Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Sci Rep ; 14(1): 23224, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39369029

ABSTRACT

Loop-Mediated Isothermal Amplification (LAMP) represents a valuable technique for DNA/RNA detection, known for its exceptional sensitivity, specificity, speed, accuracy, and affordability. This study focused on optimizing a LAMP-based method to detect early signs of Plasmopara halstedii, the casual pathogen of sunflower downy mildew, a severe threat to sunflower crops. Specifically, a set of six LAMP primers (two outer, two inner, and two loop) were designed from P. halstedii genomic DNA, targeting the ribosomal Large Subunit (LSU). These primers were verified by in silico analysis and experimental validation using both target and non-target species' DNAs. Optimizations encompassing reaction conditions (temperature, time) and component concentrations (magnesium, Bst DNA polymerase, primers, and dNTP) were determined. Validation of these optimizations was performed by agarose gel electrophoresis. Furthermore, various colorimetric chemicals (Neutral Red, Hydroxynaphthol Blue, SYBR Safe, Thiazole Green) were evaluated to facilitate method analysis, and the real-time analysis has been optimized, presenting multiple approaches for detecting sunflower downy mildew using the LAMP technique. The analytical sensitivity of the method was confirmed by detecting P. halstedii DNA concentrations as low as 0.5 pg/µl. This pioneering study, establishing P. halstedii detection through the LAMP method, stands as unique in its field. The precision, robustness, and practicality of the LAMP protocol make it an ideal choice for studies focusing on sunflower mildew, emphasizing its recommended use due to its operational ease and reliability.


Subject(s)
Helianthus , Nucleic Acid Amplification Techniques , Plant Diseases , Nucleic Acid Amplification Techniques/methods , Plant Diseases/microbiology , Helianthus/microbiology , Molecular Diagnostic Techniques/methods , DNA Primers/genetics , Oomycetes/genetics , Sensitivity and Specificity
2.
Curr Microbiol ; 81(10): 331, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198293

ABSTRACT

Applying organic manure to crops positively impacts the soil microbial community which is negatively impacted when chemical fertilizers are used. Organic manures also add new microbes to the soil in addition to influencing the growth of native ones. Metagenomic analysis of different organic manures, soil, and pot culture experiments conducted under various fertilizer conditions constitute the primary methodologies employed in this study. We compared the effect of two organic manure combinations and an inorganic fertilizer combination on microbial community of rhizosphere soil and leaves of sunflower plants. Metagenomic sequencing data analysis revealed that the diversity of bacteria and fungi is higher in organic manure than in chemical fertilizers. Each organic manure combination selectively increased population of some specific microbes and supported new microbes. Application of chemical fertilizer hurts many plant beneficial fungi and bacteria. In summary, our study points out the superiority of organic manure combinations in enhancing microbial diversity and supporting beneficial microbes. These findings enhance the profound influence of fertilizer types on sunflower microbial communities, shedding light on the intricate dynamics within the rhizosphere and leaf microbiome. Bacterial genera such as Bacillus, Serratia, Sphingomonas, Pseudomonas, Methylobacterium, Acinetobacter, Stenotrophomonas, and fungal genera such as Wallemia, Aspergillus, Cladosporium, and Penicillium constitute the key microbes of sunflower plants.


Subject(s)
Bacteria , Fertilizers , Fungi , Helianthus , Manure , Plant Leaves , Rhizosphere , Soil Microbiology , Fertilizers/analysis , Helianthus/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Plant Leaves/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Manure/microbiology , Microbiota , Biodiversity , Metagenomics
3.
PLoS One ; 19(5): e0298299, 2024.
Article in English | MEDLINE | ID: mdl-38722945

ABSTRACT

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Subject(s)
Agrobacterium tumefaciens , Helianthus , Plants, Genetically Modified , Transformation, Genetic , Helianthus/genetics , Helianthus/microbiology , Helianthus/growth & development , Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Tissue Culture Techniques/methods , Plant Roots/microbiology , Plant Roots/genetics , Plant Roots/growth & development , Plant Breeding/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development
4.
BMC Genom Data ; 25(1): 39, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693490

