Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Mol Ecol ; 33(11): e17368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676602

ABSTRACT

Weedy rice, a pervasive and troublesome weed found across the globe, has often evolved through fertilization of rice cultivars with little importance of crop-weed gene flow. In Argentina, weedy rice has been reported as an important constraint since the early 1970s, and, in the last few years, strains with herbicide-resistance are suspected to evolve. Despite their importance, the origin and genetic composition of Argentinian weedy rice as well its adaptation to agricultural environments has not been explored so far. To study this, we conducted genotyping-by-sequencing on samples of Argentinian weedy and cultivated rice and compared them with published data from weedy, cultivated and wild rice accessions distributed worldwide. In addition, we conducted a phenotypic characterization for weedy-related traits, a herbicide resistance screening and genotyped accessions for known mutations in the acetolactate synthase (ALS) gene, which confers herbicide resistance. Our results revealed large phenotypic variability in Argentinian weedy rice. Most strains were resistant to ALS-inhibiting herbicides with a high frequency of the ALS mutation (A122T) present in Argentinian rice cultivars. Argentinian cultivars belonged to the three major genetic groups of rice: japonica, indica and aus while weeds were mostly aus or aus-indica admixed, resembling weedy rice strains from the Southern Cone region. Phylogenetic analysis supports a single origin for aus-like South American weeds, likely as seed contaminants from the United States, and then admixture with local indica cultivars. Our findings demonstrate that crop to weed introgression can facilitate rapid adaptation to agriculture environments.


Subject(s)
Acetolactate Synthase , Herbicide Resistance , Herbicides , Oryza , Oryza/genetics , Herbicide Resistance/genetics , Argentina , Acetolactate Synthase/genetics , Plant Weeds/genetics , Phenotype , Genotype , Adaptation, Physiological/genetics , Crops, Agricultural/genetics , Gene Flow , Agriculture , Mutation
2.
Pestic Biochem Physiol ; 198: 105737, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225083

ABSTRACT

Italian ryegrass (Lolium multiflorum L.) is an invasive species widely spread in croplands worldwide. The intensive use of glyphosate has resulted in the selection of resistance to this herbicide in Italian ryegrass. This work characterized the response to glyphosate of Italian ryegrass populations from the South and Southwest regions of Paraná, Brazil. A total of 44 Italian ryegrass populations were collected in farming areas, and were classified for glyphosate resistance with 75% of populations resistant to gloyphosate. Of these, 3 resistant (VT05AR, MR20AR and RN01AR) and three susceptible (VT07AS, MR05AS and RN01AS) of these populations were selected to determine the resistance level and the involvement of the target site mechanisms for glyphosate resistance. Susceptible populations GR50 ranged from 165.66 to 218.17 g.e.a. ha-1 and resistant populations from 569.37 to 925.94, providing RI ranging from 2.88 and 4.70. No mutation in EPSPS was observed in the populations, however, in two (MR20AR and RN02AR) of the three resistant populations, an increase in the number of copies of the EPSPs gene (11 to 57×) was detected. The number of copies showed a positive correlation with the gene expression (R2 = 0.86) and with the GR50 of the populations (R2 = 0.81). The increase in EPSPS gene copies contributes to glyphosate resistance in Italian ryegrass populations from Brazil.


Subject(s)
Herbicides , Lolium , Glyphosate , Lolium/genetics , Lolium/metabolism , Glycine/pharmacology , Glycine/metabolism , Brazil , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics
3.
Pest Manag Sci ; 79(12): 5220-5229, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37592752

