone and cortisol, and pituitary magnetic resonance imaging was normal. Genetic testing results showed that the patient had probably pathogenic compound heterozygous mutations of the TBX19 gene (c.917-2A>G+c.608C>T), inherited respectively from the parents. The patient was conclusively diagnosed with congenital isolated adrenocorticotropic hormone deficiency caused by mutation of the TBX19 gene. Upon initiating hydrocortisone replacement therapy, cardiac function rapidly returned to normal. After being discharged, the patient continued with the hydrocortisone replacement therapy. By the 18-month follow-up, the patient was growing and developing well. In neonates, unexplained acute heart failure requires caution for possible endocrine hereditary metabolic diseases, and timely cortisol testing and genetic testing should be conducted.


Adrenal Insufficiency , Heart Failure , Hypoglycemia , Infant, Newborn , Humans , Male , Hydrocortisone/therapeutic use , Hypoglycemia/etiology , Adrenal Insufficiency/congenital , Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/genetics , Heart Failure/etiology , Heart Failure/genetics , Adrenocorticotropic Hormone
20.
Sci Rep ; 14(1): 8128, 2024 04 07.
Article En | MEDLINE | ID: mdl-38584196

Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA ß-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA ß oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.


ARNTL Transcription Factors , Heart Failure , Rats , Animals , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Monocrotaline , Health Expenditures , Interleukin-6/metabolism , Rats, Wistar , Circadian Rhythm/genetics , Adipose Tissue, Brown/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Lipase/metabolism , RNA, Small Interfering/metabolism , Lipids
...