ABSTRACT

BACKGROUND: Sunflower (Helianthus annuus) is one of the most important economic crops in oilseed production worldwide. The different cultivars exhibit variability in their resistance genes. The NAC transcription factor (TF) family plays diverse roles in plant development and stress responses. With the completion of the H. annuus genome sequence, the entire complement of genes coding for NACs has been identified. However, the reference genome of a single individual cannot cover all the genetic information of the species. RESULTS: Considering only a single reference genome to study gene families will miss many meaningful genes. A pangenome-wide survey and characterization of the NAC genes in sunflower species were conducted. In total, 139 HaNAC genes are identified, of which 114 are core and 25 are variable. Phylogenetic analysis of sunflower NAC proteins categorizes these proteins into 16 subgroups. 138 HaNACs are randomly distributed on 17 chromosomes. SNP-based haplotype analysis shows haplotype diversity of the HaNAC genes in wild accessions is richer than in landraces and modern cultivars. Ten HaNAC genes in the basal stalk rot (BSR) resistance quantitative trait loci (QTL) are found. A total of 26 HaNAC genes are differentially expressed in response to Sclerotinia head rot (SHR). A total of 137 HaNAC genes are annotated in Gene Ontology (GO) and are classified into 24 functional groups. GO functional enrichment analysis reveals that HaNAC genes are involved in various functions of the biological process. CONCLUSIONS: We identified NAC genes in H. annuus (HaNAC) on a pangenome-wide scale and analyzed S. sclerotiorum resistance-related NACs. This study provided a theoretical basis for further genomic improvement targeting resistance-related NAC genes in sunflowers.


Subject(s)
Ascomycota , Disease Resistance , Helianthus , Phylogeny , Plant Diseases , Helianthus/genetics , Helianthus/microbiology , Ascomycota/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Transcription Factors/genetics , Genome, Plant , Multigene Family/genetics , Genes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Haplotypes/genetics
5.
Plant Dis ; 108(9): 2795-2808, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38687575

ABSTRACT

This study aimed to investigate the Diaporthe species associated with Phomopsis stem canker of sunflower (Helianthus annuus L.) in Serbia. The significant increase in sunflower and soybean (Glycine max [L.] Merr.) cultivation may have created the bridge favorable conditions for the distribution of Diaporthe species in this region. The present study identified five Diaporthe species on sunflower: D. gulyae, D. helianthi, D. pseudolongicolla, D. stewartii, and the newly identified D. riccionae based on morphological, molecular, and pathogenic characteristics. The research emphasizes the importance of effective inoculation methods and evaluates the aggressiveness of isolates. Sunflower plants were inoculated using the stem wound method, while seeds of sunflower and soybean were inoculated using the standard seed method. Most of the tested isolates demonstrated high aggressiveness, resulting in more than 80% premature wilting of sunflower plants. Additionally, this research examined the aggressiveness of Diaporthe species on sunflower seeds, highlighting D. stewartii and D. pseudolongicolla as common pathogens of both sunflower and soybean. The most aggressive species on seeds was D. stewartii, causing seed decay of up to 100% in sunflower and 97% in soybean. The findings suggest the development of resilient sunflower genotypes through breeding programs and the implementation of strategies to manage cross-contamination risks between sunflower and soybean crops. Furthermore, this study provides insights into the interactions between Diaporthe species and the seeds of sunflower and soybean. Future research will enhance our understanding of the impact of Diaporthe species on sunflower and soybean.


Subject(s)
Ascomycota , Helianthus , Plant Diseases , Helianthus/microbiology , Serbia , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/physiology , Ascomycota/classification , Glycine max/microbiology , Seeds/microbiology , Phylogeny
6.
Plant Dis ; 108(7): 2017-2026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38301222

ABSTRACT

Phoma black stem (PBS), caused by Phoma macdonaldii Boerema (teleomorph Leptosphaeria lindquistii Frezzi), is the most common stem disease of sunflower (Helianthus annuus L.) in the northern Great Plains region of the United States. However, the impact of PBS on sunflower yield in the United States is unclear, and a near complete absence of information on the impact of fungicides on disease management exists. The objectives of this study were to determine the impact of PBS on sunflower yield, the efficacy of available fungicides, the optimal fungicide application timing, and the economic viability of fungicides as a management tool. Fungicide timing efficacy was evaluated by applying single and/or sequential applications of pyraclostrobin fungicide at three sunflower growth stages in 10 field trials between 2017 and 2019. Efficacy of 10 fungicides from the Fungicide Resistance Action Committee (FRAC) groups 3, 7, and 11 were evaluated in four field trials between 2018 and 2019. The impact of treatments on PBS were evaluated by determination of incidence, severity, maximum lesion height, disease severity index (DSI), and harvested yield. Nine of the 10 fungicides evaluated and all fungicide timings that included an early bud application resulted in disease reductions when compared with the nontreated controls. The DSI was negatively correlated to sunflower yield in high-yield environments (P = 0.0004; R2 = 0.3425) but not in low- or moderate-yield environments. Although FRAC 7 fungicides were generally most efficacious, the sufficient efficacy and lower cost of FRAC 11 fungicides make them more economically viable in high-yielding environments at current market conditions.


