Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.439
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38631901

The vasculature is a key component of adult brain neural stem cell (NSC) niches. In the adult mammalian hippocampus, NSCs reside in close contact with a dense capillary network. How this niche is maintained is unclear. We recently found that adult hippocampal NSCs express VEGF, a soluble factor with chemoattractive properties for vascular endothelia. Here, we show that global and NSC-specific VEGF loss led to dissociation of NSCs and their intermediate progenitor daughter cells from local vasculature. Surprisingly, though, we found no changes in local vascular density. Instead, we found that NSC-derived VEGF supports maintenance of gene expression programs in NSCs and their progeny related to cell migration and adhesion. In vitro assays revealed that blockade of VEGF receptor 2 impaired NSC motility and adhesion. Our findings suggest that NSCs maintain their own proximity to vasculature via self-stimulated VEGF signaling that supports their motility towards and/or adhesion to local blood vessels.


Neural Stem Cells , Vascular Endothelial Growth Factor A , Animals , Hippocampus/blood supply , Hippocampus/metabolism , Neural Stem Cells/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
2.
Neuroimage ; 250: 118957, 2022 04 15.
Article En | MEDLINE | ID: mdl-35122968

The hippocampus is a small but complex grey matter structure that plays an important role in spatial and episodic memory and can be affected by a wide range of pathologies including vascular abnormalities. In this work, we introduce the use of Ferumoxytol, an ultra-small superparamagnetic iron oxide (USPIO) agent, to induce susceptibility in the arteries (as well as increase the susceptibility in the veins) to map the hippocampal micro-vasculature and to evaluate the quantitative change in tissue fractional vascular density (FVD), in each of its subfields. A total of 39 healthy subjects (aged 35.4 ± 14.2 years, from 18 to 81 years old) were scanned with a high-resolution (0.22×0.44×1 mm3) dual-echo SWI sequence acquired at four time points during a gradual increase in Ferumoxytol dose (final dose = 4 mg/kg). The volumes of each subfield were obtained automatically from the pre-contrast T1-weighted data. The dynamically acquired SWI data were co-registered and adaptively combined to reduce the blooming artifacts from large vessels, preserving the contrast from smaller vessels. The resultant SWI data were used to segment the hippocampal vasculature and to measure the FVD ((volume occupied by vessels)/(total volume)) for each subfield. The hippocampal fissure, along with the fimbria, granular cell layer of the dentate gyrus and cornu ammonis layers (except for CA1), showed higher micro-vascular FVD than the other parts of hippocampus. The CA1 region exhibited a significant correlation with age (R = -0.37, p < 0.05). demonstrating an overall loss of hippocampal vascularity in the normal aging process. Moreover, the vascular density reduction was more prominent than the age correlation with the volume reduction (R = -0.1, p > 0.05) of the CA1 subfield, which would suggest that vascular degeneration may precede tissue atrophy.


Brain Mapping/methods , Ferrosoferric Oxide/administration & dosage , Hippocampus/blood supply , Magnetic Resonance Angiography/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Healthy Volunteers , Humans , Male , Microcirculation , Middle Aged
3.
Nature ; 603(7903): 885-892, 2022 03.
Article En | MEDLINE | ID: mdl-35165441

The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms-the blood-brain barrier-impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer's disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer's disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer's disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer's disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.


Alzheimer Disease , Brain , Disease Susceptibility , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/blood supply , Brain/cytology , Brain/metabolism , Cerebral Cortex/blood supply , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Genome-Wide Association Study , Hippocampus/blood supply , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mice , Microglia/metabolism , Pericytes/metabolism , Transcriptome
4.
Neuropharmacology ; 207: 108935, 2022 04 01.
Article En | MEDLINE | ID: mdl-34968475

