Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.322
1.
Hum Vaccin Immunother ; 20(1): 2356269, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38826029

The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza season. In many seasons, the vaccine effectiveness (VE) of these vaccines can be relatively low. Therefore, there is an urgent need to develop an improved, more universal influenza vaccine (UIV) that can provide broad protection against various drifted strains in all age groups. To meet this need, the computationally optimized broadly reactive antigen (COBRA) methodology was developed to design a hemagglutinin (HA) molecule as a new influenza vaccine. In this study, COBRA HA-based inactivated influenza viruses (IIV) expressing the COBRA HA from H1 or H3 influenza viruses were developed and characterized for the elicitation of immediate and long-term protective immunity in both immunologically naïve or influenza pre-immune animal models. These results were compared to animals vaccinated with IIV vaccines expressing wild-type H1 or H3 HA proteins (WT-IIV). The COBRA-IIV elicited long-lasting broadly reactive antibodies that had hemagglutination-inhibition (HAI) activity against drifted influenza variants.


Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Orthomyxoviridae Infections , Vaccines, Inactivated , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Animals , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Female , Mice, Inbred BALB C , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Vaccine Efficacy , Hemagglutination Inhibition Tests
2.
Front Immunol ; 15: 1361323, 2024.
Article En | MEDLINE | ID: mdl-38835763

Introduction: Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods: Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results: Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion: Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.


Antibodies, Viral , Ferritins , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Ferritins/immunology , Influenza Vaccines/immunology , Swine , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Female , Nanovaccines
3.
Sci Transl Med ; 16(745): eadj4685, 2024 May.
Article En | MEDLINE | ID: mdl-38691617

Current seasonal influenza virus vaccines induce responses primarily against immunodominant but highly plastic epitopes in the globular head of the hemagglutinin (HA) glycoprotein. Because of viral antigenic drift at these sites, vaccines need to be updated and readministered annually. To increase the breadth of influenza vaccine-mediated protection, we developed an antigenically complex mixture of recombinant HAs designed to redirect immune responses to more conserved domains of the protein. Vaccine-induced antibodies were disproportionally redistributed to the more conserved stalk of the HA without hindering, and in some cases improving, antibody responses against the head domain. These improved responses led to increased protection against homologous and heterologous viral challenges in both mice and ferrets compared with conventional vaccine approaches. Thus, antigenically complex protein mixtures can at least partially overcome HA head domain antigenic immunodominance and may represent a step toward a more universal influenza vaccine.


Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Vaccination , Animals , Influenza Vaccines/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Antibodies, Viral/immunology , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Antigens, Viral/immunology , Female , Mice, Inbred BALB C
4.
Cell Rep ; 43(5): 114171, 2024 May 28.
Article En | MEDLINE | ID: mdl-38717904

Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase 1 clinical trial investigating a ferritin nanoparticle vaccine displaying H2 hemagglutinin (HA) in H2-naive and H2-exposed adults enabled us to perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited. We temporally map the epitopes targeted by serum antibodies after vaccine prime and boost, revealing that previous H2 exposure results in higher responses to the variable HA head domain. In contrast, initial responses in H2-naive participants are dominated by antibodies targeting conserved epitopes. We use cryoelectron microscopy and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the HA head, including the receptor-binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses post-vaccination.


Antibodies, Viral , Immunologic Memory , Influenza A Virus, H2N2 Subtype , Influenza Vaccines , Vaccination , Humans , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Influenza A Virus, H2N2 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Antibody Formation/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Epitopes/immunology , Adult , B-Lymphocytes/immunology
5.
Virus Res ; 345: 199402, 2024 Jul.
Article En | MEDLINE | ID: mdl-38772446

H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.


Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Monoclonal/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Mice , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Hemagglutination Inhibition Tests , Humans , Chick Embryo , Female , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control
6.
Vaccine ; 42(15): 3505-3513, 2024 May 31.
Article En | MEDLINE | ID: mdl-38714444

It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.