Subject(s)
Ascomycota , Fungicides, Industrial , Helianthus , Plant Diseases , Fungicides, Industrial/pharmacology , Helianthus/drug effects , Helianthus/microbiology , Ascomycota/drug effects , Ascomycota/physiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , United States , Plant Stems/microbiology , Strobilurins/pharmacology , Time Factors
7.
Plant Dis ; 108(6): 1740-1749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38219009

ABSTRACT

Phomopsis stem canker of cultivated sunflower (Helianthus annuus L.) can be caused by multiple necrotrophic fungi in the genus Diaporthe, with Diaporthe helianthi and D. gulyae being the most common causal agents in the United States. Infection begins at the leaf margins and proceeds primarily through the vasculature, progressing from the leaf through the petiole to the stem, resulting in formation of brown stem lesions centered around the petiole. Sunflower resistance to Phomopsis stem canker is quantitative and genetically complex. Due to the intricate disease process, resistance is possible at different stages of infection, and multiple forms of defense may contribute to the overall level of quantitative resistance. In this study, sunflower lines exhibiting field resistance to Phomopsis stem canker were evaluated for stem and leaf resistance to multiple isolates of D. helianthi and D. gulyae in greenhouse experiments, and responses to the two species were compared. Additionally, selected resistant and susceptible lines were evaluated for petiole transmission resistance to D. helianthi. Lines with distinct forms of resistance were identified, and results indicated that responses to stem inoculation were strongly correlated (Spearman's coefficient 0.598, P < 0.001) for the two fungal species, while leaf responses were not (Spearman's coefficient 0.396, P = 0.076). These results provide a basis for genetic dissection of distinct forms of sunflower resistance to Phomopsis stem canker and will facilitate combining different forms of resistance to potentially achieve durable control of this disease in sunflower hybrids.


Subject(s)
Helianthus , Phomopsis , Plant Diseases , Helianthus/microbiology , Helianthus/physiology , Plant Diseases/microbiology , Plant Stems/microbiology , Disease Resistance
8.
Plant Dis ; 108(2): 264-269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37642546

ABSTRACT

Leaf mottle is a serious disease in the common sunflower (Helianthus annuus L.), which affects plant growth and development and seed quality and yield. Over the past few years, the North Kazakhstan region, a sunflower-producing area in Kazakhstan, has been seriously affected by leaf mottle. Since 2021, symptomatic leaves have been collected from production areas of this base to determine the pathogens causing sunflower foliar diseases. One hundred bacterial strains were isolated, and two genera and five species were identified based on morphological characteristics, molecular genetics, and phylogenetic analysis (16S gene region). The genus Bacillus was represented by four species: Bacillus subtilis, B. megaterium, B. amyloliquefaciens, and B. flexus. The genus Paenibacillus was represented by one species, P. peoriae. Pathogenicity experiments showed that B. subtilis, B. megaterium, B. flexus, and P. peoriae could cause leaf mottle disease symptoms. However, disease symptoms caused by B. flexus were highly similar to those observed on infected leaves under natural conditions in the field. Therefore, these bacterial isolates were found to be the primary pathogens causing sunflower leaf mottle, and B. flexus was the most common and virulent pathogen in this study. In addition, this is the first report of B. megaterium, B. flexus, and P. peoriae as pathogens associated with sunflower leaf mottle in Kazakhstan.


Subject(s)
Helianthus , Helianthus/microbiology , Phylogeny , Kazakhstan , Bacteria/genetics , Plant Leaves/genetics
9.
Plant J ; 115(2): 480-493, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37029526