AIMS: Acetaminophen or paracetamol (PAR), the recommended antipyretic in COVID-19 and clinically used to alleviate stroke-associated hyperthermia interestingly activates cannabinoid receptor (CB1) through its AM404 metabolite, however, to date, no study reports the in vivo activation of PAR/AM404/CB1 axis in stroke. The current study deciphers the neuroprotective effect off PAR in cerebral ischemia/reperfusion (IR) rat model and unmasks its link with AM404/CB1/PI3K/Akt axis. MATERIALS AND METHODS: Animals were allocated into 5 groups: (I) sham-operated (SO), (II) IR, (III) IR + PAR (100 mg/kg), (IV) IR + PAR (100 mg/kg) + URB597; anandamide degradation inhibitor (0.3 mg/kg) and (V) IR + PAR (100 mg/kg) + AM4113; CB1 Blocker (5 mg/kg). All drugs were intraperitoneally administered at the inception of the reperfusion period. KEY FINDINGS: PAR administration alleviated the cognitive impairment in the Morris Water Maze as well as hippocampal histopathological and immunohistochemical examination of GFAP. The PAR signaling was associated with elevation of anandamide level, CB1 receptor expression and survival proteins as pS473-Akt. P(tyr202/thr204)-ERK1/2 and pS9-GSK3ß. Simultaneously, PAR increased hippocampal BDNF and ß-arrestin1 levels and decreased glutamate level. PAR restores the deranged redox milieu induced by IR Injury, by reducing lipid peroxides, myeloperoxidase activity and NF-κB and increasing NPSH, total antioxidant capacity, nitric oxide and Nrf2 levels. The pre-administration of AM4113 reversed PAR effects, while URB597 potentiated them. SIGNIFICANCE: PAR poses a significant neuroprotective effect which may be mediated, at least in part, via activation of anandamide/CB1/PI3K/Akt pathway in the IR rat model.


Acetaminophen/pharmacology , Antipyretics/pharmacology , Benzamides/pharmacology , Carbamates/pharmacology , Enzyme Inhibitors/pharmacology , Hippocampus/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Receptor, Cannabinoid, CB1/metabolism , Reperfusion Injury/metabolism , Amidohydrolases/antagonists & inhibitors , Animals , Arachidonic Acids/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Endocannabinoids/metabolism , Hippocampus/blood supply , Hippocampus/metabolism , Hippocampus/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Polyunsaturated Alkamides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reperfusion Injury/physiopathology
5.
Nutr Neurosci ; 25(1): 122-136, 2022 Jan.
Article En | MEDLINE | ID: mdl-32116157

Objectives: Cerebral ischemia is caused by a reduction of the blood flow in a specific area in the brain, triggering cellular cascades in the tissue that result in neuronal death. This phenomenon leads to neurological decline in patients with stroke. The extent of the injury after stroke could be related to the condition of obesity. Thus, we aim to analyze the effect of obesity induced by a high fructose diet (HFD) on the brain after cerebral ischemia in rats.Methods: We induced the obesity model in female Wistar rats with 20% fructose in water for 11 weeks. We then performed cerebral ischemia surgery (2-vessel occlusion), carried out the neurological test 6, 24 and 48 h post-ischemia and analyzed the histological markers.Results: The HFD induced an obese phenotype without insulin resistance. The obese rats exhibited worse neurological performance at 6 h post-ischemia and showed neuronal loss and astroglial and microglial immunoreactivity changes in the caudate putamen, motor cortex, amygdala and hippocampus at 48 h post-ischemia. However, the most commonly affected area was the hippocampus, where we found an increase in interleukin 1ß in the blood vessels of the dentate gyrus, a remarkable disruption of MAP-2+ dendrites, a loss of brain-derived neurotrophic factor and the presence of PHF-tau. In conclusion, a HFD induces an obese phenotype and worsens the neuronal loss, inflammation and plasticity impairment in the hippocampus after cerebral ischemia.