ABSTRACT

BACKGROUND: Chloris virgata is a troublesome weed in tropical regions. With the evolution of glyphosate resistance in key grass species, acetyl CoA carboxylase (ACCase) inhibitors have become a commonly used tool in soybean production areas in Brazil. We assessed if suspected resistant populations exhibited cross resistance to the different classes of ACCase inhibitors and investigated the resistance mechanisms in C. virgata. RESULTS: Dose-response experiments revealed resistance to haloxyfop-methyl and pinoxaden, with 432- and 3-fold resistance, respectively, compared to susceptible populations. Due to the lack of genetic resources for C. virgata, we sequenced, assembled, and annotated the genome using short-read Illumina technology. The k-mer analysis estimated a genome size of approximately 336 Mbp, with BUSCO completeness of 97%, and over 36 000 gene models were annotated. We examined if ACCase copy number variation and increased gene expression were involved in the resistance phenotype and found no difference when compared to a susceptible population. A mutation was detected in ACCase that encodes for amino acid position 2027, resulting in a tryptophan-to-cysteine (Trp2027Cys) substitution. We found the resistant population absorbed 11.4% less herbicide and retained 21% more herbicide on the treated leaf compared to the susceptible population. We developed a genotyping assay targeting the resistance-endowing Trp2027Cys substitution for quick resistance diagnosis. CONCLUSION: A Trp2027Cys amino acid substitution in ACCase confers resistance to haloxyfop and pinoxaden in C. virgata. We provide important insights into the evolutionary history of C. virgata and a draft genome as a useful resource to further our understanding of the biology in the genus Chloris. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Herbicides , Herbicides/pharmacology , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , DNA Copy Number Variations , Herbicide Resistance/genetics , Poaceae/genetics , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Pest Manag Sci ; 79(10): 3581-3592, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37178347

ABSTRACT

BACKGROUND: Resistance to 2,4-Dichlorophenoxyacetic acid (2,4-D) has been reported in several weed species since the 1950s; however, a biotype of Conyza sumatrensis showing a novel physiology of the rapid response minutes after herbicide application was reported in 2017. The objective of this research was to investigate the mechanisms of resistance and identify transcripts associated with the rapid physiological response of C. sumatrensis to 2,4-D herbicide. RESULTS: Differences were found in 2,4-D absorption between the resistant and susceptible biotypes. Herbicide translocation was reduced in the resistant biotype compared to the susceptible. In resistant plants 98.8% of [14 C] 2,4-D was found in the treated leaf, whereas ≈13% translocated to other plant parts in the susceptible biotype at 96 h after treatment. Resistant plants did not metabolize [14 C] 2,4-D and had only intact [14 C] 2,4-D at 96 h after application, whereas susceptible plants metabolized [14 C] 2,4-D into four detected metabolites, consistent with reversible conjugation metabolites found in other 2,4-D sensitive plant species. Pre-treatment with the cytochrome P450 inhibitor malathion did not enhance 2,4-D sensitivity in either biotype. Following treatment with 2,4-D, resistant plants showed increased expression of transcripts within plant defense response and hypersensitivity pathways, whereas both sensitive and resistant plants showed increased expression of auxin-response transcripts. CONCLUSION: Our results demonstrate that reduced 2,4-D translocation contributes to resistance in the C. sumatrensis biotype. The reduction in 2,4-D transport is likely to be a consequence of the rapid physiological response to 2,4-D in resistant C. sumatrensis. Resistant plants had increased expression of auxin-responsive transcripts, indicating that a target-site mechanism is unlikely. © 2023 Society of Chemical Industry.


Subject(s)
Conyza , Herbicides , Conyza/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Herbicides/metabolism , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Gene Expression
5.
J Agric Food Chem ; 71(18): 6871-6881, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37104538

ABSTRACT

Herbicide mixtures are used to increase the spectrum of weed control and to manage weeds with target-site resistance to some herbicides. However, the effect of mixtures on the evolution of herbicide resistance caused by enhanced metabolism is unknown. This study evaluated the effect of a fenoxaprop-p-ethyl and imazethapyr mixture on the evolution of herbicide resistance in Echinochloa crus-galli using recurrent selection at sublethal doses. The progeny from second generations selected with the mixture had lower control than parental plants or the unselected progeny. GR50 increased 1.6- and 2.6-fold after two selection cycles with the mixture in susceptible (POP1-S) and imazethapyr-resistant (POP2-IR) biotypes, respectively. There was evidence that recurrent selection with this sublethal mixture had the potential to evolve cross-resistance to diclofop, cyhalofop, sethoxydim, and quinclorac. Mixture selection did not cause increased relative expression for a set of analyzed genes (CYP71AK2, CYP72A122, CYP72A258, CYP81A12, CYP81A14, CYP81A21, CYP81A22, and GST1). Fenoxaprop, rather than imazethapyr, is the main contributor to the decreased control in the progenies after recurrent selection with the mixture in low doses. This is the first study reporting the effect of a herbicide mixture at low doses on herbicide resistance evolution. The lack of control using the mixture may result in decreased herbicide sensitivity of the weed progenies. Using mixtures may select important detoxifying genes that have the potential to metabolize herbicides in patterns that cannot currently be predicted. The use of fully recommended herbicide rates in herbicide mixtures is recommended to reduce the risk of this type of resistance evolution.