ABSTRACT

Rust, caused by the fungus Puccinia helianthi Schwein., is one of the most devastating diseases of sunflower (Helianthus annuus L.), affecting global production. The rust R gene R11 in sunflower line HA-R9 shows broad-spectrum resistance to P. helianthi virulent races and was previously mapped to an interval on sunflower chromosome 13 encompassing three candidate genes annotated in the XRQr1.0 reference genome assembly. In the current study, we combined ethyl methane sulfonate (EMS) mutagenesis with targeted region capture and PacBio long-read sequencing to clone the R11 gene. Sequencing of a 60-kb region spanning the R11 locus from the R11 -HA-R9 rust-resistant line and three EMS-induced susceptible mutants facilitated the identification of R11 and definition of induced mutations. The R11 gene is predicted to have a single 3996-bp open reading frame and encodes a protein of 1331 amino acids with CC-NBS-LRR domains typical of genes conferring plant resistance to biotrophic pathogens. Point mutations identified in the R11 rust-susceptible mutants resulted in premature stop codons, consistent with loss of function leading to rust susceptibility. Additional functional studies using comparative RNA sequencing of the resistant line R11 -HA-R9 and R11 -susceptible mutants revealed substantial differences in gene expression patterns associated with R11 -mediated resistance at 7 days post-inoculation with rust, and uncovered the potential roles of terpenoid biosynthesis and metabolism in sunflower rust resistance.


Subject(s)
Basidiomycota , Helianthus , Helianthus/genetics , Helianthus/microbiology , Chromosome Mapping , Genetic Markers , Genes, Plant/genetics , Genetic Linkage , Basidiomycota/genetics , Mutation , Cloning, Molecular , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
10.
Sci Rep ; 13(1): 5917, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041302

ABSTRACT

Rhizobacteria are well recognized for their beneficial multifunctions as key promoters of plant development, suppressing pathogens, and improving soil health. In this study, experiments focused on characterizing the plant growth promotion (PGP) and extracellular hydrolase production traits of rhizobacteria, and their impact on Jerusalem artichoke growth. A total of 50 isolates proved capable of either direct PGP or hydrolase-producing traits. Two promising strains (Enterobacter cloacae S81 and Pseudomonas azotoformans C2-114) showed potential on phosphate and potassium solubilization, IAA production, and 1-aminocyclopropane-1-carboxylic acid deaminase activity and hydrolase production. A hydrolase-producing strain (Bacillus subtilis S42) was able to generate cellulase, protease, amylase, ß-glucosidase, and phosphatase. These three selected strains also gave positive results for indirect PGP traits such as siderophore, ammonia, oxalate oxidase, polyamine, exopolysaccharide, biofilm, motility, and tolerance to salinity and drought stress. Colonization was observed using a scanning electron microscope and rhizobacteria appeared at the root surface. Interestingly, inoculation with consortia strains (S42, S81, and C2-114) significantly increased all plant parameters, including height, biomass, root (length, surface, diameter, and volume), and tuber fresh weight. Therefore, we recommend that potential consortia of PGP and hydrolase-producing rhizobacteria be employed as a biofertilizer to improve soil and boost crop productivity.


Subject(s)
Alphaproteobacteria , Helianthus , Helianthus/microbiology , Plant Development , Hydrolases , Soil
11.
J Environ Manage ; 329: 117083, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36566724

ABSTRACT

Soil salinization is a critical environmental issue restricting agricultural production. Inner Mongolia is one of the areas with severe land salinization in China. This study aimed to investigate the effects of conditioning agent (containing marlstone and a range of enzymes) and cultivating Jerusalem artichoke on saline soils in Inner Mongolia. The effects of conditioner (0, 0.06 and 0.18 kg/m2) on soil physical, chemical and biological properties, including soil carbon fractions and microbiota in saline soils planted with Jerusalem artichoke, were characterized. The results showed that soil salinity was reduced significantly after cultivating Jerusalem artichoke and declined also after the conditioner addition. The application of conditioner increased the content of DOC (dissolved organic carbon), HFOC (heavy fraction organic carbon) and the content of aggregates >0.25 mm compared to the soil planted with Jerusalem artichoke alone. The relative abundance of halophilic bacteria such as Thioalkalivibrio and Thiohalobacter was greater in the CK (non-treated control). By contrast, the relative abundance of microorganisms with the carbon assimilation and nitrogen fixation capacities, such as Cyanobacteria and Rhodovulum, was greater in the conditioner-treated and Jerusalem artichoke-planted treatments. The planting of Jerusalem artichoke reduced soil salinity, increased soil organic carbon fractions, improved soil structure, and altered the soil microbial community, with the application of the conditioning agent enhancing these positive changes. The co-occurrence network structure of "Jerusalem artichoke-conditioner-saline soil-soil microorganism" was established, which provided scientific basis for Jerusalem artichoke-conditioner to improve saline soil.


