Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.362
1.
Chem Biol Drug Des ; 103(5): e14556, 2024 May.
Article En | MEDLINE | ID: mdl-38772881

Histone deacetylase 6 (HDAC6), as the key regulatory enzyme, plays an important role in the development of the nervous system. More and more studies indicate that HDAC6 has become a promising therapeutic target for CNS diseases. Herein we designed and synthesized a series of novel HDAC6 inhibitors with benzothiadiazinyl systems as cap groups and evaluated their activity in vitro and in vivo. Among them, compound 3 exhibited superior selective inhibitory activity against HDAC6 (IC50 = 5.1 nM, about 30-fold selectivity over HDAC1). The results of docking showed that compound 3 can interact well with the key amino acid residues of HDAC6. Compound 3 showed lower cytotoxicity (20 µM to SH-SY5Y cells, inhibition rate = 25.75%) and better neuroprotective activity against L-glutamate-induced SH-SY5Y cell injury model in vitro. Meanwhile, compound 3 exhibited weak cardiotoxicity (10 µM hERG inhibition rate = 17.35%) and possess good druggability properties. Especially, compound 3 could significantly reduce cerebral infarction from 49.87% to 32.18%, and similar with butylphthalide in MCAO model, indicating potential clinical application prospects for alleviating ischemic stroke-induced brain infarction.


Drug Design , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Molecular Docking Simulation , Neuroprotective Agents , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Animals , Structure-Activity Relationship , Cell Line, Tumor , Male , Mice , Binding Sites , Rats
2.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38719753

We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.


Adenylyl Cyclases , Cell Proliferation , Cilia , Hedgehog Proteins , Histone Deacetylase 6 , Signal Transduction , Animals , Mice , Acetylation , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Cell Proliferation/genetics , Cilia/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Mice, Knockout , Stem Cells/metabolism , Stem Cells/cytology
3.
Eur J Med Chem ; 272: 116447, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38714044

Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.


Antineoplastic Agents , Decitabine , Drug Screening Assays, Antitumor , Drug Synergism , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Leukemia, Myeloid, Acute , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Decitabine/pharmacology , Decitabine/chemistry , Structure-Activity Relationship , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Peptoids/chemistry , Peptoids/pharmacology , Peptoids/chemical synthesis , Aminopyridines , Benzamides
4.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719209

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Macrophages , Reactive Oxygen Species , Staphylococcus aureus , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Reactive Oxygen Species/metabolism , Staphylococcus aureus/drug effects , Mice , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Pneumonia, Staphylococcal/drug therapy , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/metabolism , Indoles/pharmacology , Mice, Inbred C57BL , Phagocytosis/drug effects , Lung/drug effects , Lung/microbiology , Lung/metabolism , Lung/pathology
5.
Cell Metab ; 36(4): 857-876.e10, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38569472

Leptin resistance during excess weight gain significantly contributes to the recidivism of obesity to leptin-based pharmacological therapies. The mechanisms underlying the inhibition of leptin receptor (LepR) signaling during obesity are still elusive. Here, we report that histone deacetylase 6 (HDAC6) interacts with LepR, reducing the latter's activity, and that pharmacological inhibition of HDAC6 activity disrupts this interaction and augments leptin signaling. Treatment of diet-induced obese mice with blood-brain barrier (BBB)-permeable HDAC6 inhibitors profoundly reduces food intake and leads to potent weight loss without affecting the muscle mass. Genetic depletion of Hdac6 in Agouti-related protein (AgRP)-expressing neurons or administration with BBB-impermeable HDAC6 inhibitors results in a lack of such anti-obesity effect. Together, these findings represent the first report describing a mechanistically validated and pharmaceutically tractable therapeutic approach to directly increase LepR activity as well as identifying centrally but not peripherally acting HDAC6 inhibitors as potent leptin sensitizers and anti-obesity agents.


Leptin , Obesity , Animals , Mice , Histone Deacetylase 6 , Leptin/metabolism , Obesity/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Weight Gain , Weight Loss
6.
Cells ; 13(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38607037

Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.


Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Histone Deacetylase 6 , Tubulin , Microtubules , RNA , Autophagy
7.
Bioorg Med Chem ; 104: 117680, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38582047

Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.


Histone Deacetylase Inhibitors , Proteasome Inhibitors , Histone Deacetylase Inhibitors/pharmacology , Proteasome Inhibitors/pharmacology , Proteasome Endopeptidase Complex , Bortezomib , Histone Deacetylases , Histone Deacetylase 6 , Histone Deacetylase 1
8.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Article En | MEDLINE | ID: mdl-38593621

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Histone Deacetylases , Tubulin , Tubulin/metabolism , Histone Deacetylases/metabolism , Histone Deacetylase 6/metabolism , Biphenyl Compounds , Hydrazines , Histone Deacetylase Inhibitors/pharmacology , Acetylation
9.
Theranostics ; 14(6): 2345-2366, 2024.
Article En | MEDLINE | ID: mdl-38646645

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Histone Deacetylase 6 , Mice, Transgenic , Nerve Growth Factor , Ovarian Follicle , Ubiquitination , Animals , Female , Humans , Mice , Acetylation , Granulosa Cells/metabolism , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Nerve Growth Factor/metabolism , Ovarian Follicle/metabolism
10.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 231-236, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678601

Epidural fibrosis (EF) is a chronic, progressive and severe disease. Histone deacetylase 6 (HDAC6) regulates biological signals and cell activities by deacetylating lysine residues and participates in TGF-ß-induced epithelial-mesenchymal transition (EMT). Nevertheless, the effect and mechanism of HDAC6 in EF remain unclear. To investigate the effect and mechanism of HDAC6 inhibition on repressing epidural fibrosis. HDAC6 expression and α-smooth muscle actin (α-SMA) in normal human tissue and human EF tissue were assessed by quantitative real-time PCR (qRT-PCR) and western blotting. Human fibroblasts were treated with TGF-ß ± HDAC6 inhibitors (Tubastatin) and fibrotic markers including collagen I, collagen III, α-SMA and fibronectin were assessed using western blotting. Then TGFß1 receptor (TGFß1-R), PI3K and Akt were analyzed using qRT-PCR and western blotting. Rats were undergone laminectomy± Tubastatin (intraperitoneally injection; daily for 7 days) and epidural scar extracellular matrix (ECM) expression was gauged using immunoblots. Increasing HDAC6 expression was associated with α-SMA enrichment. Tubastatin remarkably restrained TGF-ß-induced level of collagen and ECM deposition in human fibroblasts, and the discovery was accompanied by decreased PI3K and Akt phosphorylation. Moreover, Tubastatin also inhibited TGF-ß-mediated HIF-1α and VEGF expression. In the epidural fibrosis model, we found that Tubastatin weakened scar hyperplasia and collagen deposition, and effectively inhibited the process of epidural fibrosis. These results indicated that Tubastatin inhibited HDAC6 expression and decreased TGF-ß/ PI3K/ Akt pathway that promotes collagen and ECM deposition and VEGF release, leading reduction of myofibroblast activation. Hence, Tubastatin ameliorated epidural fibrosis development.


Fibroblasts , Fibrosis , Histone Deacetylase 6 , Hydroxamic Acids , Signal Transduction , Animals , Humans , Male , Rats , Actins/metabolism , Epidural Space/pathology , Epidural Space/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibrosis/drug therapy , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transforming Growth Factor beta/drug effects , Transforming Growth Factor beta/metabolism
11.
Arch Biochem Biophys ; 756: 110009, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642631

BACKGROUND: Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS: Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS: HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS: Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.


Activating Transcription Factor 6 , Acute Kidney Injury , Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Mice, Inbred C57BL , Renal Insufficiency, Chronic , Unfolded Protein Response , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Humans , Activating Transcription Factor 6/metabolism , Mice , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/chemically induced , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Male , Unfolded Protein Response/drug effects , Lipopolysaccharides
12.
Virulence ; 15(1): 2327096, 2024 12.
Article En | MEDLINE | ID: mdl-38466143

Legionella pneumophila (L. pneumophila) is a prevalent pathogenic bacterium responsible for significant global health concerns. Nonetheless, the precise pathogenic mechanisms of L. pneumophila have still remained elusive. Autophagy, a direct cellular response to L. pneumophila infection and other pathogens, involves the recognition and degradation of these invaders in lysosomes. Histone deacetylase 6 (HDAC6), a distinctive member of the histone deacetylase family, plays a multifaceted role in autophagy regulation. This study aimed to investigate the role of HDAC6 in macrophage autophagy via the autophagolysosomal pathway, leading to alleviate L. pneumophila-induced pneumonia. The results revealed a substantial upregulation of HDAC6 expression level in murine lung tissues infected by L. pneumophila. Notably, mice lacking HDAC6 exhibited a protective response against L. pneumophila-induced pulmonary tissue inflammation, which was characterized by the reduced bacterial load and diminished release of pro-inflammatory cytokines. Transcriptomic analysis has shed light on the regulatory role of HDAC6 in L. pneumophila infection in mice, particularly through the autophagy pathway of macrophages. Validation using L. pneumophila-induced macrophages from mice with HDAC6 gene knockout demonstrated a decrease in cellular bacterial load, activation of the autophagolysosomal pathway, and enhancement of cellular autophagic flux. In summary, the findings indicated that HDAC6 knockout could lead to the upregulation of p-ULK1 expression level, promoting the autophagy-lysosomal pathway, increasing autophagic flux, and ultimately strengthening the bactericidal capacity of macrophages. This contributes to the alleviation of L. pneumophila-induced pneumonia.


Legionella pneumophila , Legionella , Legionnaires' Disease , Pneumonia , Animals , Mice , Autophagy , Histone Deacetylase 6/genetics , Legionella pneumophila/genetics , Legionnaires' Disease/genetics , Macrophages
13.
Cells ; 13(6)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38534334

Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.


Endothelial Cells , Growth Differentiation Factor 2 , Humans , Histone Deacetylase 6/metabolism , Growth Differentiation Factor 2/metabolism , Endoglin/metabolism , Phosphorylation , Endothelial Cells/metabolism , Angiogenesis , Proteomics , Transcription Factors/metabolism
14.
Int Immunopharmacol ; 131: 111861, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38484665

Glutathione (GSH) depletion, mitochondrial damage, and oxidative stress have been implicated in the pathogenesis of acetaminophen (APAP) hepatotoxicity. Here, we demonstrated that the expression of histone deacetylase 6 (HDAC6) is highly elevated, whereas malate dehydrogenase 1 (MDH1) is downregulated in liver tissues and AML-12 cells induced by APAP. The therapeutic benefits of LT-630, a novel HDAC6 inhibitor on APAP-induced liver injury, were also substantiated. On this basis, we demonstrated that LT-630 improved the protein expression and acetylation level of MDH1. Furthermore, after overexpression of MDH1, an upregulated NADPH/NADP+ ratio and GSH level and decreased cell apoptosis were observed in APAP-stimulated AML-12 cells. Importantly, MDH1 siRNA clearly reversed the protection of LT-630 on APAP-stimulated AML-12 cells. In conclusion, LT-630 could ameliorate liver injury by modulating MDH1-mediated oxidative stress induced by APAP.


Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Histone Deacetylase 6 , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Acetaminophen , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Glutathione/metabolism , Histone Deacetylase 6/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Liver/pathology , Mice, Inbred C57BL , Oxidative Stress/drug effects
15.
Comput Biol Chem ; 110: 108051, 2024 Jun.
Article En | MEDLINE | ID: mdl-38520883

Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.


Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Molecular Dynamics Simulation , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Humans , Molecular Structure , Quantitative Structure-Activity Relationship , Quinazolines/chemistry , Quinazolines/pharmacology , Machine Learning
16.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Article En | MEDLINE | ID: mdl-38547770

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Histone Deacetylase 6 , Histone Deacetylase Inhibitors , Hydroxamic Acids , Indoles , Interleukin-1beta , Mouth Neoplasms , Tumor Microenvironment , Animals , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/metabolism , Interleukin-1beta/metabolism , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/immunology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Disease Progression , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Male , Tubulin/metabolism , Lipopolysaccharides
17.
Brain Res ; 1832: 148847, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38442843

Histone deacetylase 6 (HDAC6) is a key therapeutic target in neurodegenerative diseases such as Alzheimer's disease (AD), which has been demonstrated to play an essential role in memory function and microtubule-associated tau physiology. In this study, W5 was used to treat AD model rats induced by Aß/Cu2+ to study the improving effect of W5 on learning and memory impairment in AD rats and its related mechanism, to provide the basis for the subsequent development of W5 as an anti-AD drug. Results showed that W5 could decrease the expression of Aß, Tau, and p-Tau proteins in the hippocampus of AD rats to inhibit the formation of senile plaques and neurofibrillary tangles, down-regulate the expression of Bax mRNA and Caspase-3 mRNA, and up-regulate the expression of Bcl-2 mRNA to reduce the apoptosis of neuron cells, reverse the expression of TNF-α, IL-1ß and IL-6 mRNA to regulate neuroinflammatory response in AD rat brain. W5 also could regulate the oxidative stress state of AD rats, and balance the neurotransmitter disorder in AD rats' brain tissue. Overall, W5 could recover the morphology of hippocampal neurons and improve the learning and memory dysfunction in AD rats by regulating multiple targets in AD rats, providing a promising therapeutic avenue for the treatment of AD.


Alzheimer Disease , Animals , Rats , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Hippocampus/metabolism , Histone Deacetylase 6 , RNA, Messenger , tau Proteins/metabolism
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 Jun.
Article En | MEDLINE | ID: mdl-38527593

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.


HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Hippocampus , Histone Deacetylase 6 , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Pyroptosis/drug effects , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Mice , Male , HSP90 Heat-Shock Proteins/metabolism , Hippocampus/metabolism , Hippocampus/pathology , HSP70 Heat-Shock Proteins/metabolism , Postoperative Cognitive Complications/metabolism , Postoperative Cognitive Complications/pathology , Hydroxamic Acids/pharmacology , Aging/metabolism , Aging/pathology , Disease Models, Animal
19.
Nat Commun ; 15(1): 1352, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38409164

Heart failure with preserved ejection fraction (HFpEF) poses therapeutic challenges due to the limited treatment options. Building upon our previous research that demonstrates the efficacy of histone deacetylase 6 (HDAC6) inhibition in a genetic cardiomyopathy model, we investigate HDAC6's role in HFpEF due to their shared mechanisms of inflammation and metabolism. Here, we show that inhibiting HDAC6 with TYA-018 effectively reverses established heart failure and its associated symptoms in male HFpEF mouse models. Additionally, in male mice lacking Hdac6 gene, HFpEF progression is delayed and they are resistant to TYA-018's effects. The efficacy of TYA-018 is comparable to a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and the combination shows enhanced effects. Mechanistically, TYA-018 restores gene expression related to hypertrophy, fibrosis, and mitochondrial energy production in HFpEF heart tissues. Furthermore, TYA-018 also inhibits activation of human cardiac fibroblasts and enhances mitochondrial respiratory capacity in cardiomyocytes. In this work, our findings show that HDAC6 impacts on heart pathophysiology and is a promising target for HFpEF treatment.


Cardiomyopathies , Heart Failure , Animals , Humans , Male , Mice , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/diagnosis , Histone Deacetylase 6/genetics , Myocytes, Cardiac/metabolism , Stroke Volume/physiology
20.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38311053

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Androstenes , Brain Neoplasms , Glioblastoma , Steroid 17-alpha-Hydroxylase , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Histone Deacetylase 6/genetics , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Oxidative Stress , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
...