Subject(s)
Echinochloa , Herbicides , Herbicides/pharmacology , Herbicides/metabolism , Weed Control , Plant Weeds/genetics , Herbicide Resistance/genetics
6.
J Agric Food Chem ; 71(11): 4477-4487, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36892583

ABSTRACT

Glyphosate has been the most widely used herbicide for decades providing a unique tool, alone or in mixtures, to control weeds on citrus in Veracruz. Conyza canadensis has developed glyphosate resistance for the first time in Mexico. The level and mechanisms of resistance of four resistant populations Rs (R1, R2, R3, and R4) were studied and compared with that of a susceptible population (S). Resistance factor levels showed two moderately resistant populations (R2 and R3) and two highly resistant populations (R1 and R4). Glyphosate translocation through leaves to roots was ∼2.8 times higher in the S population than in the four R populations. A mutation (Pro106Ser) in the EPSPS2 gene was identified in the R1 and R4 populations. Mutation in the target site associated with reduced translocation is involved in increased glyphosate resistance in the R1 and R4 populations; whereas for the R2 and R3 populations, it was only mediated by reduced translocation. This is the first study of glyphosate resistance in C. canadensis from Mexico in which the resistance mechanisms involved are described in detail and control alternatives are proposed.


Subject(s)
Conyza , Herbicides , Conyza/genetics , Mexico , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Glyphosate
7.
Pest Manag Sci ; 79(3): 1062-1068, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36327342

ABSTRACT

BACKGROUND: Glyphosate-resistant Salsola tragus accessions have been identified in the USA and Argentina; however, the mechanisms of glyphosate resistance have not been elucidated. The goal of this study was to determine the mechanism/s of glyphosate resistance involved in two S. tragus populations (R1 and R2) from Argentina. RESULTS: Both glyphosate-resistant populations had a six-fold lower sensitivity to glyphosate than the S population (i.e. resistance index). No evidence of differential absorption, translocation or metabolism of glyphosate was found in the R1 and R2 populations compared to a susceptible population (S). No 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) mutations were detected, but S. tragus R1 and R2 plants had ≈14-fold higher EPSPS gene relative copy number compared to the S counterpart. In R1 and R2, EPSPS duplication entailed a greater constitutive EPSPS transcript abundance by approximately seven-fold and a basal EPSPS activity approximately three-fold higher than the S population. CONCLUSION: The current study reports EPSPS gene duplication for the first time as a mechanism of glyphosate resistance in S. tragus populations. The increase of glyphosate dose needed to kill R1 and R2 plants was linked to the EPSPS transcript abundance and level of EPSPS activity. This evidence supports the convergent evolution of the overexpression of the EPSPS gene in several Chenopodiaceae/Amaranthaceae species adapted to drought environments and the role of gene duplication as an adaptive advantage for plants to withstand stress. © 2022 Society of Chemical Industry.


Subject(s)
Herbicides , Salsola , Gene Duplication , Phosphates , Herbicides/pharmacology , Herbicide Resistance/genetics , Poaceae/metabolism , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Glyphosate
8.
Pest Manag Sci ; 78(11): 4764-4773, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35904507

ABSTRACT

BACKGROUND: Eleusine indica (L.) Gaertn. (goosegrass) is a major weed in global cropping systems. It has evolved resistance to glyphosate due to single Pro-106-Ser (P106S) or double Thr-102-Ile + Pro-106-Ser (TIPS) EPSPS target site mutations. Here, experiments were conducted to evaluate the single effect of soybean competition and its combined effect with a glyphosate field dose (1080 g ae ha-1 ) on the growth and fitness of plants carrying these glyphosate resistance endowing target site mutations. RESULTS: TIPS E. indica plants are highly glyphosate-resistant but the double mutation endows a substantial fitness cost. The TIPS fitness penalty increased under the effect of soybean competition resulting in a cost of 95%, 95% and 96% in terms of, respectively, vegetative growth, seed mass and seed number investment. Glyphosate treatment of these glyphosate-resistant TIPS plants showed an increase in growth relative to those without glyphosate. Conversely, for the P106S moderate glyphosate resistance mutation, glyphosate treatment alone reduced survival rate, vegetative growth, aboveground biomass (34%), seed mass (48%) and number (52%) of P106S plants relative to the glyphosate nontreated plants. However, under the combined effects of both soybean competition and the field-recommended glyphosate dose, vegetative growth, aboveground biomass, seed mass and number of P106S and TIPS plants were substantially limited (by ≤99%). CONCLUSION: The ecological environment imposed by intense competition from a soybean crop sets a significant constraint for the landscape-level increase of both the E. indica single and double glyphosate resistance mutations in the agroecosystem and highlights the key role of crop competition in limiting the population growth of weeds, whether they are herbicide-resistant or susceptible. © 2022 Society of Chemical Industry.


Subject(s)
Eleusine , Fabaceae , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Eleusine/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation , Glycine max/genetics , Glyphosate
9.
Pest Manag Sci ; 78(7): 3135-3143, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35452163

ABSTRACT

BACKGROUND: Digitaria sanguinalis has been identified as a species at high risk of evolving herbicide resistance, but thus far, there are no records of resistance to glyphosate. This weed is one of the most common weeds of summer crops in extensive cropping areas in Argentina. It shows an extended period of seedling emergence with several overlapping cohorts during spring and summer, and is commonly controlled with glyphosate. However, a D. sanguinalis population was implicated as a putative glyphosate-resistant biotype based on poor control at recommended glyphosate doses. RESULTS: The field-collected D. sanguinalis population (Dgs R) from the Rolling Pampas has evolved glyphosate resistance. Differences in plant survival and shikimate levels after field-recommended and higher glyphosate doses were evident between Dgs R and the known susceptible (Dgs S) population; the resistance index was 5.1. No evidence of differential glyphosate absorption, translocation, metabolism or basal EPSPS activity was found between Dgs S and Dgs R populations; however, a novel EPSPS Pro-106-His point substitution is probably the primary glyphosate resistance-endowing mechanism. EPSPS in vitro enzymatic activity demonstrated that an 80-fold higher concentration of glyphosate is required in Dgs R to achieve similar EPSPS activity inhibition to that in the Dgs S population. CONCLUSION: This study reports the first global case of glyphosate resistance in D. sanguinalis. This unlikely yet novel transversion at the second position of the EPSPS 106 codon demonstrates the intensity of glyphosate pressure in selecting unexpected glyphosate resistance alleles if they retain EPSPS functionality. © 2022 Society of Chemical Industry.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Digitaria , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation , Glyphosate
10.
Pest Manag Sci ; 78(6): 2287-2298, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35220677

ABSTRACT

BACKGROUND: Some herbicides are commercially formulated with safeners to increase crop selectivity. Fenoxaprop-p-ethyl is formulated with the safener isoxadifen-ethyl for Echinochloa crus-galli control in rice. Safeners act on crops by increasing herbicide metabolism, but this effect may also occur in weeds. The objective of this study was to investigate the effect of the safener isoxadifen-ethyl on the resistance to fenoxaprop-p-ethyl in a biotype of E. crus-galli. RESULTS: A screening of 52 biotypes identified lack of control in the biotype SANTPAT-R treated with the recommended dose of 69 g ha-1 of the commercial formulation of fenoxaprop-p-ethyl with the safener isoxadifen-ethyl. While this biotype survived doses greater than 2208 g ha-1 of the formulation fenoxaprop-p-ethyl + isoxadifen-ethyl, it was killed with 69 g ha-1 of fenoxaprop-p-ethyl without the safener. A glutathione-s-transferase (GST) enzymes inhibitor reduced the resistance factor in two dose-response curves. A minor effect of a CytP450 inhibitor was observed. The previous spraying of the safener isoxadifen-ethyl followed by fenoxaprop-p-ethyl induced survival in the resistant but not in the susceptible biotype. The GST1 and GSTF1 genes were up-regulated in the resistant biotype. ACCase gene mutations were not found, and no cross-resistance to other ACCase inhibitors was identified. CONCLUSION: The safener isoxadifen-ethyl present in the commercial herbicide formulation of fenoxaprop-p-ethyl is associated with resistance in the E. crus-galli SANTPAT-R biotype. This resistance is related with herbicide metabolization mediated by GST pathways. This is the first field-selected weed biotype with herbicide resistance due to safener presence in the sprayed formulation. © 2022 Society of Chemical Industry.