Subject(s)
Helianthus , Soil , Soil/chemistry , Helianthus/microbiology , Carbon/analysis , Agriculture , China , Soil Microbiology
12.
Plant Dis ; 107(3): 667-674, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35857370

ABSTRACT

Diaporthe gulyae and D. helianthi cause Phomopsis stem canker of sunflower (Helianthus annuus L.) in the United States. Because Phomopsis stem canker did not gain importance until the disease epidemic in 2010, limited studies were conducted to understand the genetic basis of sunflower resistance to D. gulyae and D. helianthi. The objectives of this study were to evaluate the United States Department of Agriculture cultivated accessions for resistance to D. gulyae and D. helianthi as well as to utilize genome-wide association studies (GWAS) to identify quantitative trait loci (QTLs) and putative candidate genes underlying those loci common to both organisms. For each fungus, 213 accessions were screened in a complete randomized design in the greenhouse and the experiment was repeated once. Six plants per accession were inoculated with a single isolate of D. gulyae or D. helianthi at four to six true leaves using the mycelium-contact inoculation method. At 15 days (D. gulyae) and 30 days (D. helianthi) postinoculation, accessions were evaluated for disease severity and compared with the susceptible confection inbred PI 552934. GWAS identified 28 QTLs common to the two fungi, and 24 genes overlapped close to these QTLs. Additionally, it was observed that the resistance QTLs derived mainly from landraces rather than from wild species. Seventeen putative candidate genes associated with resistance to D. gulyae or D. helianthi were identified that may be related to plant-pathogen interactions. These findings advanced our understanding of the genetic basis of resistance to D. gulyae and D. helianthi and will help develop resources for genomics-assisted breeding.


Subject(s)
Ascomycota , Helianthus , Plant Breeding , Plant Diseases , Ascomycota/pathogenicity , Disease Resistance/genetics , Genome-Wide Association Study , Helianthus/genetics , Helianthus/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , United States
13.
Genes (Basel) ; 13(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36553624

ABSTRACT

Diseases caused by necrotrophic fungi, such as the cosmopolitan Sclerotinia sclerotiorum and the Diaporthe/Phomopsis complex, are among the most destructive diseases of sunflower worldwide. The lack of complete resistance combined with the inefficiency of chemical control makes assisted breeding the best strategy for disease control. In this work, we present an integrated genome-wide association (GWA) study investigating the response of a diverse panel of sunflower inbred lines to both pathogens. Phenotypic data for Sclerotinia head rot (SHR) consisted of five disease descriptors (disease incidence, DI; disease severity, DS; area under the disease progress curve for DI, AUDPCI, and DS, AUDPCS; and incubation period, IP). Two disease descriptors (DI and DS) were evaluated for two manifestations of Diaporthe/Phomopsis: Phomopsis stem canker (PSC) and Phomopsis head rot (PHR). In addition, a principal component (PC) analysis was used to derive transformed phenotypes as inputs to a univariate GWA (PC-GWA). Genotypic data comprised a panel of 4269 single nucleotide polymorphisms (SNP), generated via genotyping-by-sequencing. The GWA analysis revealed 24 unique marker-trait associations for SHR, 19 unique marker-trait associations for Diaporthe/Phomopsis diseases, and 7 markers associated with PC1 and PC2. No common markers were found for the response to the two pathogens. Nevertheless, epistatic interactions were identified between markers significantly associated with the response to S. sclerotiorum and Diaporthe/Phomopsis. This suggests that, while the main determinants of resistance may differ for the two pathogens, there could be an underlying common genetic basis. The exploration of regions physically close to the associated markers yielded 364 genes, of which 19 were predicted as putative disease resistance genes. This work presents the first simultaneous evaluation of two manifestations of Diaporthe/Phomopsis in sunflower, and undertakes a comprehensive GWA study by integrating PSC, PHR, and SHR data. The multiple regions identified, and their exploration to identify candidate genes, contribute not only to the understanding of the genetic basis of resistance, but also to the development of tools for assisted breeding.


