ABSTRACT
OBJECTIVE: Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. METHODS: ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. RESULTS: Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. CONCLUSION: Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.
Subject(s)
Acrolein , Atherosclerosis , Histone Deacetylase 1 , Isoflavones , Oxidative Stress , Animals , Atherosclerosis/chemically induced , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Oxidative Stress/drug effects , Histone Deacetylase 1/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Acrolein/pharmacology , Male , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , MAP Kinase Signaling System/drug effects , Mice , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Blotting, Western , Aorta/drug effects , Aorta/pathologyABSTRACT
BACKGROUND & AIMS: Epigenetic regulation of gene expression plays a critical role in the development of liver cancer; however, the molecular mechanisms of epigenetic-driven liver cancers are not well understood. The aims of this study were to examine molecular mechanisms that cause the dedifferentiation of hepatocytes into cancer cells in aggressive hepatoblastoma and test if the inhibition of these mechanisms inhibits tumor growth. METHODS: We have analyzed CCAAT/Enhancer Binding Protein alpha (C/EBPα), Transcription factor Sp5, and histone deacetylase (HDAC)1 pathways from a large biobank of fresh hepatoblastoma (HBL) samples using high-pressure liquid chromatography-based examination of protein-protein complexes and have examined chromatin remodeling on the promoters of markers of hepatocytes and p21. The HDAC1 activity was inhibited in patient-derived xenograft models of HBL and in cultured hepatoblastoma cells and expression of HDAC1-dependent markers of hepatocytes was examined. RESULTS: Analyses of a biobank showed that a significant portion of HBL patients have increased levels of an oncogenic de-phosphorylated-S190-C/EBPα, Sp5, and HDAC1 compared with amounts of these proteins in adjacent regions. We found that the oncogenic de-phosphorylated-S190-C/EBPα is created in aggressive HBL by protein phosphatase 2A, which is increased within the nucleus and dephosphorylates C/EBPα at Ser190. C/EBPα-HDAC1 and Sp5-HDAC1 complexes are abundant in hepatocytes, which dedifferentiate into cancer cells. Studies in HBL cells have shown that C/EBPα-HDAC1 and Sp5-HDAC1 complexes reduce markers of hepatocytes and p21 via repression of their promoters. Pharmacologic inhibition of C/EBPα-HDAC1 and Sp5-HDAC1 complexes by Suberoylanilide hydroxamic acid (SAHA) and small interfering RNA-mediated inhibition of HDAC1 increase expression of hepatocyte markers, p21, and inhibit proliferation of cancer cells. CONCLUSIONS: HDAC1-mediated repression of markers of hepatocytes is an essential step for the development of HBL, providing background for generation of therapies for aggressive HBL by targeting HDAC1 activities.
Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Hepatocytes/metabolism , Histone Deacetylase 1/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , p21-Activated Kinases/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Hepatocytes/pathology , Histone Deacetylase 1/genetics , Humans , Liver Neoplasms/pathology , Models, Biological , Multiprotein Complexes/metabolism , Promoter Regions, Genetic , Protein Binding , Signal Transduction , p21-Activated Kinases/geneticsABSTRACT
Histone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis. In addition, structure-activity relationship (SAR) studies have been performed in order to verify the influence of the linker on the biological profile of the compounds. All tested compounds demonstrated significant antiproliferative effects against solid and hematological human tumor cell lines. Among them, 11b exhibited nanomolar potency against hematological tumor cells including Jurkat and Namalwa, with IC50 values of 40 and 200 nM, respectively. Cellular and molecular proliferation studies, in presence of compounds 11a-d, showed significant cell growth arrest, apoptosis induction, and up to 43-fold selective cytotoxicity for leukemia cells versus non-tumorigenic cells. Moreover, compounds 11a-d increased acetylated α-tubulin expression levels, which is phenotypically consistent with HDAC inhibition, and indirectly induced DNA damage. In vitro enzymatic assays performed for 11b revealed a potent HDAC6 inhibitory activity (IC50: 8.1 nM) and 402-fold selectivity over HDAC1. Regarding SAR analysis, the distance between the hydroxamate moiety and the aromatic ring as well as the presence of the double bond in the cinnamyl linker were the most relevant chemical feature for the antiproliferative activity of the series. Molecular modeling studies suggest that cinnamyl hydroxamate is the best moiety of the series for binding HDAC6 catalytic pocket whereas exploration of Ser568 by the urea connecting unity (CU) might be related with the selectivity observed for the cinnamyl derivatives. In summary, cinnamyl hydroxamate derived compounds with HDAC6 inhibitory activity exhibited cell growth arrest and increased apoptosis, as well as selectivity to acute lymphoblastic leukemia cells. This study explores interesting compounds to fight against neoplastic hematological cells.