Subject(s)
Echinochloa , Herbicides , Oryza , Herbicide Resistance/genetics , Herbicides/pharmacology , Plant Weeds/genetics
11.
Plant Cell Rep ; 41(2): 493-495, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34994854

ABSTRACT

KEYMESSAGE: We present the first report on base editing in alfalfa. Specifically, we showed edited alfalfa with tolerance to both sulfonylurea- and imidazolinone-type herbicides.


Subject(s)
Gene Editing/methods , Herbicides/pharmacology , Medicago sativa/drug effects , Medicago sativa/genetics , Herbicide Resistance/genetics , Herbicides/chemistry , Plants, Genetically Modified , Sulfonylurea Compounds/pharmacology
12.
Pest Manag Sci ; 78(2): 749-757, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34693637

ABSTRACT

BACKGROUND: Amaranthus palmeri S. Watson, a problematic weed infesting summer crops in Argentina, has developed multiple herbicide resistance. Resistance to acetolactate synthase (ALS)-inhibiting herbicides is particularly common, with high-level resistance mostly caused by different mutations in the ALS enzyme. Six versions of the enzyme were identified from a resistant A. palmeri population, carrying substitutions D376E, A205V, A122S, A282D, W574L and S653N. This work aims to provide a comparative analysis of these mutants and the wild-type (WT) enzyme to fully understand the herbicide resistance. Thus, all the versions of the ALS gene from A. palmeri were heterologously expressed and purified to evaluate their kinetics and inhibitory response against imazethapyr, diclosulam, chlorimuron-ethyl, flucarbazone-sodium and bispyribac-sodium. RESULTS: A decrease in catalytic efficiency was detected in the A205V, A122S-A282D, W574L and S653N ApALS enzymes, whereas only A205V and W574L substitutions also produced a decrease in the substrate affinity. In vitro ALS inhibition assays confirmed cross-resistance to almost all the herbicides tested, with the exception of A282D ApALS, which was as susceptible as WT ApALS. Moreover, the results confirmed that the novel substitution A122S provides cross-resistance to at least one herbicide within each of the five families of ALS inhibitors, and this property could be explained by a lower number of hydrophobic interactions between the herbicides and the mutant enzyme. CONCLUSION: This is the first report to compare various mutations in vitro from A. palmeri ALS. Our data contribute to understanding the impacts of herbicide resistance in this species. © 2021 Society of Chemical Industry.


Subject(s)
Acetolactate Synthase , Amaranthus , Herbicides , Acetolactate Synthase/genetics , Amaranthus/genetics , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation, Missense , Plant Proteins/genetics
13.
Plant Sci ; 313: 111097, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34763850

ABSTRACT

Safeners are chemical compounds used to improve selectivity and safety of herbicides in crops by activating genes that enhance herbicide metabolic detoxification. The genes activated by safeners in crops are similar to the genes causing herbicide resistance through increased metabolism in weeds. This work investigated the effect of the safener isoxadifen-ethyl (IS) in combination with fenoxaprop-p-ethyl (FE) on the evolution of herbicide resistance in Echinochloa crus-galli under recurrent selection. Reduced susceptibility was observed in the progeny after recurrent selection with both FE alone and with FE + IS for two generations (G2) compared to the parental population (G0). The resistance index found in G2 after FE + IS selection was similar as when FE was used alone, demonstrating that the safener did not increase the rate or magnitude of herbicide resistance evolution. G2 progeny selected with FE alone and the combination of FE + IS had increased survival to herbicides from other mechanisms of action relative to the parental G0 population. One biotype of G2 progeny had increased constitutive expression of glutathione-S-transferase (GST1) after recurrent selection with FE + IS. G2 progeny had increased expression of two P450 genes (CYP71AK2 and CYP72A122) following treatment with FE, while G2 progeny had increased expression of five P450 genes (CYP71AK2, CYP72A258, CYP81A12, CYP81A14 and CYP81A21) after treatment with FE + IS. Repeated selection with low doses of FE with or without the safener IS decreased E. crus-galli control and showed potential for cross-resistance evolution. Addition of safener did not further decrease herbicide sensitivity in second generation progeny; however, the recurrent use of safener in combination with FE resulted in safener-induced increased expression of several CYP genes. This is the first report using safener as an additional factor to study herbicide resistance evolution in weeds under experimental recurrent selection.


Subject(s)
Echinochloa/genetics , Echinochloa/physiology , Herbicide Resistance/genetics , Herbicide Resistance/physiology , Herbicides/metabolism , Oxazoles/metabolism , Propionates/metabolism , Brazil , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Weed Control
14.
Mol Ecol ; 30(21): 5360-5372, 2021 11.
Article in English | MEDLINE | ID: mdl-34637174

ABSTRACT

The global invasion, and subsequent spread and evolution of weeds provides unique opportunities to address fundamental questions in evolutionary and invasion ecology. Amaranthus palmeri is a widespread glyphosate-resistant (GR) weed in the USA. Since 2015, GR populations of A. palmeri have been confirmed in South America, raising questions about introduction pathways and the importance of pre- vs. post-invasion evolution of GR traits. We used RAD-sequencing genotyping to characterize genetic structure of populations from Brazil, Argentina, Uruguay and the USA. We also quantified gene copy number of the glyphosate target, 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS), and the presence of an extrachromosomal circular DNA (eccDNA) replicon known to confer glyphosate resistance in USA populations. Populations in Brazil, Argentina and Uruguay were only weakly differentiated (pairwise FST  ≤0.043) in comparison to USA populations (mean pairwise FST  =0.161, range =0.068-0.258), suggesting a single major invasion event. However, elevated EPSPS copy number and the EPSPS replicon were identified in all populations from Brazil and Uruguay, but only in a single Argentinean population. These observations are consistent with independent in situ evolution of glyphosate resistance in Argentina, followed by some limited recent migration of the eccDNA-based mechanism from Brazil to Argentina. Taken together, our results are consistent with an initial introduction of A. palmeri into South America sometime before the 1980s, and local evolution of GR in Argentina, followed by a secondary invasion of GR A. palmeri with the unique eccDNA-based mechanism from the USA into Brazil and Uruguay during the 2010s.


Subject(s)
Herbicide Resistance , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Brazil , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Herbicides/pharmacology , Glyphosate
15.
Pest Manag Sci ; 77(12): 5375-5381, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34302709

ABSTRACT

BACKGROUND: Digitaria insularis is a weed species that has gained considerable importance in Brazil's soybean production areas that rely on glyphosate-resistant cultivars. Herbicide-resistant weed populations of this species have been reported in many regions in Brazil, first in the south, followed by later reports in the north. We hypothesized that the spread of herbicide-resistant D. insularis is facilitated by movement of agricultural machinery from the southern regions of Brazil. RESULTS: Population genomics revealed a weak or no genetic structure (FST  = [0; 0.16]), moderate expected heterozygosity (HE  = 0.15; 0.44) and low inbreeding (FIS  = [-0.1; 0.1]) in D. insularis populations. Our data supported the hypothesis that herbicide resistance gene flow predominantly occurred in a south-to-north direction based on a migration analysis. We also found evidence of local adaptation of resistant populations in the northern soybean-growing regions of Brazil. CONCLUSION: Evidence in our work suggests that gene flow of glyphosate-resistant D. insularis is associated with movement of agricultural machinery, although local selection pressure seems to play an important role in the evolution of herbicide resistance throughout the country. Our results suggest preventive practices such as equipment sanitation should be implemented to limit the spread of herbicide resistant D. insularis. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Digitaria , Herbicides , Brazil , Herbicide Resistance/genetics , Herbicides/pharmacology , Metagenomics , Plant Weeds , Glycine max/genetics
16.
Chemosphere ; 281: 130888, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34029964

ABSTRACT

At present, appearance of herbicide resistant weeds is not new because repeated herbicide treatments per agricultural year/cycle are usual in both perennial and annual crops worldwide. Characterizing resistance mechanisms implied in each herbicide resistant weed is the best tool and the basis to develop integrated weed management (IWM) strategies. The main resistance mechanisms which confer low sensibility to glyphosate in a previously confirmed glyphosate-resistant Chloris radiata population (ChrR), occurring in Colombian rice fields, were characterized. Pure line selection by clone plants showed high resistance levels in ChrR. Comparing with GR50 and LD50 values, ChrR was 9.6 and 10.8 times more resistant with respect to a representative susceptible population (ChrS). The nontarget site mechanisms reduced glyphosate absorption and translocation did not contribute to the glyphosate resistance of the ChrR population. However, enzyme activity assays and DNA sequencing demonstrated that at least one target-site resistance mechanism is involved in such resistance. All ten ChrR plants tested had the amino acid substitution Pro-106-Ser. The results may be crucial to decrease the resistance distribution of C. radiata in Colombia by implementing IWM programs. The change in weed control strategies in rice fields from Colombia must include herbicides with different mode of action from glyphosate and non chemical methods to preserve the useful life of glyphosate longer for weed control in the country.


Subject(s)
Herbicides , Oryza , Colombia , Glycine/analogs & derivatives , Glycine/toxicity , Herbicide Resistance/genetics , Herbicides/toxicity , Oryza/genetics , Glyphosate
17.
PLoS One ; 15(9): e0238818, 2020.
Article in English | MEDLINE | ID: mdl-32913366

ABSTRACT

The evolution of glyphosate resistance (GR) in weeds is an increasing problem. Glyphosate has been used intensively on wild poinsettia (Euphorbia heterophylla L.) populations for at least 20 years in GR crops within South America. We investigated the GR mechanisms in a wild poinsettia population from a soybean field in southern Brazil. The GR population required higher glyphosate doses to achieve 50% control (LD50) and 50% dry mass reduction (MR50) compared to a glyphosate susceptible (GS) population. The ratio between the LD50 and MR50 of GR and GS resulted in resistance factors (RF) of 6.9-fold and 6.1-fold, respectively. Shikimate accumulated 6.7 times more in GS than in GR when leaf-discs were incubated with increasing glyphosate concentrations. No differences were found between GR and GS regarding non-target-site mechanisms. Neither population metabolized glyphosate to significant levels following treatment with 850 g ha-1 glyphosate. Similar levels of 14C-glyphosate uptake and translocation were observed between the two populations. No differences in EPSPS expression were found between GS and GR. Two target site mutations were found in all EPSPS alleles of homozygous resistant plants: Thr102Ile + Pro106Thr (TIPT-mutation). Heterozygous individuals harbored both alleles, wild-type and TIPT. Half of GR individuals were heterozygous, suggesting that resistance is still evolving in the population. A genotyping assay was developed based on the Pro106Thr mutation, demonstrating high efficiency to identify homozygous, heterozygous or wild-type EPSPS sequences across different plants. This is the first report of glyphosate-resistant wild-poinsettia harboring an EPSPS double mutation (TIPT) in the same plant.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Euphorbia/genetics , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Brazil , Crops, Agricultural/growth & development , Euphorbia/drug effects , Glycine/pharmacology , Herbicides/pharmacology , Mutation , Plant Proteins/genetics , Plant Weeds/drug effects , Plant Weeds/genetics , Shikimic Acid/metabolism , Glycine max/growth & development , Weed Control/methods , Glyphosate
18.
Plant Sci ; 290: 110255, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31779903

ABSTRACT

Herbicide resistant (HR) weeds are of major concern in modern agriculture. This situation is exacerbated by the massive adoption of herbicide-based technologies along with the overuse of a few active ingredients to control weeds over vast areas year after year. Also, many other anthropological, biological, and environmental factors have defined a higher rate of herbicide resistance evolution in numerous weed species around the world. This review focuses on two central points: 1) how these factors have affected the resistance evolution process; and 2) which cultural practices and new approaches would help to achieve an effective integrated weed management. We claim that global climate change is an unnoticed factor that may be acting on the selection of HR weeds, especially those evolving into non-target-site resistance mechanisms. And we present several new tools -such as Gene Drive and RNAi technologies- that may be adopted to cope with herbicide resistance spread, as well as discuss their potential application at field level. This is the first review that integrates agronomic and molecular knowledge of herbicide resistance. It covers not only the genetic basis of the most relevant resistance mechanisms but also the strengths and weaknesses of traditional and forthcoming agricultural practices.


Subject(s)
Biological Evolution , Herbicide Resistance/genetics , Plant Weeds/drug effects , Weed Control/methods , Climate Change , Crop Production/methods
19.
Mol Biol Rep ; 46(6): 6271-6276, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31522344

ABSTRACT

Herbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) are very effective in controlling grass weeds including weedy-rice in paddy rice production systems. The ACCase inhibitor affects the enzyme by blocking fatty acid biosynthesis resulting in plant death. The herbicide resistance in rice is conferred by a single point mutation with an amino acid substitution of the carboxyl transferase domain of the ACCase gene. An assay based on the tetra-primer ARMS-PCR method was developed to detect the SNP G2027T that causes a tryptophan-cysteine substitution in the gene encoding chloroplastic ACCase in rice. The protocol was tested in 453 rice samples from a segregant population for validation of the assay. This technique can be exploited to monitor resistant lines in rice breeding programs to detect homozygous or heterozygous resistant genotypes and homozygous susceptible genotypes. The presence of resistant ACCase allele(s) can be detected with rapidity, simplicity, at low cost and can be used in any molecular biology laboratory with minimal equipment.


Subject(s)
Acetyl-CoA Carboxylase/genetics , Herbicide Resistance/genetics , Oryza/drug effects , Oryza/genetics , Plant Proteins/genetics , Acetyl-CoA Carboxylase/metabolism , Alleles , Amino Acid Substitution , Base Sequence , Catalysis , Mutation , Oryza/metabolism , Plant Proteins/metabolism , Polymorphism, Single Nucleotide
20.
Transgenic Res ; 28(5-6): 509-523, 2019 12.
Article in English | MEDLINE | ID: mdl-31250247

ABSTRACT

Genetically modified (GM) maize has been grown and safely consumed on a global scale since its commercialization in 1996. However, questions have been raised about the potential impact that GM maize could have on native maize landraces in Mexico, which is the center of origin and diversity of maize. This research was conducted to evaluate potential changes to maize landraces in an unlikely event of transgene introgression. For this study, two GM traits that confer insect protection and herbicide tolerance in maize (MON 89034 and MON 88017), designated as VT3Pro, were introgressed into two Mexican landraces, Tuxpeño and Tabloncillo. Field trials were conducted across four environments to assess phenotypic characteristics, plant response to stressors, and kernel composition of landraces with and without VT3Pro traits. Furthermore, materials from four backcrossing generations were analyzed for segregation of these GM traits. Generally, no significant differences were observed between landraces with and without VT3Pro traits for the evaluated characteristics and the segregation analysis showed that GM traits, when introgressed into landraces, followed Mendelian principles. These results support the conclusion that, if inadvertently introgressed into landraces, VT3Pro traits are not expected to alter phenotypic or kernel characteristics, plant response to stressors (except for targeted insect protection and herbicide tolerance traits) and would segregate like any endogenous gene. These results should be taken into consideration when discussing benefits and risks associated with commercial production of GM maize hybrids in the centers of origin and diversity of maize.


Subject(s)
Crops, Agricultural/genetics , Herbicide Resistance/genetics , Plants, Genetically Modified/genetics , Zea mays/genetics , Gene Flow/genetics , Herbicides/adverse effects , Herbicides/pharmacology , Humans , Mexico , Plants, Genetically Modified/growth & development , Seeds/genetics , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL