Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 105: 104446, 2020 12.
Article in English | MEDLINE | ID: mdl-33171405

ABSTRACT

A novel series of thiazolopyrimidines and fused thiazolopyrimidines was designed and synthesized as topoisomerase II alpha inhibitors. All synthesized compounds were screened by the National Cancer Institute (NCI), Bethesda, USA for anticancer activity against 60 human cancer cell lines representing the following cancer types: leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast cancers. Compound 3a was found to be the most potent inhibitor on renal cell line (A-498) causing 83.03% inhibition (IC50 = 1.89 µM). DNA-flow cytometric analysis showed that compound 3a induce cell cycle arrest at G2/M phase leading to cell proliferation inhibition and apoptosis. Moreover, fused thiazolopyrimidines 3a showed potent topoisomerase II inhibitory activity (IC50 = 3.19 µM) when compared with reference compound doxorubicin (IC50 = 2.67 µM). Docking study of all the synthesized compounds showed that compound 3a interacts in a similar pattern to etoposide and stabilizing the topoisomerase cleavage complex (Top2-cc) that accounts for its high potency.


Subject(s)
Antineoplastic Agents/chemical synthesis , DNA Topoisomerases, Type II/metabolism , Heterocyclic Compounds, Fused-Ring/chemical synthesis , Pyrimidines/chemical synthesis , Thiazoles/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Heterocyclic Compounds, Fused-Ring/pharmacology , Humans , Molecular Docking Simulation , Molecular Structure , Pyrimidines/pharmacology , Topoisomerase II Inhibitors/pharmacology
2.
J Antibiot (Tokyo) ; 72(8): 590-599, 2019 08.
Article in English | MEDLINE | ID: mdl-31118480

ABSTRACT

A number of substituted benzopentathiepin-6-amines and their analogues without a polysulfur ring were synthesized and evaluated in vitro for antimicrobial activity against a panel of reference bacterial and fungal strains. Trifluoroacetamide 14 demonstrated high antibacterial activity against Staphylococcus aureus (MRSA strain) with a MIC of 4 µg/mL, which was four-fold higher than the activity of a reference drug amoxicillin. This compound was also most active against the Candida albicans fungus (MIC of 1 µg ml-1), whereas amide 17 containing a morpholine substituent was most active against the Cryptococcus neoformans fungus (MIC of 2 µg ml-1). These compounds have no hemolytic activity and are low cytotoxic. Replacement of the pentathiepine ring with 1,3-dithiolan-2-one or 1,3-dithiolane moieties leads to loss of antimicrobial activity. Based on the QSAR analysis and molecular docking data, bacterial DNA ligase might be one of the targets for the antibacterial activity of substituted benzopentathiepin-6-amines against S. aureus.


Subject(s)
Anti-Infective Agents/pharmacology , Heterocyclic Compounds, Fused-Ring/pharmacology , Sulfides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Fungi/drug effects , Heterocyclic Compounds, Fused-Ring/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quantitative Structure-Activity Relationship , Sulfides/chemical synthesis
3.
Eur J Pharm Sci ; 132: 34-43, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30807815

ABSTRACT

The present study was aimed at broadening the profile of toxicity and biological activity of promising fused azaisocytosine-containing congeners (I-VI) possessing medical applicability and important pharmacokinetic properties. For this purpose, the in vivo zebrafish test was applied for evaluating embryotoxic effects of test compounds, whereas the ex vivo model of oxidatively-stressed rat erythrocytes was developed for assessing their antihaemolytic activities. Additionally, the MTT-based assays suitable for assessing cytotoxic and antiviral activities of I-VI were employed. The influence of compounds I-VI on zebrafish embryos/larvae was carefully investigated in relation to lack or presence of various substituents at the phenyl moiety. The least embryotoxic proved to be the parent compound (I) and its para-methyl (II) and ortho-chloro (III) derivatives. Simultaneously, they revealed the minimum embryotoxic concentrations higher than that of aciclovir, what makes them safer than this pharmaceutic. Moreover, most of test compounds showed protective effects (better or comparable to that of ascorbic acid) on oxidatively-stressed erythrocytes. All the investigated compounds were effective at inhibiting the growth of human solid tumours of pharynx (FaDu) and tongue (SCC-25). The majority of molecules showed good selectivity indices. The most selective proved to be II showing in normal Vero cells over a 5-fold and an almost 3-fold decreased cytotoxicity relative to that in tumour SCC-25 and FaDu cells, respectively. Additionally, a 3,4-dichloro derivative (VI) was shown to possess concentration-dependent inhibitory effects on the replication of Herpes simplex virus type 1 and simultaneously at active concentrations was found to be nontoxic for normal Vero cells.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Aza Compounds/chemistry , Cytosine/analogs & derivatives , Embryo, Nonmammalian/drug effects , Hemolysis/drug effects , Heterocyclic Compounds, Fused-Ring/pharmacology , Zebrafish , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Cytosine/chemistry , Dose-Response Relationship, Drug , Embryo, Nonmammalian/abnormalities , Erythrocytes/drug effects , Herpesvirus 1, Human/drug effects , Heterocyclic Compounds, Fused-Ring/chemistry , Heterocyclic Compounds, Fused-Ring/pharmacokinetics , Heterocyclic Compounds, Fused-Ring/toxicity , Vero Cells , Virus Replication/drug effects , Zebrafish/growth & development
4.
Molecules ; 22(3)2017 Mar 18.
Article in English | MEDLINE | ID: mdl-28335470

ABSTRACT

A series of novel 4H-benzo[h]chromenes 4, 6-11, 13, 14; 7H-benzo[h]chromeno[2,3-d]pyrimidines 15-18, 20, and 14H-benzo[h]chromeno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives 19a-e, 24 was prepared. The structures of the synthesized compounds were characterized on the basis of their spectral data. Some of the target compounds were examined for their antiproliferative activity against three cell lines; breast carcinoma (MCF-7), human colon carcinoma (HCT-116) and hepatocellular carcinoma (HepG-2). The cytotoxic behavior has been tested using MTT assay and the inhibitory activity was referenced to three standard anticancer drugs: vinblastine, colchicine and doxorubicin. The bioassays demonstrated that some of the new compounds exerted remarkable inhibitory effects as compared to the standard drugs on the growth of the three tested human tumor cell lines. The structure-activity relationships (SAR) study highlights that the antitumor activity of the target compounds was significantly affected by the lipophilicity of the substituent at 2- or 3- and fused rings at the 2,3-positions.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Antineoplastic Agents/chemistry , Benzopyrans/chemistry , Cell Proliferation/drug effects , Cell Survival , Drug Screening Assays, Antitumor , HCT116 Cells , Hep G2 Cells , Heterocyclic Compounds, Fused-Ring/chemical synthesis , Heterocyclic Compounds, Fused-Ring/chemistry , Heterocyclic Compounds, Fused-Ring/pharmacology , Humans , MCF-7 Cells , Molecular Structure , Structure-Activity Relationship
5.
ACS Comb Sci ; 18(7): 399-404, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27163384

ABSTRACT

Here, we report an unprecedented, highly diastereoselective Prins-Ritter reaction of aldehydes, homoallylic alcohols, and nitriles in a three-component coupling reaction for the synthesis of tetra-cis-substituted 4-amidotetrahydropyrans. In this study, the reaction was not only applied for carbohydrate-based heterobicycles but also for more complex heterotricycles, showing acceptable levels of conversion yield (42-97% BRSM) and exclusive diastereoselectivity. Furthermore, the latter heterotricycles were converted to nine analogues of our neuronal receptor ligands IKM-159 and MC-27. An in vivo assay by intracerebroventricular injection in mice suggested that the substituent at C9 of the novel analogues interferes with the molecular interactions with the AMPA receptor, which was originally observed in the complex of IKM-159 and the GluA2 ligand binding domain. Our research has thus shown the power of a multicomponent coupling reaction for the preparation of a structurally diverse compound collection to study structure-activity relationships of biologically active small molecules.


Subject(s)
Drug Discovery/methods , Glutamic Acid/analogs & derivatives , Glutamic Acid/chemical synthesis , Heterocyclic Compounds, Fused-Ring/chemical synthesis , Pyrans/chemical synthesis , Receptors, AMPA/antagonists & inhibitors , Animals , Behavior, Animal/drug effects , Glutamic Acid/chemistry , Glutamic Acid/pharmacology , Heterocyclic Compounds, Fused-Ring/chemistry , Heterocyclic Compounds, Fused-Ring/pharmacology , Ligands , Mice , Molecular Structure , Pyrans/chemistry , Pyrans/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...