Subject(s)
Antineoplastic Agents/pharmacology , Cinnamates/pharmacology , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cinnamates/chemical synthesis , Cinnamates/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase 1/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Molecular Structure , Structure-Activity RelationshipABSTRACT
BACKGROUND: Atherosclerosis (AS) is the most common type in cardiovascular disease. Due to its complex pathogenesis, the exact etiology of AS is unclear. circRNA has been shown to play an essential role in most diseases. However, the underlying mechanism of circRNA in AS has been not understood clearly. METHODS: Quantitative Real-Time PCR assay was used to detect the expression of circRSF1, miR-135b-5p and histone deacetylase 1 (HDAC1). Western blot was applied to the measure of protein expression of HDAC1, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), cleaved-caspase-3, vascular cell adhesion molecule 1 (VCAM1), intercellular cell adhesion molecule-1 (ICAM1) and E-selectin. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Dual luciferase reporter assay and RIP assay was used to determine the relationship among circRSF1, miR-135b-5p and HDAC1. Besides, an ELISA assay was performed to measure the levels of IL-1ß, IL-6, TNF-α and IL-8. RESULTS: In this study, ox-LDL inhibited circRSF1 and HDAC1 expression while upregulated miR-135b-5p expression in Human umbilical vein endothelial cells (HUVECs). Importantly, ox-LDL could inhibit HUVECs growth. Moreover, promotion of circRSF1 or inhibition of miR-135b-5p induced cell proliferation while inhibited apoptosis and inflammation of ox-LDL-treated HUVECs, which was reversed by upregulating miR-135b-5p or downregulating HDCA1 in ox-LDL-treated HUVECs. More than that, we verified that circRSF1 directly targeted miR-135b-5p and HDAC1 was a target mRNA of miR-135b-5p in HUVECs. CONCLUSION: CircRSF1 regulated ox-LDL-induced vascular endothelial cell proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in AS, providing new perspectives and methods for the treatment and diagnosis of AS.
Subject(s)
Atherosclerosis , MicroRNAs , Apoptosis/genetics , Atherosclerosis/genetics , Cell Proliferation , Histone Deacetylase 1/genetics , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/genetics , Lipoproteins, LDL , MicroRNAs/genetics , Nuclear Proteins , RNA, Circular , Trans-ActivatorsABSTRACT
BACKGROUND: Atherosclerosis (AS) is the most common type in cardiovascular disease. Due to its complex pathogenesis, the exact etiology of AS is unclear. circRNA has been shown to play an essential role in most diseases. However, the underlying mechanism of circRNA in AS has been not understood clearly. METHODS: Quantitative Real-Time PCR assay was used to detect the expression of circRSF1, miR-135b-5p and histone deacetylase 1 (HDAC1). Western blot was applied to the measure of protein expression of HDAC1, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), cleaved-caspase-3, vascular cell adhesion molecule 1 (VCAM1), intercellular cell adhesion molecule-1 (ICAM1) and E-selectin. MTT assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Dual luciferase reporter assay and RIP assay was used to determine the relationship among circRSF1, miR-135b-5p and HDAC1. Besides, an ELISA assay was performed to measure the levels of IL-1ß, IL-6, TNF-α and IL-8. RESULTS: In this study, ox-LDL inhibited circRSF1 and HDAC1 expression while upregulated miR-135b-5p expression in Human umbilical vein endothelial cells (HUVECs). Importantly, ox-LDL could inhibit HUVECs growth. Moreover, promotion of circRSF1 or inhibition of miR-135b-5p induced cell proliferation while inhibited apoptosis and inflammation of ox-LDL-treated HUVECs, which was reversed by upregulating miR-135b-5p or downregulating HDCA1 in oxLDL-treated HUVECs. More than that, we verified that circRSF1 directly targeted miR-135b-5p and HDAC1 was a target mRNA of miR-135b-5p in HUVECs. CONCLUSION: CircRSF1 regulated ox-LDL-induced vascular endothelial cell proliferation, apoptosis and inflammation through modulating miR-135b-5p/HDAC1 axis in AS, providing new perspectives and methods for the treatment and diagnosis of AS.
Subject(s)
Humans , MicroRNAs/genetics , Atherosclerosis/genetics , Nuclear Proteins , Trans-Activators , Apoptosis/genetics , Cell Proliferation , Histone Deacetylase 1/genetics , Human Umbilical Vein Endothelial Cells , RNA, Circular , Inflammation/genetics , Lipoproteins, LDLABSTRACT
N-(2'-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) is a VPA derivative designed to be a histone deacetylase (HDAC) inhibitor. HO-AAVPA has better antiproliferative effect than VPA in cancer cell lines. Therefore, in this work, the inhibitory effect of HO-AAVPA on HDAC1, HDAC6, and HDAC8 was determined by in silico and in vitro enzymatic assay. Furthermore, its antiproliferative effect on the cervical cancer cell line (SiHa) and the translocation of HMGB1 and ROS production were evaluated. The results showed that HO-AAVPA inhibits HDAC1, which could be related with HMGB1 translocation from the nucleus to the cytoplasm due to HDAC1 being involved in the deacetylation of HMGB1. Furthermore, an increase in ROS production was observed after the treatment with HO-AAVPA, which also could contribute to HMGB1 translocation. Therefore, the results suggest that one of the possible antiproliferative mechanisms of HO-AAVPA is by HDAC1 inhibition which entails HMGB1 translocation and ROS increased levels that could trigger the cell apoptosis.
Subject(s)
Amides/pharmacology , Antineoplastic Agents/pharmacology , HMGB1 Protein/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase Inhibitors/pharmacology , Pentanes/pharmacology , Uterine Cervical Neoplasms/metabolism , Active Transport, Cell Nucleus/drug effects , Amides/chemistry , Antineoplastic Agents/chemistry , Binding Sites , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Female , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/chemistry , Histone Deacetylase Inhibitors/chemistry , Humans , Molecular Docking Simulation , Pentanes/chemistry , Protein BindingABSTRACT
Histone deacetylases (HDACs) belong to a family of enzymes that remove acetyl groups from the É-amino of histone and nonhistone proteins. Additionally, HDACs participate in the genesis and development of cancer diseases as promising therapeutic targets to treat cancer. Therefore, in this work, we designed and evaluated a set of hydroxamic acid derivatives that contain a hydrophobic moiety as antiproliferative HDAC inhibitors. For the chemical structure design, in silico tools (molecular docking, molecular dynamic (MD) simulations, ADME/Tox properties were used to target Zn2+ atoms and HDAC hydrophobic cavities. The most promising compounds were assayed in different cancer cell lines, including hepatocellular carcinoma (HepG2), pancreatic cancer (MIA PaCa-2), breast cancer (MCF-7 and HCC1954), renal cancer (RCC4-VHL and RCC4-VA) and neuroblastoma (SH-SY5Y). Molecular docking and MD simulations coupled to the MMGBSA approach showed that the target compounds have affinity for HDAC1, HDAC6 and HDAC8. Of all the compounds evaluated, YSL-109 showed the best activity against hepatocellular carcinoma (HepG2 cell line, IC50 = 3.39 µM), breast cancer (MCF-7 cell line, IC50 = 3.41 µM; HCC1954 cell line, IC50 = 3.41 µM) and neuroblastoma (SH-SY5Y cell line, IC50 = 6.42 µM). In vitro inhibition assays of compound YSL-109 against the HDACs showed IC50 values of 259.439 µM for HDAC1, 0.537 nM for HDAC6 and 2.24 µM for HDAC8.
Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Histone Deacetylase 1/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Repressor Proteins/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor/methods , Female , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , MCF-7 Cells , Molecular Docking SimulationABSTRACT
A common characteristic of cancer types associated with viruses is the dysregulated expression of the CDH1 gene, which encodes Ecadherin, in general by activation of DNA methyltransferases (Dnmts). In cervical cancer, E7 protein from high risk human papillomaviruses (HPVs) has been demonstrated to interact with Dnmt1 and histone deacetylase type 1 (HDAC1). The present study proposed that E7 may regulate the expression of CDH1 through two pathways: i) Epigenetic, including DNA methylation; and ii) Epigeneticindependent, including the induction of negative regulators of CDH1 expression, such as Snail family transcriptional repressor Snai1 and Snai2. To test this hypothesis, HPV16 and HPV18positive cell lines were used to determine the methylation pattern of the CDH1 promoter and its expression in association with its negative regulators. Different methylation frequencies were identified in the CDH1 promoter in HeLa (88.24%) compared with SiHa (17.65%) and Ca Ski (0%) cell lines. Significant differences in the expression of SNAI1 were observed between these cell lines, and an inverse association was identified between the expression levels of SNAI1 and CDH1. In addition, suppressing E7 not only increased the expression of CDH1, but notably decreased the expression of SNAI1 and modified the methylation pattern of the CDH1 promoter. These results suggested that the expression of CDH1 was dependent on the expression of SNAI1 and was inversely associated with the expression of E7. The present results indicated that E7 from HPV16/18 regulated the expression of CDH1 by the two following pathways in which Snai1 is involved: i) Hypermethylation of the CDH1 promoter region and increasing expression of SNAI1, as observed in HeLa; and ii) Hypomethylation of the CDH1 promoter region and expression of SNAI1, as observed in SiHa. Therefore, the suppression of CDH1 and expression of SNAI1 may be considered to be biomarkers of metastasis in uterine cervical cancer.
Subject(s)
Antigens, CD/genetics , Cadherins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/genetics , Snail Family Transcription Factors/genetics , Uterine Cervical Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Epigenesis, Genetic , Female , HeLa Cells , Histone Deacetylase 1/metabolism , Host Microbial Interactions/genetics , Humans , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Promoter Regions, Genetic/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virologyABSTRACT
Valproic acid (VPA) is a compound currently used in clinical practice for the treatment of epilepsy as well as bipolar and mood disorders. VPA targets histone deacetylases (HDACs), which participate in the removal of acetyl groups from lysine in several proteins, regulating a wide variety of functions within the organism. An imbalance or malfunction of these enzymes is associated with the development and progression of several diseases, such as cancer and neurodegenerative diseases. HDACs are divided into four classes, but VPA only targets Class I (HDAC1-3 and 8) and Class IIa (HDAC4-5, 7 and 9) HDACs; however, structural and energetic information regarding the manner by which VPA inhibits these HDACs is lacking. Here, the structural and energetic features that determine this recognition were studied using molecular docking and molecular dynamics (MD) simulation. It was found that VPA reaches the catalytic site in HDAC1-3 and 7, whereas in HDAC6, VPA only reaches the catalytic tunnel. In HDAC4, VPA was bound adjacent to L1 and L2, a zone that participates in corepressor binding, and in HDAC8, VPA was bound to the hydrophobic active site channel (HASC), in line with previous reports.
Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Molecular Docking Simulation/methods , Valproic Acid/pharmacology , Crystallography, X-Ray , Histone Deacetylase 1/chemistry , Histone Deacetylase 1/metabolism , Histone Deacetylase 6/chemistry , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemistry , Humans , Molecular Dynamics Simulation , Principal Component Analysis , Protein Conformation , Reproducibility of Results , Valproic Acid/chemistryABSTRACT
MicroRNA-34a-5p regulates the G1/S checkpoint in non-small cell lung cancer (NSCLC) cells. Forced expression of miR-34a-5p enhances p21 expression and promotes cellular senescence, whereas knockout of miR-34a-5p decreases senescence and increases apoptosis. This suggests that p21 is the main effector of a senescence-apoptosis switch in NSCLC cells; however, the molecular mechanisms controlling this switch are unclear. In this work, we propose a Boolean model of G1/S checkpoint regulation, contemplating the regulatory influences of p21 by miR-34a-5p. The predicted probabilities of our model are in excellent agreement with experimental data. Our model supports that p21 is the main effector of a senescence/apoptosis switch and that the disruption of the positive feedback involving ATM, miR-34a-5p, and the histone deacetylase HDAC1 abrogates senescence.
Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , MicroRNAs/genetics , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cellular Senescence/genetics , Gene Expression Regulation, Neoplastic/genetics , Histone Deacetylase 1/genetics , HumansABSTRACT
Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K+) in both sites (HDAC1k), a second with K+ only at site 1 (HDAC1ks1), a third with K+ only at site 2 (HDAC1ks2) and a fourth with no K+ (HDAC1wk). We found that the presence or absence of K+ not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.
Subject(s)
Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Amino Acid Sequence , Binding Sites , Drug Design , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Inhibitory Concentration 50 , Ligands , ThermodynamicsABSTRACT
METH use causes neuroadaptations that negatively impact the prefrontal cortex (PFC) leading to addiction and associated cognitive decline in animals and humans. In contrast, modafinil enhances cognition by increasing PFC function. Accumulated evidence indicates that psychostimulant drugs, including modafinil and METH, regulate gene expression via epigenetic modifications. In this study, we measured the effects of single-dose injections of modafinil and METH on the protein levels of acetylated histone H3 (H3ac) and H4ac, deacetylases HDAC1 and HDAC2, and of the NMDA subunit GluN1 in the medial PFC (mPFC) of mice euthanized 1â¯h after drug administration. To test if dopamine (DA) receptors (DRs) participate in the biochemical effects of the two drugs, we injected the D1Rs antagonist, SCH23390, or the D2Rs antagonist, raclopride, 30â¯min before administration of METH and modafinil. We evaluated each drug effect on glutamate synaptic transmission in D1R-expressing layer V pyramidal neurons. We also measured the enrichment of H3ac and H4ac at the promoters of several genes including DA, NE, orexin, histamine, and glutamate receptors, and their mRNA expression, since they are responsive to chronic modafinil and METH treatment. Acute modafinil and METH injections caused similar effects on total histone acetylation, increasing H3ac and decreasing H4ac, and they also increased HDAC1, HDAC2 and GluN1 protein levels in the mouse mPFC. In addition, the effects of the drugs were prevented by pre-treatment with D1Rs and D2Rs antagonists. Specifically, the changes in H4ac, HDAC2, and GluN1 were responsive to SCH23390, whereas those of H3ac and GluN1 were responsive to raclopride. Whole-cell patch clamp in transgenic BAC-Drd1a-tdTomato mice showed that METH, but not modafinil, induced paired-pulse facilitation of EPSCs, suggesting reduced presynaptic probability of glutamate release onto layer V pyramidal neurons. Analysis of histone 3/4 enrichment at specific promoters revealed: i) distinct effects of the drugs on histone 3 acetylation, with modafinil increasing H3ac at Drd1 and Adra1b promoters, but METH increasing H3ac at Adra1a; ii) distinct effects on histone 4 acetylation enrichment, with modafinil increasing H4ac at the Drd2 promoter and decreasing it at Hrh1, but METH increasing H4ac at Drd1; iii) comparable effects of both psychostimulants, increasing H3ac at Drd2, Hcrtr1, and Hrh1 promoters, decreasing H3ac at Hrh3, increasing H4ac at Hcrtr1, and decreasing H4ac at Hcrtr2, Hrh3, and Grin1 promoters. Interestingly, only METH altered mRNA levels of genes with altered histone acetylation status, inducing increased expression of Drd1a, Adra1a, Hcrtr1, and Hrh1, and decreasing Grin1. Our study suggests that although acute METH and modafinil can both increase DA neurotransmission in the mPFC, there are similar and contrasting epigenetic and transcriptional consequences that may account for their divergent clinical effects.
Subject(s)
Central Nervous System Stimulants/pharmacology , Epigenesis, Genetic/drug effects , Methamphetamine/pharmacology , Modafinil/pharmacology , Prefrontal Cortex/drug effects , Receptors, Dopamine/metabolism , Animals , Benzazepines/pharmacology , Chromatin Immunoprecipitation , Dopamine Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histones/genetics , Histones/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Prefrontal Cortex/cytology , Raclopride/pharmacology , Receptors, Biogenic Amine/genetics , Receptors, Biogenic Amine/metabolism , Receptors, Dopamine/geneticsABSTRACT
XAF1 is a tumor suppressor gene with low or absent expression in cancer. Since transcriptional reactivation or ectopic-mediated expression of XAF1 inhibits tumor growth, it is of great interest to elucidate the molecular mechanisms leading to XAF1 silencing. YY1 is a transcription factor that acts as a repressor or an activator to modulate several cancer-associated cellular processes. Both YY1 and XAF1 have key roles in prostate cancer (PCa) progression and are associated with worse clinical outcomes. To assess whether YY1 regulates the transcriptional activation of the XAF1 gene, we performed gene-reporter assays coupled with site-directed mutagenesis, which showed that YY1 is able to mediate XAF1 silencing. Concordantly, ChIP-qPCR assays showed that YY1 interacts with the XAF1 promoter in PC3 cells that lacks XAF1 expression. This association was lost after exposure to epigenetic modulators that induce XAF1 expression. Further supporting the YY1's repressive role, we found transcriptional reactivation of the XAF1 gene by YY1 downregulation. As expected by previous reports showing that HDAC1 is needed for YY1-mediated repressive actions, we observed XAF1 re-expression after either inhibition or downregulation of the HDAC1 gene. Finally, expression data retrieved from the TCGA consortium showed that PCa samples presented lower XAF1 and higher HDAC expression levels than normal tissues. Thus, our results support a model in which YY1 is able to silence tumor suppressor genes such as XAF1 through HDAC1 in PCa.
Subject(s)
Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , YY1 Transcription Factor/metabolism , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Binding Sites , Cell Line, Tumor , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Humans , Intracellular Signaling Peptides and Proteins/biosynthesis , Male , Neoplasm Proteins/biosynthesis , Promoter Regions, Genetic , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/metabolism , Repressor Proteins/metabolism , YY1 Transcription Factor/geneticsABSTRACT
The induced expression of nitric oxide synthase (iNOS) controls the intracellular growth of Leishmania in infected macrophages. Histones deacetylases (HDACs) negatively regulate gene expression through the formation of complexes containing transcription factors such as NF-κB p50/50. Herein, we demonstrated the occupancy of p50/p50_HDAC1 to iNOS promoter associated with reduced levels of H3K9Ac. Remarkably, we found increased levels of HDAC1 in L. amazonensis-infected macrophages. HDAC1 upregulation was not found in L. major-infected macrophages. The parasite intracellular load was reduced in HDAC1 knocked-down macrophages, which presented increased nitric oxide levels. HDAC1 silencing led to the occupancy of CBP/p300 to iNOS promoter and the rise of H3K9Ac modification. Importantly, the immunostaining of skin samples from hiporeactive cutaneous leishmaniasis patients infected with L. amazonensis, revealed high levels of HDAC1. In brief, L. amazonensis induces HDAC1 in infected macrophages, which contribute to parasite survival and is associated to hiporeactive stage found in L. amazonensis infected patients.
Subject(s)
Histone Deacetylase 1/metabolism , Leishmania braziliensis/physiology , Leishmaniasis, Cutaneous/immunology , Macrophages/immunology , Nitric Oxide Synthase Type II/metabolism , Skin/pathology , Adolescent , Adult , Cells, Cultured , Child , Extinction, Biological , Female , Histone Deacetylase 1/genetics , Host-Parasite Interactions , Humans , Immune Evasion , Leishmaniasis, Cutaneous/genetics , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Parasite Load , Promoter Regions, Genetic/genetics , Protein Binding , RNA, Small Interfering/genetics , Sp1 Transcription Factor/metabolism , Young AdultABSTRACT
CoREST family of transcriptional co-repressors regulates gene expression and cell fate determination during development. CoREST co-repressors recruit with different affinity the histone demethylase LSD1 (KDM1A) and the deacetylases HDAC1/2 to repress with variable strength the expression of target genes. CoREST protein levels are differentially regulated during cell fate determination and in mature tissues. However, regulatory mechanisms of CoREST co-repressors at the protein level have not been studied. Here, we report that CoREST (CoREST1, RCOR1) and its homologs CoREST2 (RCOR2) and CoREST3 (RCOR3) interact with PIASγ (protein inhibitor of activated STAT), a SUMO (small ubiquitin-like modifier)-E3-ligase. PIASγ increases the stability of CoREST proteins and facilitates their SUMOylation by SUMO-2. Interestingly, the SUMO-conjugating enzyme, Ubc9 also facilitates the SUMOylation of CoREST proteins. However, it does not change their protein levels. Specificity was shown using the null enzymatic form of PIASγ (PIASγ-C342A) and the SUMO protease SENP-1, which reversed SUMOylation and the increment of CoREST protein levels induced by PIASγ. The major SUMO acceptor lysines are different and are localized in nonconserved sequences among CoREST proteins. SUMOylation-deficient CoREST1 and CoREST3 mutants maintain a similar interaction profile with LSD1 and HDAC1/2, and consequently maintain similar repressor capacity compared with wild-type counterparts. In conclusion, CoREST co-repressors form protein complexes with PIASγ, which acts both as SUMO E3-ligase and as a protein stabilizer for CoREST proteins. This novel regulation of CoREST by PIASγ interaction and SUMOylation may serve to control cell fate determination during development.
Subject(s)
Co-Repressor Proteins/chemistry , Co-Repressor Proteins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Inhibitors of Activated STAT/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Transcription, Genetic , Animals , Co-Repressor Proteins/genetics , Female , HEK293 Cells , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Nerve Tissue Proteins/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Protein Inhibitors of Activated STAT/genetics , Rats , Rats, Sprague-Dawley , Repressor Proteins/genetics , Repressor Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolismABSTRACT
Purpose: To investigate whether the neuroprotective effect of TSA on cerebral ischemia reperfusion injury is mediated by the activation of Akt/GSK-3 signaling pathway. Methods: Mice were randomly divided into four groups (n=15): sham group (S); ischemia reperfusion group (IR); ischemia reperfusion and pretreated with TSA group (IR+T); ischemia reperfusion and pretreated with TSA and LY294002 group (IR+T+L). The model of cerebral ischemia reperfusion was established by 1h of MCAO following 24h of reperfusion. TSA (5mg/kg) was intraperitoneally given for 3 days before MCAO, Akt inhibitor, LY294002 (15 nmol/kg) was injected by tail vein 30 min before the MCAO. Results: TSA significantly increased the expression of p-Akt, p-GSK-3 proteins and the levels of SOD, Bcl-2, reduced the infarct volume and the levels of MDA, ROS, TNF-, IL-1, Bax, Caspase-3, TUNEL and attenuated neurological deficit in mice with transient MCAO, LY294002 weakened such effect of TSA dramatically. Conclusions: TSA could significantly decrease the neurological deficit and reduce the cerebral infarct volume, oxidative stress, inflammation, as well as apoptosis during cerebral ischemia reperfusion injury, which was achieved by activation of the Akt/GSK-3 signaling pathway.(AU)
Subject(s)
Animals , Rats , Histone Deacetylase 1/administration & dosage , Histone Deacetylase 1/immunology , Mice/abnormalities , Brain Ischemia/classification , Brain Ischemia/veterinaryABSTRACT
BACKGROUND: Acetylation and deacetylation are the most studied covalent histone modifications resulting in transcriptional regulation with histone deacetylases (HDAC) and histone acetyltransferases (HAT) as the main associated enzymes. These enzymes overexpression induces abnormal transcription of key genes that regulate important cellular functions, such as proliferation, cell cycle regulation, and apoptosis. Thus, the expression of different HATs and HDACs has been evaluated in various cancers. OBJECTIVE: To investigate HDAC1, HDAC2 and HAT1 expression in lip squamous cell carcinoma (LSCC) and actinic cheilitis (AC) and to demonstrate their correlation with DNA metyltransferases (DNMTs). MATERIAL AND METHODS: Thirty cases of lip squamous cell carcinoma (LSCC), thirty cases of actinic cheilitis (AC), and 28 cases of non-neoplastic epithelium as control were selected for immunohistochemical investigation. RESULTS: Nuclear HDAC2 immunopositivity was significantly higher in AC (75.07% ± 29.70) when compared with LSCC (51.06% ± 39.02). HDAC1 and HAT1 nuclear immunostaining were higher in AC, with no statistical significance. When comparing data with our previous study, we found a positive correlation between HDAC1 X DNMT1/DNMT3b, HDAC2 X DNMT3b, and HAT1 X DNMT1/DNMT3b for certain studied groups. CONCLUSION: This study showed higher levels of nuclear HDAC2 immunopositivity in AC, possibly indicating that this enzyme plays a key role in lip photocarcinogenesis early stages.
Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/enzymology , Cheilitis/enzymology , Histone Acetyltransferases/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Lip Neoplasms/enzymology , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , DNA Modification Methylases/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged , Young AdultABSTRACT
The influence of a single gene on the pathogenesis of essential hypertension may be difficult to ascertain, unless the gene interacts with other genes that are germane to blood pressure regulation. G-protein-coupled receptor kinase type 4 (GRK4) is one such gene. We have reported that the expression of its variant hGRK4γ(142V) in mice results in hypertension because of impaired dopamine D1 receptor. Signaling through dopamine D1 receptor and angiotensin II type I receptor (AT1R) reciprocally modulates renal sodium excretion and blood pressure. Here, we demonstrate the ability of the hGRK4γ(142V) to increase the expression and activity of the AT1R. We show that hGRK4γ(142V) phosphorylates histone deacetylase type 1 and promotes its nuclear export to the cytoplasm, resulting in increased AT1R expression and greater pressor response to angiotensin II. AT1R blockade and the deletion of the Agtr1a gene normalize the hypertension in hGRK4γ(142V) mice. These findings illustrate the unique role of GRK4 by targeting receptors with opposite physiological activity for the same goal of maintaining blood pressure homeostasis, and thus making the GRK4 a relevant therapeutic target to control blood pressure.
Subject(s)
Benzimidazoles/pharmacology , Blood Pressure/physiology , G-Protein-Coupled Receptor Kinase 4/genetics , Gene Expression Regulation , Histone Deacetylase 1/antagonists & inhibitors , Hypertension/genetics , Receptor, Angiotensin, Type 1/genetics , Tetrazoles/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Biphenyl Compounds , Disease Models, Animal , Essential Hypertension , Female , G-Protein-Coupled Receptor Kinase 4/biosynthesis , HEK293 Cells , Histone Deacetylase 1/metabolism , Humans , Hypertension/drug therapy , Hypertension/metabolism , Immunoblotting , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA/genetics , Real-Time Polymerase Chain Reaction , Receptor, Angiotensin, Type 1/biosynthesis , Receptor, Angiotensin, Type 1/drug effects , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
Inflammatory chronic pathologies are complex processes characterized by an imbalance between the resolution of the inflammatory phase and the establishment of tissue repair. The main players in these inflammatory pathologies are bone marrow derived monocytes (BMDMs). However, how monocyte differentiation is modulated to give rise to specific macrophage subpopulations (M1 or M2) that may either maintain the chronic inflammatory process or lead to wound healing is still unclear. Considering that inhibitors of Histone Deacetylase (HDAC) have an anti-inflammatory activity, we asked whether this enzyme would play a role on monocyte differentiation into M1 or M2 phenotype and in the cell shape transition that follows. We then induced murine bone marrow progenitors into monocyte/macrophage differentiation pathway using media containing GM-CSF and the HDAC blocker, Trichostatin A (TSA). We found that the pharmacological inhibition of HDAC activity led to a shape transition from the typical macrophage pancake-like shape into an elongated morphology, which was correlated to a mixed M1/M2 profile of cytokine and chemokine secretion. Our results present, for the first time, that HDAC activity acts as a regulator of macrophage differentiation in the absence of lymphocyte stimuli. We propose that HDAC activity down regulates macrophage plasticity favoring the pro-inflammatory phenotype.
Subject(s)
Epigenesis, Genetic , Histone Deacetylase 1/metabolism , Macrophages/cytology , Monocytes/cytology , Animals , Anti-Inflammatory Agents/chemistry , Bone Marrow Cells/cytology , Cell Differentiation , Chemokines/metabolism , Flow Cytometry , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Hydroxamic Acids/chemistry , Immunohistochemistry , Inflammation , Macrophages/enzymology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/chemistry , Phenotype , Stem Cells/cytologyABSTRACT
CoREST (CoREST1, rcor1) transcriptional corepressor together with the histone demethylase LSD1 (KDM1A) and the histone deacetylases HDAC1/2 form LSD1-CoREST-HDAC (LCH) transcriptional complexes to regulate gene expression. CoREST1 belong to a family that also comprises CoREST2 (rcor2) and CoREST3 (rcor3). CoREST1 represses the expression of neuronal genes during neuronal differentiation. However, the role of paralogs CoREST2 and CoREST3 in this process is just starting to emerge. Here, we report the expression of all CoRESTs and partners LSD1 and HDAC1/2 in two models of neuronal differentiation: Nerve-Growth-Factor (NGF)-induced neuronal phenotype of PC12 cells, and in vitro maturation of embryonic rat cortical neurons. In both models, a concomitant and gradual decrease of LSD1, HDAC1, HDAC2, CoREST1, and CoREST2, but not CoREST3 was observed. As required by the study, full-length rat rcor1 gene was identified using in silico analysis of available rat genome. The work was also complemented by the analysis of rat RNA-seq databases. The analysis showed that all CoRESTs, including the identified four splicing variants of rat CoREST3, display a wide expression in adult tissues. Moreover, the analysis of RNA-seq databases showed that CoREST2 displays a higher expression than CoREST1 and CoREST3 in the mature brain. Immunofluorescent assays and immunoblots of adult rat brain showed that all CoRESTs are present in both glia and neurons. Regarding functional partnership, CoREST2 and CoREST3 interact with all LSD1 splicing variants. In conclusion, neuronal differentiation is accompanied by decreased expression of all core components of LCH complexes, but not CoREST3. The combination of the differential transcriptional repressor capacity of LCH complexes and variable protein levels of its different components should result in a finely tuned gene expression during neuronal differentiation and in the adult brain.