Brain Ischemia/physiopathology , Dietary Sugars/administration & dosage , Fructose/administration & dosage , Hippocampus/physiopathology , Neuronal Plasticity/physiology , Neurons/physiology , Obesity/etiology , Obesity/physiopathology , Animals , Female , Hippocampus/blood supply , Inflammation , Rats , Rats, Wistar
6.
J Cereb Blood Flow Metab ; 42(2): 364-380, 2022 02.
Article En | MEDLINE | ID: mdl-34590894

Repeated high-frequency pulse-burst stimulations of the rat perforant pathway elicited positive BOLD responses in the right hippocampus, septum and prefrontal cortex. However, when the first stimulation period also triggered neuronal afterdischarges in the hippocampus, then a delayed negative BOLD response in the prefrontal cortex was generated. While neuronal activity and cerebral blood volume (CBV) increased in the hippocampus during the period of hippocampal neuronal afterdischarges (h-nAD), CBV decreased in the prefrontal cortex, although neuronal activity did not decrease. Only after termination of h-nAD did CBV in the prefrontal cortex increase again. Thus, h-nAD triggered neuronal activity in the prefrontal cortex that counteracted the usual neuronal activity-related functional hyperemia. This process was significantly enhanced by pilocarpine, a mACh receptor agonist, and completely blocked when pilocarpine was co-administered with scopolamine, a mACh receptor antagonist. Scopolamine did not prevent the formation of the negative BOLD response, thus mACh receptors modulate the strength of the negative BOLD response.


Cerebrovascular Circulation , Hippocampus , Neurons/metabolism , Perforant Pathway , Animals , Hippocampus/blood supply , Hippocampus/metabolism , Hyperemia/metabolism , Male , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Perforant Pathway/blood supply , Perforant Pathway/metabolism , Pilocarpine/pharmacology , Prefrontal Cortex/blood supply , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Scopolamine/pharmacology
7.
J Cereb Blood Flow Metab ; 42(1): 136-144, 2022 01.
Article En | MEDLINE | ID: mdl-34431378

Our purpose is to assess the role of deep medullary veins (DMVs) in pathogenesis of MRI-visible perivascular spaces (PVS) in patients with cerebral small vessel disease (cSVD). Consecutive patients recruited in the CIRCLE study (ClinicalTrials.gov ID: NCT03542734) were included. Susceptibility Weighted Imaging-Phase images were used to evaluate DMVs based on a brain region-based visual score. T2 weighted images were used to evaluate PVS based on the five-point score, and PVS in basal ganglia (BG-PVS), centrum semiovale (CSO-PVS) and hippocampus (H-PVS) were evaluated separately. 270 patients were included. The severity of BG-PVS, CSO-PVS and H-PVS was positively related to the increment of age (all p < 0.05). The severity of BG-PVS and H-PVS was positively related to DMVs score (both p < 0.05). Patients with more severe BG-PVS had higher Fazekas scores in both periventricle and deep white matter (both p < 0.001) and higher frequency of hypertension (p = 0.008). Patients with more severe H-PVS had higher frequency of diabetes (p < 0.001). Besides, high DMVs score was an independent risk factor for more severe BG-PVS (ß = 0.204, p = 0.001). Our results suggested that DMVs disruption might be involved in the pathogenesis of BG-PVS.


Cerebral Small Vessel Diseases/diagnostic imaging , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging , Aged , Female , Hippocampus/blood supply , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies
8.
Physiol Rev ; 102(2): 653-688, 2022 04 01.
Article En | MEDLINE | ID: mdl-34254836

The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.


Entorhinal Cortex/blood supply , Entorhinal Cortex/physiology , Hippocampus/blood supply , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Humans , Learning/physiology , Neurons/physiology
9.
Sci Rep ; 11(1): 22061, 2021 11 11.
Article En | MEDLINE | ID: mdl-34764358

Exercise is beneficial for brain health, inducing neuroplasticity and vascular plasticity in the hippocampus, which is possibly mediated by brain-derived neurotrophic factor (BDNF) levels. Here we investigated the short-term effects of exercise, to determine if a 1-week intervention is sufficient to induce brain changes. Fifteen healthy young males completed five supervised exercise training sessions over seven days. This was preceded and followed by a multi-modal magnetic resonance imaging (MRI) scan (diffusion-weighted MRI, perfusion-weighted MRI, dual-calibrated functional MRI) acquired 1 week apart, and blood sampling for BDNF. A diffusion tractography analysis showed, after exercise, a significant reduction relative to baseline in restricted fraction-an axon-specific metric-in the corpus callosum, uncinate fasciculus, and parahippocampal cingulum. A voxel-based approach found an increase in fractional anisotropy and reduction in radial diffusivity symmetrically, in voxels predominantly localised in the corpus callosum. A selective increase in hippocampal blood flow was found following exercise, with no change in vascular reactivity. BDNF levels were not altered. Thus, we demonstrate that 1 week of exercise is sufficient to induce microstructural and vascular brain changes on a group level, independent of BDNF, providing new insight into the temporal dynamics of plasticity, necessary to exploit the therapeutic potential of exercise.


Cerebrovascular Circulation , Exercise , Hippocampus/blood supply , White Matter/blood supply , Adult , Hippocampus/anatomy & histology , Humans , Magnetic Resonance Imaging , Male , White Matter/anatomy & histology , Young Adult
10.
Brain Res ; 1771: 147631, 2021 11 15.
Article En | MEDLINE | ID: mdl-34464600

OBJECTIVE: The purpose of this study was to assess cerebral blood flow (CBF) and its association with self-reported symptoms in chronic traumatic brain injury (TBI). PARTICIPANTS: Sixteen participants with mild to severe TBI and persistent self-reported neurological symptoms, 6 to 72 months post-injury were included. For comparison, 16 age- and gender-matched healthy normal control participants were also included. MAIN MEASURES: Regional CBF and brain volume were assessed using pseudo-continuous Arterial Spin Labeling (PCASL) and T1-weighted data respectively. Cognitive function and self-reported symptoms were assessed in TBI participants using the national institutes of health (NIH) Toolbox Cognition Battery and Patient-Reported Outcome Measurement Information System respectively. Associations between CBF and cognitive function, symptoms were assessed. RESULTS: Global CBF and regional brain volumes were similar between groups, but region of interest (ROI) analysis revealed lower CBF bilaterally in the thalamus, hippocampus, left caudate, and left amygdala in the TBI group. Voxel-wise analysis revealed that CBF in the hippocampus, parahippocampus, rostral anterior cingulate, inferior frontal gyrus, and other temporal regions were negatively associated with self-reported anger, anxiety, and depression symptoms. Furthermore, region of interest (ROI) analysis revealed that hippocampal and rostral anterior cingulate CBF were negatively associated with symptoms of fatigue, anxiety, depression, and sleep issues. CONCLUSION: Regional CBF deficit was observed in the group with chronic TBI compared to the normal control (NC) group despite similar volume of cerebral structures. The observed negative correlation between regional CBF and affective symptoms suggests that CBF-targeted intervention may potentially improve affective symptoms and quality of life after TBI, which needs to be assessed in future studies.


Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/psychology , Cerebrovascular Circulation , Gyrus Cinguli/blood supply , Hippocampus/blood supply , Mood Disorders/physiopathology , Mood Disorders/psychology , Adult , Brain Injuries, Traumatic/complications , Brain Injury, Chronic , Chronic Disease , Cognition , Female , Gyrus Cinguli/physiopathology , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mood Disorders/etiology , Neuropsychological Tests , Sleep Wake Disorders/etiology , Sleep Wake Disorders/physiopathology , Sleep Wake Disorders/psychology , Spin Labels , Treatment Outcome
11.
Aging (Albany NY) ; 13(11): 14651-14674, 2021 06 01.
Article En | MEDLINE | ID: mdl-34074801

Vascular dementia (VaD) is a progressive cognitive impairment of vascular etiology. VaD is characterized by cerebral hypoperfusion, increased blood-brain barrier permeability and white matter lesions. An increased burden of VaD is expected in rapidly aging populations. The hippocampus is particularly susceptible to hypoperfusion, and the resulting memory impairment may play a crucial role in VaD. Here we have investigated the hippocampal gene expression profile of young and old mice subjected to cerebral hypoperfusion by bilateral common carotid artery stenosis (BCAS). Our data in sham-operated young and aged mice reveal an age-associated decline in cerebral blood flow and differential gene expression. In fact, BCAS and aging caused broadly similar effects. However, BCAS-induced changes in hippocampal gene expression differed between young and aged mice. Specifically, transcriptomic analysis indicated that in comparison to young sham mice, many pathways altered by BCAS in young mice resembled those already present in sham aged mice. Over 30 days, BCAS in aged mice had minimal effect on either cerebral blood flow or hippocampal gene expression. Immunoblot analyses confirmed these findings. Finally, relative to young sham mice the cell type-specific profile of genes in both young BCAS and old sham animals further revealed common cell-specific genes. Our data provide a genetic-based molecular framework for hypoperfusion-induced hippocampal damage and reveal common cellular signaling pathways likely to be important in the pathophysiology of VaD.


Aging/genetics , Gene Expression Profiling , Hippocampus/blood supply , Hippocampus/metabolism , Animals , Cerebrovascular Circulation/genetics , Chronic Disease , Gene Expression Regulation , Gene Ontology , Male , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Time Factors
12.
Biol Open ; 10(5)2021 05 15.
Article En | MEDLINE | ID: mdl-34184731

Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.


Aging/genetics , Cognitive Dysfunction/etiology , Endothelium/metabolism , Gene Expression Profiling , Hippocampus/metabolism , Transcriptome , Age Factors , Aging/metabolism , Alternative Splicing , Biomarkers , Brain/blood supply , Brain/metabolism , Brain/physiopathology , Cell Proliferation , Cognitive Dysfunction/metabolism , Computational Biology/methods , Disease Susceptibility , Gene Expression Regulation , Gene Regulatory Networks , Hippocampus/blood supply , Hippocampus/physiopathology , Humans
13.
Nat Commun ; 12(1): 3190, 2021 05 27.
Article En | MEDLINE | ID: mdl-34045465

The hippocampus is essential for spatial and episodic memory but is damaged early in Alzheimer's disease and is very sensitive to hypoxia. Understanding how it regulates its oxygen supply is therefore key for designing interventions to preserve its function. However, studies of neurovascular function in the hippocampus in vivo have been limited by its relative inaccessibility. Here we compared hippocampal and visual cortical neurovascular function in awake mice, using two photon imaging of individual neurons and vessels and measures of regional blood flow and haemoglobin oxygenation. We show that blood flow, blood oxygenation and neurovascular coupling were decreased in the hippocampus compared to neocortex, because of differences in both the vascular network and pericyte and endothelial cell function. Modelling oxygen diffusion indicates that these features of the hippocampal vasculature may restrict oxygen availability and could explain its sensitivity to damage during neurological conditions, including Alzheimer's disease, where the brain's energy supply is decreased.


Hippocampus/blood supply , Microcirculation/physiology , Neocortex/blood supply , Visual Cortex/blood supply , Adenosine Triphosphate/biosynthesis , Alzheimer Disease/physiopathology , Animals , Cell Hypoxia/physiology , Dementia, Vascular/physiopathology , Female , Hippocampus/cytology , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Humans , Intravital Microscopy , Laser-Doppler Flowmetry , Male , Mice , Microscopy, Fluorescence, Multiphoton , Microvessels/diagnostic imaging , Microvessels/physiology , Models, Animal , Neocortex/cytology , Neocortex/diagnostic imaging , Neocortex/physiopathology , Neurons/metabolism , Neurovascular Coupling/physiology , Oxidative Phosphorylation , Oxygen/analysis , Oxygen/metabolism , Spatial Memory/physiology , Visual Cortex/cytology , Visual Cortex/physiopathology
14.
Neurotherapeutics ; 18(2): 1064-1080, 2021 04.
Article En | MEDLINE | ID: mdl-33786807

Brain capillaries are crucial for cognitive functions by supplying oxygen and other nutrients to and removing metabolic wastes from the brain. Recent studies have demonstrated that constriction of brain capillaries is triggered by beta-amyloid (Aß) oligomers via endothelin-1 (ET1)-mediated action on the ET1 receptor A (ETRA), potentially exacerbating Aß plaque deposition, the primary pathophysiology of Alzheimer's disease (AD). However, direct evidence is still lacking whether changes in brain capillaries are causally involved in the pathophysiology of AD. Using APP/PS1 mouse model of AD (AD mice) relative to age-matched negative littermates, we identified that reductions of density and diameter of hippocampal capillaries occurred from 4 to 7 months old while Aß plaque deposition and spatial memory deficit developed at 7 months old. Notably, the injection of ET1 into the hippocampus induced early Aß plaque deposition at 5 months old in AD mice. Conversely, treatment of ferulic acid against the ETRA to counteract the ET1-mediated vasoconstriction for 30 days prevented reductions of density and diameter of hippocampal capillaries as well as ameliorated Aß plaque deposition and spatial memory deficit at 7 months old in AD mice. Thus, these data suggest that reductions of density and diameter of hippocampal capillaries are crucial for initiating Aß plaque deposition and spatial memory deficit at the early stages, implicating the development of new therapies for halting or curing memory decline in AD.


Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor , Capillaries/drug effects , Cognitive Dysfunction/drug therapy , Coumaric Acids/administration & dosage , Presenilin-1 , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Capillaries/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Hippocampus/blood supply , Hippocampus/drug effects , Hippocampus/pathology , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics
15.
Sci Rep ; 11(1): 4868, 2021 03 01.
Article En | MEDLINE | ID: mdl-33649479

Cerebrovascular lesions seen as white matter hyperintensity in MRI of elderly population caused due to micro-infracts and micro-bleeds contributes to vascular dementia. Such vascular insult caused by impairment in blood flow to specific area in brain involving small vessels can gradually worsen the pathology leading to cognitive deficits. In the present study we developed a transient model of vaso-constriction to study the impact of such pathology by bilateral injection of ET-1 (Endothelin-1; a 21 amino acid vasoconstricting peptide) into lateral ventricles of C57 mice. The impediment in cerebral blood flow decreased CD31 expression in endothelial cells lining the blood vessels around the hippocampal region, leading to memory deficits after 7 days. Activity dependent protein translation, critical for synaptic plasticity was absent in synaptoneurosomes prepared from hippocampal tissue. Further, Akt1- mTOR signaling cascade was downregulated indicating the possible cause for loss of activity dependent protein translation. However, these effects were reversed after 30 days indicating the ephemeral nature of deficits following a single vascular insult. Present study demonstrates that vasoconstriction leading to memory deficit and decline in activity dependent protein translation in hippocampus as a potential molecular mechanism impacting synaptic plasticity.


Endothelial Cells/metabolism , Endothelin-1/biosynthesis , Hippocampus/metabolism , Memory Disorders/metabolism , Synapses/metabolism , Vasoconstriction , Animals , Endothelial Cells/pathology , Hippocampus/blood supply , Hippocampus/pathology , Male , Memory Disorders/pathology , Mice , Neuronal Plasticity , Synapses/pathology
16.
Neurobiol Aging ; 101: 273-284, 2021 05.
Article En | MEDLINE | ID: mdl-33579556

Blood-brain barrier (BBB) breakdown occurs in aging and neurodegenerative diseases. Although age-associated alterations have previously been described, most studies focused in male brains; hence, little is known about BBB breakdown in females. This study measured ultrastructural features in the aging female BBB using transmission electron microscopy and 3-dimensional reconstruction of cortical and hippocampal capillaries from 6- and 24-month-old female C57BL/6J mice. Aged cortical capillaries showed more changes than hippocampal capillaries. Specifically, the aged cortex showed thicker basement membrane, higher number and volume of endothelial pseudopods, decreased endothelial mitochondrial number, larger pericyte mitochondria, higher pericyte-endothelial cell contact, and increased tight junction tortuosity compared with young animals. Only increased basement membrane thickness and pericyte mitochondrial volume were observed in the aged hippocampus. Regional comparison revealed significant differences in endothelial pseudopods and tight junctions between the cortex and hippocampus of 24-month-old mice. Therefore, the aging female BBB shows region-specific ultrastructural alterations that may lead to oxidative stress and abnormal capillary blood flow and barrier stability, potentially contributing to cerebrovascular diseases, particularly in postmenopausal women.


Aging/pathology , Blood-Brain Barrier/ultrastructure , Capillaries/ultrastructure , Cerebral Cortex/blood supply , Cerebral Cortex/ultrastructure , Hippocampus/blood supply , Hippocampus/ultrastructure , Animals , Basement Membrane/pathology , Basement Membrane/ultrastructure , Blood-Brain Barrier/pathology , Capillaries/pathology , Cerebral Cortex/pathology , Female , Hippocampus/pathology , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mitochondrial Size , Oxidative Stress , Pericytes/pathology , Pericytes/ultrastructure , Postmenopause
17.
J Cereb Blood Flow Metab ; 41(8): 2026-2037, 2021 08.
Article En | MEDLINE | ID: mdl-33509035

Cerebrovascular dysfunction likely contributes causally to Alzheimer's disease (AD). The strongest genetic risk factor for late-onset AD, Apolipoprotein E4 (APOE4), may act synergistically with vascular risk to cause dementia. Therefore, interventions that improve vascular health, such as exercise, may be particularly beneficial for APOE4 carriers. We assigned cognitively normal adults (65-87 years) to an aerobic exercise intervention or education only. Arterial spin labeling MRI measured hippocampal blood flow (HBF) before and after the 52-week intervention. We selected participants with hypertension at enrollment (n = 44). For APOE4 carriers, change in HBF (ΔHBF) was significantly (p = 0.006) higher for participants in the exercise intervention (4.09 mL/100g/min) than the control group (-2.08 mL/100g/min). There was no difference in ΔHBF between the control (-0.32 mL/100g/min) and exercise (-0.54 mL/100g/min) groups for non-carriers (p = 0.918). Additionally, a multiple regression showed an interaction between change in systolic blood pressure (ΔSBP) and APOE4 carrier status on ΔHBF (p = 0.035), with reductions in SBP increasing HBF for APOE4 carriers only. Aerobic exercise improved HBF for hypertensive APOE4 carriers only. Additionally, only APOE4 carriers exhibited an inverse relationship between ΔSBP and ΔHBF. This suggests exercise interventions, particularly those that lower SBP, may be beneficial for individuals at highest genetic risk of AD.ClinicalTrials.gov Identifier: NCT02000583.


Apolipoprotein E4/genetics , Blood Pressure/physiology , Exercise , Hippocampus/blood supply , Aged , Aged, 80 and over , Case-Control Studies , Cerebrovascular Circulation/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Female , Hippocampus/diagnostic imaging , Humans , Hypertension/genetics , Hypertension/pathology , Linear Models , Magnetic Resonance Imaging/methods , Male , Spin Labels
18.
J Cereb Blood Flow Metab ; 41(7): 1778-1790, 2021 07.
Article En | MEDLINE | ID: mdl-33444091

Microvascular damage in the hippocampus is emerging as a central cause of cognitive decline and dementia in aging. This could be a consequence of age-related decreases in vascular elasticity, exposing hippocampal capillaries to excessive cardiac-related pulsatile flow that disrupts the blood-brain barrier and the neurovascular unit. Previous studies have found altered intracranial hemodynamics in cognitive impairment and dementia, as well as negative associations between pulsatility and hippocampal volume. However, evidence linking features of the cerebral arterial flow waveform to hippocampal function is lacking. We used a high-resolution 4D flow MRI approach to estimate global representations of the time-resolved flow waveform in distal cortical arteries and in proximal arteries feeding the brain in healthy older adults. Waveform-based clustering revealed a group of individuals featuring steep systolic onset and high amplitude that had poorer hippocampus-sensitive episodic memory (p = 0.003), lower whole-brain perfusion (p = 0.001), and weaker microvascular low-frequency oscillations in the hippocampus (p = 0.035) and parahippocampal gyrus (p = 0.005), potentially indicating compromised neurovascular unit integrity. Our findings suggest that aberrant hemodynamic forces contribute to cerebral microvascular and hippocampal dysfunction in aging.


Aging , Brain/blood supply , Cerebral Arteries/physiology , Cognitive Dysfunction/physiopathology , Hippocampus/physiology , Memory, Episodic , Pulsatile Flow , Aged , Cerebrovascular Circulation , Female , Healthy Volunteers , Hippocampus/blood supply , Humans , Male , Middle Aged , Vascular Stiffness
19.
Acta Neuropathol Commun ; 9(1): 12, 2021 01 07.
Article En | MEDLINE | ID: mdl-33413694

Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer's disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of ß-amyloid (Aß) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aß from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aß40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aß removal from the brain and reduce its deposition as CAA.


Acetylcholine/metabolism , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy/physiopathology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Cholinergic Fibers/physiology , Cholinergic Neurons/physiology , Hippocampus/blood supply , Nitric Oxide Synthase Type III/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Cerebral Amyloid Angiopathy/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebrovascular Circulation/drug effects , Cholinergic Fibers/drug effects , Cholinergic Fibers/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Neurovascular Coupling/drug effects , Neurovascular Coupling/physiology , Saporins/toxicity , Septal Nuclei , Vasodilator Agents/pharmacology
20.
Neurol Res ; 43(4): 299-306, 2021 Apr.
Article En | MEDLINE | ID: mdl-33320070

Objectives: To detect and compare the features of interictal perfusion and volume asymmetry between temporal lobe epilepsy (TLE) patients with and without hippocampal sclerosis (HS).Methods: Sixty-one TLE patients (mean age 28.4 ± 9.3 years; 28 female/33 male) with unilateral signs of HS (TLE-HS+) and 25 TLE patients (mean age 29.8 ± 8.0 years; 17 female/8 male) without HS (TLE-HS-) were included. Thirty healthy volunteers served as controls (mean age 26.0 ± 8.7 years; 22 female/8 male). Brain segmentation and volume calculation were performed. Quantitative cerebral blood flow (CBF) values were measured based on arterial spin labeling (ASL). The asymmetry indices (AIs) of volume and perfusion were calculated.Results: TLE-HS+ (adjusted P = 0.001) and TLE-HS- patients (adjusted P = 0.006) had significantly higher hippocampal perfusion AIs than controls. TLE-HS+ and TLE-HS- had similar hippocampal perfusion AIs (adjusted P = 1.00). TLE-HS+ had higher hippocampal volume AIs than TLE-HS- and controls (adjusted P < 0.001). TLE-HS- and controls had similar hippocampal volume AIs (adjusted P = 1.00). All (100%) TLE-HS+ patients had positive hippocampal perfusion or volume AIs. No significant correlation between the AIs of hippocampal perfusion and volume was found in both TLE-HS+(P = 0.894) and TLE-HS- (P = 0.106) patients. TLE-HS+ patients demonstrated more extensive whole-brain asymmetry of both perfusion and volume than TLE-HS- patients.Conclusion: TLE-HS+ and TLE-HS- patients have different patterns of whole-brain perfusion and volume asymmetry. Hippocampal perfusion asymmetry was revealed in both TLE-HS+ and TLE-HS- patients.


Cerebrovascular Circulation/physiology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Hippocampus/blood supply , Hippocampus/diagnostic imaging , Adolescent , Adult , Brain/blood supply , Brain/diagnostic imaging , Female , Humans , Male , Organ Size/physiology , Retrospective Studies , Sclerosis , Young Adult
...