Adenoviridae , Administration, Intranasal , Antibodies, Viral , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Viral Matrix Proteins , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Adenoviridae/genetics , Adenoviridae/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Vaccine Efficacy , Nucleoproteins/immunology , Nucleoproteins/genetics , Viral Core Proteins/immunology , Viral Core Proteins/genetics , Injections, Intramuscular , Viroporin Proteins
7.
Nat Commun ; 15(1): 3833, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714654

Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine updates as well as for pandemic preparedness. Performing antigenic characterization of IAV on a global scale is confronted with high costs, animal availability, and other practical challenges. Here we present a machine learning model that accurately predicts (normalized) outputs of HI assays involving circulating human IAV H3N2 viruses, using their hemagglutinin subunit 1 (HA1) sequences and associated metadata. Each season, the model learns an updated nonlinear mapping of genetic to antigenic changes using data from past seasons only. The model accurately distinguishes antigenic variants from non-variants and adaptively characterizes seasonal dynamics of HA1 sites having the strongest influence on antigenic change. Antigenic predictions produced by the model can aid influenza surveillance, public health management, and vaccine strain selection activities.


Antigens, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Machine Learning , Seasons , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Humans , Influenza, Human/immunology , Influenza, Human/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antigens, Viral/immunology , Antigens, Viral/genetics , Hemagglutination Inhibition Tests , Antigenic Variation/genetics , Influenza Vaccines/immunology
8.
Sci Rep ; 14(1): 12184, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806597

Catalytic antibodies possess a dual function that enables both antigen recognition and degradation. However, their time-consuming preparation is a significant drawback. This study developed a new method for quickly converting mice monoclonal antibodies into catalytic antibodies using site-directed mutagenesis. Three mice type monoclonal antibodies targeting hemagglutinin molecule of influenza A virus could be transformed into the catalytic antibodies by deleting Pro95 in CDR-3 of the light chain. No catalytic activity was observed for monoclonal antibodies and light chains. In contrast, the Pro95-deleted light chains exhibited a catalytic activity to cleave the antigenic peptide including the portion of conserved region of hemagglutinin molecule. The affinity of the Pro95-deleted light chains to the antigen increased approximately 100-fold compared to the wild-type light chains. In the mutants, three residues (Asp1, Ser92, and His93) come closer to the appropriate position to create the catalytic site and contributing to the enhancement of both catalytic function and immunoreactivity. Notably, the Pro95-deleted catalytic light chains could suppress influenza virus infection in vitro assay, whereas the parent antibody and the light chain did not. This strategy offers a rapid and efficient way to create catalytic antibodies from existing antibodies, accelerating the development for various applications in diagnostic and therapeutic applications.


Antibodies, Catalytic , Antibodies, Monoclonal , Animals , Mice , Antibodies, Monoclonal/immunology , Antibodies, Catalytic/metabolism , Antibodies, Catalytic/immunology , Antibodies, Catalytic/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Mutagenesis, Site-Directed , Influenza A virus/immunology , Catalytic Domain , Humans , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/metabolism , Antibodies, Viral/immunology , Mice, Inbred BALB C
9.
J Med Virol ; 96(5): e29657, 2024 May.
Article En | MEDLINE | ID: mdl-38727035

The H1N1pdm09 virus has been a persistent threat to public health since the 2009 pandemic. Particularly, since the relaxation of COVID-19 pandemic mitigation measures, the influenza virus and SARS-CoV-2 have been concurrently prevalent worldwide. To determine the antigenic evolution pattern of H1N1pdm09 and develop preventive countermeasures, we collected influenza sequence data and immunological data to establish a new antigenic evolution analysis framework. A machine learning model (XGBoost, accuracy = 0.86, area under the receiver operating characteristic curve = 0.89) was constructed using epitopes, physicochemical properties, receptor binding sites, and glycosylation sites as features to predict the antigenic similarity relationships between influenza strains. An antigenic correlation network was constructed, and the Markov clustering algorithm was used to identify antigenic clusters. Subsequently, the antigenic evolution pattern of H1N1pdm09 was analyzed at the global and regional scales across three continents. We found that H1N1pdm09 evolved into around five antigenic clusters between 2009 and 2023 and that their antigenic evolution trajectories were characterized by cocirculation of multiple clusters, low-level persistence of former dominant clusters, and local heterogeneity of cluster circulations. Furthermore, compared with the seasonal H1N1 virus, the potential cluster-transition determining sites of H1N1pdm09 were restricted to epitopes Sa and Sb. This study demonstrated the effectiveness of machine learning methods for characterizing antigenic evolution of viruses, developed a specific model to rapidly identify H1N1pdm09 antigenic variants, and elucidated their evolutionary patterns. Our findings may provide valuable support for the implementation of effective surveillance strategies and targeted prevention efforts to mitigate the impact of H1N1pdm09.


Antigens, Viral , Influenza A Virus, H1N1 Subtype , Influenza, Human , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/virology , Influenza, Human/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Machine Learning , Evolution, Molecular , Epitopes/genetics , Epitopes/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19/immunology , Pandemics/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
10.
Nat Commun ; 15(1): 4350, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782954

mRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.4.4b are circulating at unprecedently high levels in wild and domestic birds and have the potential to adapt to humans. Here, we generate an mRNA lipid nanoparticle (LNP) vaccine encoding the hemagglutinin (HA) glycoprotein from a clade 2.3.4.4b H5 isolate. The H5 mRNA-LNP vaccine elicits strong T cell and antibody responses in female mice, including neutralizing antibodies and broadly-reactive anti-HA stalk antibodies. The H5 mRNA-LNP vaccine elicits antibodies at similar levels compared to whole inactivated vaccines in female mice with and without prior H1N1 exposures. Finally, we find that the H5 mRNA-LNP vaccine is immunogenic in male ferrets and prevents morbidity and mortality of animals following 2.3.4.4b H5N1 challenge. Together, our data demonstrate that a monovalent mRNA-LNP vaccine expressing 2.3.4.4b H5 is immunogenic and protective in pre-clinical animal models.


Antibodies, Viral , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Nanoparticles , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Female , Mice , Nanoparticles/chemistry , Male , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , mRNA Vaccines/immunology , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Humans , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Birds/virology , Lipids/chemistry , Liposomes
11.
Nat Commun ; 15(1): 4505, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802413

Avian influenza A virus H7N9 causes severe human infections with >30% fatality. Currently, there is no H7N9-specific prevention or treatment for humans. Here, from a 2013 H7N9 convalescent case in Hong Kong, we isolate four hemagglutinin (HA)-reactive monoclonal antibodies (mAbs), with three directed to the globular head domain (HA1) and one to the stalk domain (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralize H7N9 and protect female mice from lethal H7N9/AH1 challenge. Cryo-EM structures reveal that H7.HK1 and H7.HK2 bind to a ß14-centered surface and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on an adjacent protomer, thereby blocking viral entry. Sequence analysis indicates the lateral patch targeted by H7.HK1 and H7.HK2 to be conserved among influenza subtypes. Both H7.HK1 and H7.HK2 retain HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, consistent with structural data showing that the antigenic mutations during this timeframe occur at their epitope peripheries. The HA2-directed mAb H7.HK4 lacks neutralizing activity but when used in combination with H7.HK2 moderately augments female mouse protection. Overall, our data reveal antibodies to a conserved lateral HA1 supersite that confer neutralization, and when combined with a HA2-directed non-neutralizing mAb, augment protection.


Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H7N9 Subtype , Influenza, Human , Influenza A Virus, H7N9 Subtype/immunology , Animals , Antibodies, Neutralizing/immunology , Humans , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Female , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control , Mice , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Mice, Inbred BALB C , Cryoelectron Microscopy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Epitopes/immunology
12.
Front Immunol ; 15: 1352022, 2024.
Article En | MEDLINE | ID: mdl-38698856

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Complement Factor H , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Protein Binding , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Animals , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/metabolism , Influenza A virus/immunology , Influenza A virus/physiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Binding Sites , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/metabolism , Birds/virology , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology
13.
Front Immunol ; 15: 1381508, 2024.
Article En | MEDLINE | ID: mdl-38690272

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Immunity, Humoral , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , mRNA Vaccines , Animals , Female , Humans , Mice , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Humoral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Mice, Inbred BALB C , mRNA Vaccines/administration & dosage , mRNA Vaccines/chemistry , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Seasons , Time Factors , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
14.
FEMS Microbiol Rev ; 48(3)2024 May 08.
Article En | MEDLINE | ID: mdl-38734891

Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.


Birds , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus , Influenza in Birds , Neuraminidase , Neuraminidase/immunology , Neuraminidase/genetics , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Epitopes/immunology , Epitopes/genetics , Birds/virology , Influenza in Birds/immunology , Influenza in Birds/virology , Antigenic Drift and Shift/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control , Viral Proteins/immunology , Viral Proteins/genetics , Viral Proteins/chemistry , Influenza A virus/immunology , Influenza A virus/genetics
15.
Acta Biochim Pol ; 71: 12289, 2024.
Article En | MEDLINE | ID: mdl-38721309

The aim of the study was to determine the level of anti-hemagglutinin antibodies in the serum of patients during the 2021/2022 epidemic season in Poland. A total of 700 sera samples were tested, divided according to the age of the patients into 7 age groups: 0-4 years of age, 5-9 years of age, 10-14 years of age, 15-25 years of age, 26-44 years of age, 45-64 years of age and ≥65 years of age, 100 samples were collected from each age group. Anti-hemagglutinin antibody levels was determined using the haemagglutination inhibition assay (OZHA). The results obtained confirm the presence of anti-hemagglutinin antibodies for the antigens A/Victoria/2570/2019 (H1N1) pdm09, A/Cambodia/e0826360/2020 (H3N2), B/Washington/02/2019 and B/Phuket/3073/2013 recommended by World Health Organization (WHO) for the 2021/2022 epidemic season. The analysis of the results shows differences in the levels of individual anti-hemagglutinin antibodies in the considered age groups. In view of very low percentage of the vaccinated population in Poland, which was 6.90% in the 2021/2022 epidemic season, the results obtained in the study would have to be interpreted as the immune system response in patients after a previous influenza virus infection.


Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Poland/epidemiology , Adult , Middle Aged , Adolescent , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/blood , Influenza, Human/virology , Child , Aged , Child, Preschool , Antibodies, Viral/blood , Antibodies, Viral/immunology , Young Adult , Infant , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Male , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Female , Infant, Newborn , Hemagglutination Inhibition Tests , Influenza B virus/immunology , Seasons , Epidemics , Prevalence
16.
Biochem Biophys Res Commun ; 711: 149919, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38608435

Subunit vaccines are among the most useful vaccine modalities; however, their low immunogenicity necessitates the addition of adjuvants. Although adjuvants improve immune responses induced by vaccines, they often cause adverse reactions. To address this, we developed an adjuvant-free subunit vaccine platform that uses pre-existing antibodies generated from past infections or vaccinations as carriers for the delivery of vaccine antigens. Although we have confirmed the usefulness of this platform for nasal vaccines, its suitability as a parenterally injectable vaccine remains uncertain. Here, we verified the potential of our vaccine platform to harness pre-existing immunity for parenterally injectable vaccines. We generated RBD-HA by combining the receptor binding domain (RBD) derived from SARS-CoV-2 as a vaccine antigen with hemagglutinin (HA) sourced from influenza viruses to serve as the carrier protein. We revealed that subcutaneous vaccination with RBD-HA effectively triggered strong RBD-specific IgG responses in mice previously infected with the influenza A virus, even in the absence of adjuvants, and conferred protection to mice against SARS-CoV-2 upon challenge. Furthermore, we revealed that vaccination with RBD-HA did not induce an inflammatory response, such as inflammatory cytokine production, swelling, and recruitment of inflammatory immune cells, whereas conventional vaccines combined with adjuvants induced these adverse reactions. In addition, we demonstrated the remarkable versatility of this platform using a vaccine antigen derived from Streptococcus pneumoniae. These findings indicate the potential of this adjuvant-free vaccine platform to enhance the efficacy of parenterally injectable subunit vaccines and reduce adverse reactions.


COVID-19 Vaccines , COVID-19 , Immunoglobulin G , Mice, Inbred BALB C , SARS-CoV-2 , Animals , Immunoglobulin G/immunology , Immunoglobulin G/blood , Mice , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Humans , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Adjuvants, Immunologic/administration & dosage , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage
17.
Avian Dis ; 68(1): 43-51, 2024 Mar.
Article En | MEDLINE | ID: mdl-38687107

The aim of the current study was to map the genetic diversity in the haemagglutinin (HA) glycoprotein of influenza A viruses (IAVs) of the H9N2 subtype. Twenty-five H9N2 IAVs were isolated from broiler chickens from March to July 2019. The HA gene was amplified, and phylogenetic analysis was performed to determine the evolutionary relationship. Important antigenic amino acid residues of HA attributed to immune escape and zoonotic potential were compared among H9N2 IAVs. Phylogenetic analysis revealed that sublineage B2 under the G1 lineage in Pakistan was found to be diversified, and newly sequenced H9N2 isolates were nested into two clades (A and B). Mutations linked to the antigenic variation and potential immune escape were observed as G72E (1/25, 4%), A180T (3/25, 12%), and A180V (1/25, 4%). A twofold significant reduction (P < 0.01) in log2 hemagglutination inhibition titers was observed with H9N2 IAV naturally harboring amino acid V180 instead of A180 in HA protein. Moreover, in the last 20 years, complete substitution at residues (T127D, D135N, and L150N) and partial substitution at residues (72, 74, 131, 148, 180, 183, 188, 216, 217, and 249, mature H9 HA numbering) associated with changes in antigenicity were observed. The presence of L216 in all H9N2 IAV isolates and T/V180 in four isolates in the receptor-binding site reveals the potential of these viruses to cross the species barrier to infect human or mammals. The current study observed the circulation of antigenically diverse H9N2 IAV variants that possess potential mutations that can escape the host immune system.


Nota de investigación- Mapeo de marcadores genéticos asociados con la antigenicidad y el rango de huéspedes en los virus de la influenza tipo A subtipo H9N2 que infectan a la avicultura en Pakistán. El objetivo del presente estudio fue mapear la diversidad genética en la glicoproteína hemaglutinina (HA) de los virus de la influenza A (IAV) del subtipo H9N2. Se aislaron veinticinco virus de influenza H9N2 de pollos de engorde de marzo a julio del 2019. Se amplificó el gene HA y se realizó un análisis filogenético para determinar la relación evolutiva. Se compararon importantes residuos de aminoácidos antigénicos de la hemaglutinina atribuidos al escape inmunológico y al potencial zoonótico entre los virus de la influenza aviar H9N2. El análisis filogenético reveló que el sublinaje B2 bajo el linaje G1 en Pakistán estaba diversificado, y los aislados de H9N2 recién secuenciados se agruparon en dos clados (A y B). Se observaron mutaciones relacionadas con la variación antigénica y el posible escape inmunológico como los residuos de aminoácidos G72E (1/25, 4%), A180T (3/25, 12%) y A180V (1/25, 4%). Se observó una reducción significativa al doble (P < 0.01) en los títulos de inhibición de la hemaglutinación log2 cuando el virus de la influenza aviar H9N2 albergaba naturalmente el aminoácido V180 en lugar del A180 en la proteína HA. Además, en los últimos 20 años, sustitución completa en los residuos (T127D, D135N y L150N) y sustitución parcial en los residuos (72, 74, 131, 148, 180, 183, 188, 216, 217 y 249, de acuerdo con la numeración de la HA subtipo madura) asociados con cambios en la antigenicidad. La presencia del residuo L216 en todos los aislados de influenza aviar H9N2 y T/V180 en cuatro aislados en el sitio de unión al receptor revela el potencial de estos virus para cruzar la barrera de las especies para infectar a humanos o mamíferos. El estudio actual observó la circulación de variantes antigénicamente diversas del virus de influenza aviar H9N2 que poseen mutaciones potenciales que pueden escapar del sistema inmunológico del huésped.


Chickens , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Phylogeny , Poultry Diseases , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Animals , Pakistan , Influenza in Birds/virology , Influenza in Birds/immunology , Poultry Diseases/virology , Host Specificity , Genetic Markers , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antigenic Variation , Genetic Variation
18.
Int J Pharm ; 658: 124176, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38688427

The aim of this study was to evaluate the enhanced thermal stability and physicochemical properties of fattigated vaccine antigens. High molecular weight influenza hemagglutinin (Heg) was used as a model antigen because of low heat stability requiring cold chamber. Heg was conjugated with long-chain oleic acid (C18) and short-chain 3-decenoic acid (C10) to prepare fattigated Heg. Circular dichroism analysis revealed no significant changes in the three-dimensional structure post-conjugation. In the liquid state, the fattigated Heg was self-assembled into nanoparticles (NPs) due to its amphiphilic nature, with sizes of 136.27 ± 12.78 nm for oleic acid-conjugated Heg (HOC) and 88.73 ± 3.27 nm for 3-decenoic acid-conjugated Heg (HDC). Accelerated thermal stability studies at 60 °C for 7 days demonstrated that fattigated Heg exhibited higher thermal stability than Heg in various liquid or solid states. The longer-chained HOC showed better thermal stability than HDC in the liquid state, attributed to increased hydrophobic interactions during self-assembly. In bio-mimicking liquid states at 37 °C, HOC exhibited higher thermal stability than Heg. Furthermore, solid-state HOC with cryoprotectants (trehalose, mannitol, and Tween® 80) had significantly increased thermal stability due to reduced exposure of protein surface area via nanonization behavior. The current fattigation platform could be a promising strategy for developing thermostable nano vaccines of heat-labile vaccine antigens.


Drug Stability , Hemagglutinin Glycoproteins, Influenza Virus , Nanoparticles , Nanoparticles/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/administration & dosage , Oleic Acid/chemistry , Vaccines, Conjugate/chemistry , Fatty Acids/chemistry , Hot Temperature , Particle Size , Polysorbates/chemistry , Hydrophobic and Hydrophilic Interactions , Fatty Acids, Monounsaturated/chemistry , Antigens/chemistry , Antigens/immunology
19.
Immunity ; 57(5): 1141-1159.e11, 2024 May 14.
Article En | MEDLINE | ID: mdl-38670113

Broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem of influenza A viruses (IAVs) tend to be effective against either group 1 or group 2 viral diversity. In rarer cases, intergroup protective bnAbs can be generated by human antibody paratopes that accommodate the conserved glycan differences between the group 1 and group 2 stems. We applied germline-engaging nanoparticle immunogens to elicit a class of cross-group bnAbs from physiological precursor frequency within a humanized mouse model. Cross-group protection depended on the presence of the human bnAb precursors within the B cell repertoire, and the vaccine-expanded antibodies enriched for an N55T substitution in the CDRH2 loop, a hallmark of the bnAb class. Structurally, this single mutation introduced a flexible fulcrum to accommodate glycosylation differences and could alone enable cross-group protection. Thus, broad IAV immunity can be expanded from the germline repertoire via minimal antigenic input and an exceptionally simple antibody development pathway.


Antibodies, Neutralizing , Antibodies, Viral , Influenza A virus , Influenza Vaccines , Orthomyxoviridae Infections , Vaccination , Animals , Mice , Humans , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Influenza A virus/immunology , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Amino Acid Substitution , B-Lymphocytes/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Broadly Neutralizing Antibodies/immunology
20.
Int J Biol Macromol ; 267(Pt 2): 131458, 2024 May.
Article En | MEDLINE | ID: mdl-38593899

Avian influenza virus (AIV) H7N9 diseases have been recently reported, raising concerns about a potential pandemic. Thus, there is an urgent need for effective therapeutics for AIV H7N9 infections. Herein, camelid immunization and yeast two-hybrid techniques were used to identify potent neutralizing nanobodies (Nbs) targeting the H7 subtype hemagglutinin. First, we evaluated the binding specificity and hemagglutination inhibition activity of the screened Nbs against the H7 subtype hemagglutinin. Nb-Z77, with high hemagglutination inhibition activity was selected from the screened Nbs to optimize the yeast expression conditions and construct oligomeric forms of Nb-Z77 using various ligation methods. The oligomers Nb-Z77-DiGS, Nb-Z77-TriGS, Nb-Z77-Fc and Nb-Z77-Foldon were successfully constructed and expressed. Nb-Z77-DiGS and Nb-Z77-Foldon exhibited considerably greater activity than did Nb-Z77 against H7 subtype hemagglutinin, with median effective concentrations of 384.7 and 27.33 pM and binding affinity values of 213 and 5.21 pM, respectively. Nb-Z77-DiGS and Nb-Z77-Foldon completely inhibited the hemagglutination activity of the inactivated virus H7-Re1 at the lowest concentration of 0.938 µg/mL. This study screened a strain of Nb with high hemagglutination inhibition activity and enhanced its antiviral activity through oligomerization, which may have great potential for developing effective agents for the prevention, diagnosis, and treatment of AIV H7 subtype infection.


Hemagglutinin Glycoproteins, Influenza Virus , Single-Domain Antibodies , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H7N9 Subtype/immunology , Humans , Hemagglutination Inhibition Tests , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza in Birds/prevention & control , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology
...