Subject(s)
Ascomycota , Helianthus , Saccharomycetales , Genome-Wide Association Study , Helianthus/genetics , Helianthus/microbiology , Phomopsis/genetics , Plant Breeding , Ascomycota/genetics
14.
Curr Microbiol ; 79(10): 299, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002542

ABSTRACT

Biofertilizers based on plant growth-promoting actinobacteria are used as potential alternatives to chemical fertilizers for sustainable agricultural systems. However, successful application of PGPA to agricultural land is challenging. The present study was an attempt to develop and evaluate the effect of a low-cost biofertilizer named NCTS (nanoclay-treated-Streptomyces) based on Streptomyces sp. UTMC 3136 spores amalgamated in a hybrid material of nanoclay Na-montmorillonite K10-glycerol-water substrate. In addition, the effect of NCTS on sunflower growth was investigated. In vivo tests showed a statistically significant increase in the agronomic characteristics of sunflowers treated with NCTS. Characterization of NCTS by FTIR, Raman spectroscopy, and scanning electron microscopy testified to the structural alignment and good adhesion of NCTS components. The viability of NCTS was 100% after 72 h of storage at 4 °C. Overall, the present study attempted to validate the efficacy of the formulation of Streptomyces sp. UTMC 3136 in nanoclay for growth improvement of sunflower. It was the first study to show the administration of PGPA in combination with nanomaterials as a growth enhancing biofertilization agent for sunflower.


Subject(s)
Helianthus , Streptomyces , Agriculture/methods , Fertilizers , Helianthus/microbiology , Plant Development
15.
BMC Microbiol ; 22(1): 174, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35799112

ABSTRACT

BACKGROUND: Phytoremediation is a green technology that removes heavy metal (HM) contamination from the environment by using HM plant accumulators. Among soil microbiota, plant growth promoting bacteria (PGPR) have a role influencing the metal availability and uptake. METHODS: This current study evaluates the plant growth promoting qualities of microbial flora isolated from rhizosphere, plant roots, and marine aquatic HMs polluted environments in Alexandria through several biochemical and molecular traits. Metal contents in both collected soils and plant tissues were measured. Transcript levels of marker genes (HMA3 and HMA4) were analyzed. RESULTS: Three terrestrial and one aquatic site were included in this study based on the ICP-MS identification of four HMs (Zn, Cd, Cu, and Ni) or earlier reports of HMs contamination. Using the VITEK2 bacterial identification system, twenty-two bacteria isolated from these loci were biochemically described. Pseudomonas and Bacillus were the most dominant species. Furthermore, the soil microbiota collected from the most contaminated HMs site with these two were able to enhance the Helianthus annuus L. hyper-accumulation capacity significantly. Specifically, sunflower plants cultivated in soils with HMs adapted bacteria were able to accumulate about 1.7-2.5-folds more Zn and Cd in their shoots, respectively. CONCLUSION: The influence of PGPR to stimulate crop growth under stress is considered an effective strategy. Overall, our findings showed that plants cultivated in HMs contaminated sites in the presence of PGPR were able to accumulate significant amounts of HMs in several plant parts than those cultivated in soils lacking microbiota.


Subject(s)
Helianthus , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Helianthus/microbiology , Metals, Heavy/analysis , Plant Roots , Soil , Soil Pollutants/analysis
16.
Article in English | MEDLINE | ID: mdl-35564857

ABSTRACT

Various plants have been used by humans for a very long time, and the uses vary, including food, medicine, toothpaste, dyes, food preservatives, water treatment, and beer brewing, among others. For food preservation and water treatment, the plant must have antimicrobial properties which are biocidal. For this research, extracts were obtained from sunflower (Helianthus annuus) seeds. The extracts were assessed for the presence of antimicrobial properties against three groups of bacteria, including faecal coliforms, total coliforms, and Escherichia coli (E. coli). Dosages of ground sunflower seeds ranging from 0.5 g to 4 g were administered to the three bacterial species and their susceptibilities to the antimicrobial agents were measured and recorded. The results indicate the presence of antimicrobial properties in sunflower. The antimicrobial activities were more effective on E. coli, with an average zone of inhibition of 12 mm with a 3 g dosage of sunflower seed extract. This was followed by total coliforms (11 mm) and lastly faecal coliforms (11 mm). These findings suggested that sunflower seeds proved to be potentially effective in treating water against microbial contaminants.


Subject(s)
Anti-Infective Agents , Helianthus , Water Purification , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Escherichia coli , Gram-Negative Bacteria , Helianthus/microbiology , Helianthus/physiology , Humans , Plant Extracts/pharmacology , Plants , Seeds/microbiology , Zimbabwe
17.
Int J Phytoremediation ; 24(6): 567-579, 2022.
Article in English | MEDLINE | ID: mdl-34505549

ABSTRACT

The present study was conducted to evaluate the bioremediation potential of plant growth-promoting rhizobacteria (PGPR) PGPR isolates from high total dissolved solids (TDS) bearing produced water on the water quality, soil physicochemical properties and growth and physiology of sunflower irrigated with high TDS bearing produced water having salinity level 130 times higher above seawater and also containing traces of oil and grease. Seeds of sunflower hybrid Parsun 3 were soaked for 3-4 h prior to sowing in 72 h old culture of PGPR strains W1 and W2 isolated from high TDS bearing polluted water. The control plants were irrigated with 90% diluted TDS water supplemented with 5 ml LB media. Whereas, the inoculated plants were irrigated with 90% diluted TDS water supplemented with 5 ml PGPR inocula.in LB media. The plants were grown under natural conditions. The 16S rRNA sequence analyses identified the isolate W1 bearing 100% similarity with the plant growth-promoting rhizobacteria (PGPR) Ralstonia pickettii and W2 bearing 99.7% similarity with Brevibacillus invocatus. Both the isolate were catalase and oxidase positive. The Ralstonia pickettii and Brevibacillus invocatus treatments decreased the EC and TDS values significantly such that the EC and TDS values of 90% diluted TDS water were 29 times and 19 times higher than tap water. Sodium adsorption ratio (SAR), organic matter, nitrogen, potassium, magnesium and carbon content were 1.96, 1.10, 2.28 1.20, 6.63 and 1.00 times greater than control in the rhizosphere soil of Ralstonia pickettii inoculated plants irrigated with high TDS bearing water There were significant increases in plant growth, sugar, flavonoids and phenolics, chlorophyll b, total chlorophyll, carotenoids content and activities of superoxide dismutase, catalase and peroxidase in plants inoculated with Ralstonia pickettii and Brevibacillus invocatus. The flavonoids, phenolics and proline contents were 0.54, 0.72 and 0.30 times higher in Ralstonia pickettii inoculated plants. Shoot/root dry weight ratio was about (50%) lower than control in Ralstonia pickettii and Brevibacillus invocatus treatments. Ralstonia pickettii was more effective than Brevibacillus invocatus to combat oxidative and osmotic stresses. It is inferred that the high TDS bearing produced water from oil factory harbor Plant growth-promoting rhizobacteria (PGPR) having the potential to combat high salinity stress in plants when used as bioinoculant. The broth culture containing the bacteria may be supplemented with the saline water used for irrigation as it provides nutrients for the growth and proliferation of bacteria present in the saline water and hence the synergistic action of bacterial inocula with the indigenous bacteria present in saline water may better alleviate osmotic and oxidative stresses of plants encountered under salinity stress. The residual effect of Ralstonia pickettii on organic matter and Ca, Mg, K and P content of the rhizosphere soil was notably higher for succeeding crops. Novelty statement This is the first report demonstrating that rhizobacteria can proliferate in water containing salinity higher above seawater in addition to oil grease and TSS. Their efficiency to reduce TDS can be augmented by an exogenous supply of LB broth culture of PGPR isolated from the polluted water. These indigenous rhizobacteria when used as bioinoculant on the plant can act as plant growth promoters as well as bioremediation of salinity effects.


Subject(s)
Helianthus , Soil , Agricultural Irrigation , Biodegradation, Environmental , Brevibacillus , Catalase , Flavonoids , Helianthus/microbiology , Helianthus/physiology , Plant Roots , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
18.
Plant Dis ; 106(5): 1366-1373, 2022 May.
Article in English | MEDLINE | ID: mdl-34874175

ABSTRACT

The necrotrophic fungal pathogen Sclerotinia sclerotiorum can cause disease on numerous plant species, including many important crops. Most S. sclerotiorum-incited diseases of crop plants are initiated by airborne ascospores produced when fungal sclerotia germinate to form spore-bearing apothecia. However, basal stalk rot of sunflower occurs when S. sclerotiorum sclerotia germinate to form mycelia within the soil, which subsequently invade sunflower roots. To determine whether other plant species in the Asteraceae family are susceptible to root infection by S. sclerotiorum, cultivated sunflower (Helianthus annuus L.) and seven other Asteraceae species were evaluated for S. sclerotiorum root infection by inoculation with either sclerotia or mycelial inoculum. Additionally, root susceptibility of sunflower was compared with that of dry edible bean and canola, two plant species susceptible to S. sclerotiorum but not known to display root-initiated infections. Results indicated that multiple Asteraceae family plants are susceptible to S. sclerotiorum root infection after inoculation with either sclerotia or mycelium. These observations expand the range of plant hosts susceptible to S. sclerotiorum root infection, elucidate differences in root inoculation methodology, and emphasize the importance of soilborne infection to Asteraceae crop and weed species.


Subject(s)
Ascomycota , Asteraceae , Helianthus , Helianthus/microbiology , Plant Diseases/microbiology
19.
J Appl Microbiol ; 132(4): 3073-3080, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34897903

ABSTRACT

AIMS: Using rhizobacteria as plant growth-promoting agents for improving heavy-metal phytoremediation processes in contaminated soil has attracted a lot of attention mainly because of their eco-friendliness. The aim of this study was the evaluation of lead phytoremediation by Carthamus tinctorius improved with the isolated and molecularly identified lead-resistant rhizobacteria. METHODS AND RESULTS: Rhizobacteria were isolated from C. tinctorius root and was identified using macroscopic and microscopic characteristics, biochemical testing and PCR. Then, the indole acetic acid production and phosphate-solubilizing activity were determined. Finally, the amount of lead in the plant was measured by atomic absorption method. Five strains of Bacillus cereus, Bacillus muralis, Bacillus sp., Pseudomonas fluorescens and Brevibacterium frigoritolerans with the ability of mineral phosphate solubilizing, high levels of indole acetic acid production and resistance to lead were isolated from the rhizosphere of C. tinctorius. The amount of produced indole acetic acid and the level of phosphate solubilizing by the isolates were 7.1-69.54 µg ml-1 and 91-147.3 µg ml-1 respectively. Lead assimilation in aerial part of safflower ranged from 925 to 2175 ppm. P. fluorescens and B. cereus strains had the highest effect on Lead assimilation with 2175 and 1862 ppm respectively. CONCLUSIONS: The results showed that different bacterial treatments influenced the rate of lead absorption by C. tinctorius exposed to lead stress. SIGNIFICANCE AND IMPACT OF THE STUDY: Use of rhizosphere isolates of C. tinctorius can improve phytoremediation capability and lead absorption in lead-contaminated soil.


Subject(s)
Carthamus tinctorius , Helianthus , Soil Pollutants , Biodegradation, Environmental , Helianthus/microbiology , Rhizosphere , Soil Microbiology , Soil Pollutants/analysis
20.
BMC Microbiol ; 21(1): 337, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34886803

ABSTRACT

BACKGROUND: Microbial communities inhabiting the rhizosphere play pivotal roles in determining plant health and yield. Manipulation of the rhizosphere microbial community is a promising means to enhance the productivity of economically viable and important agricultural crops such as sunflower (Helianthus annuus). This study was designed to gain insights into the taxonomic and functional structures of sunflower rhizosphere and bulk soil microbiome at two different locations (Sheila and Itsoseng) in South Africa. RESULTS: Microbial DNA extracted from the sunflower rhizosphere and bulk soils was subjected to next-generation sequencing using 16S amplicon sequencing technique. Firmicutes, Actnobacteria and Proteobacteria predominated sunflower rhizosphere soils. Firmicutes, Cyanobacteria, Deinococcus-Thermus and Fibrobacteres were positively influenced by Na+ and clay content, while Actinobacteria, Thaumarchaeota, Bacteroidetes, Planctomycetes, Aquificae and Chloroflexi were positively influenced by soil resistivity (Res) and Mg2+. The community-level physiological profiling (CLPP) analysis showed that the microbial communities in SHR and ITR used the amino acids tryptophan and malic acid efficiently. The metabolisms of these carbon substrates may be due to the dominant nature of some of the organisms, such as Actinobacteria in the soils. CONCLUSION: The CLPP measurements of soil from sunflower rhizosphere were different from those of the bulk soil and the degree of the variations were based on the type of carbon substrates and the soil microbial composition. This study has shown the presence of certain taxa of rhizobacteria in sunflower rhizosphere which were positively influenced by Na+ and Mg2+, and taxa obtained from SHR and ITR were able to effectively utilized tryptophan and malic acid. Many unclassified microbial groups were also discovered and it is therefore recommended that efforts should further be made to isolate, characterize and identify these unclassified microbial species, as it might be plausible to discover new microbial candidates that can further be harnessed for biotechnological purpose.


Subject(s)
Helianthus/microbiology , Microbiota/physiology , Rhizosphere , Amino Acids/analysis , Amino Acids/metabolism , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Carbon/analysis , Carbon/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Helianthus/growth & development , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL