Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 975
Filter
1.
Sci Rep ; 14(1): 12883, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839874

ABSTRACT

Exhaust emissions, which count among the most common causes of premature death worldwide, can cause irreversible changes in cells, leading to their damage or degeneration. In this research, L929 line cells were observed after exposure in the BAT-CELL chamber to exhaust gases emitted from a Euro 6 compression-ignition engine. Real road traffic conditions were simulated, taking into account air resistance while driving at speeds of 50 km/h, 120 km/h and idling engine. Morphological analysis of the cells was performed using an environmental scanning electron microscope. It has been observed that diesel exhaust fumes can cause inflammation, which can induce apoptosis or leads to necrotic cell death. The impact of the vehicle exhaust gases can inhibit cell proliferation by almost three times. Moreover, a correlation has been observed between the speed of the inflammatory reaction in cells and the presence of specific hydrocarbon compounds that determine the toxicity of exhaust gases. Research has shown that the toxicity of the emitted exhaust gases has been the highest at the driving speed of 120 km/h. In order to reduce the harmful effects of exhaust emissions, ecological alternatives and the supplementation of legal provisions regarding the compounds subject to limitation are necessary.


Subject(s)
Cell Survival , Hydrocarbons , Vehicle Emissions , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Animals , Mice , Cell Survival/drug effects , Cell Line , Hydrocarbons/toxicity , Microscopy, Electron, Scanning , Air Pollutants/toxicity , Air Pollutants/analysis
2.
Sci Total Environ ; 944: 173985, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38876354

ABSTRACT

Contaminants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) can be released from asphalt pavement and transported through stormwater runoff to nearby water bodies, leading to water pollution and potential harm to living aquatic animals. This study characterizes the heavy metal and PAH leaching from various asphalt paving materials and their potential ecotoxicological effects on zebrafish Danio rerio. Artificial runoffs were prepared in the laboratory concerning the effects of water, temperature, and traffic. The concentrations of heavy metals and PAHs in the leachates were quantified, while the toxicity assessment encompassed mortality, metal stress, PAH toxicity, inflammation, carcinogenicity, and oxidative damage. Gene expressions of related proteins or transcription factors were assessed, including metallothionines, aryl hydrocarbon receptors, interleukin-1ß, interleukin-10, nuclear factor-κB, tumor necrosis factor-α, tumor suppressor p53, heat shock protein 70, and reactive oxygen species (ROS). The findings demonstrate that leachates from asphalt pavements containing waste bottom ash, crumb rubber, or specific chemicals could induce notable stress and inflammation responses in zebrafish. In addition, potential carcinogenic effects and the elevation of ROS were identified within certain treatment groups. This study represents the first attempt to assess the ecotoxicity of pavement leachates employing a live fish model, thereby improving the current understanding of the environmental impact of asphalt pavements.


Subject(s)
Hydrocarbons , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Hydrocarbons/toxicity , Metals, Heavy/toxicity , Ecotoxicology , Construction Materials , Environmental Monitoring
3.
Curr Environ Health Rep ; 11(1): 18-29, 2024 03.
Article in English | MEDLINE | ID: mdl-38267698

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to assess the toxicological consequences of crude oil vapor (COV) exposure in the workplace through evaluation of the most current epidemiologic and laboratory-based studies in the literature. RECENT FINDINGS: Crude oil is a naturally occuring mixture of hydrocarbon deposits, inorganic and organic chemical compounds. Workers engaged in upstream processes of oil extraction are exposed to a number of risks and hazards, including getting crude oil on their skin or inhaling crude oil vapor. There have been several reports of workers who died as a result of inhalation of high levels of COV released upon opening thief hatches atop oil storage tanks. Although many investigations into the toxicity of specific hydrocarbons following inhalation during downstream oil processing have been conducted, there is a paucity of information on the potential toxicity of COV exposure itself. This review assesses current knowledge of the toxicological consequences of exposures to COV in the workplace.


Subject(s)
Petroleum , Humans , Petroleum/toxicity , Hydrocarbons/toxicity
4.
Chemosphere ; 342: 140185, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716568

ABSTRACT

Petroleum hydrocarbon (PHC) contamination in soil is ubiquitous and poses harmful consequences to many organisms. The toxicity of PHC-impacted soil is difficult to predict due to variations in mixture composition and the impacts of natural weathering processes. Hence, high-throughput methods to assess PHC-impacted soils is required to expedite land management decisions. Next-generation sequencing is a robust tool that allows researchers to investigate the effects of contaminants on the transcriptome of organisms and identify molecular biomarkers. In this study, the effects of PHCs on conventional endpoints (i.e., survival and reproduction) and gene expression rates of a model springtail species, Folsomia candida were investigated. Age-synchronized F. candida were exposed to ecologically-relevant concentrations of soils spiked with fresh crude oil to calculate the reproductive EC25 and EC50 values using conventional toxicity testing. Soils spiked to these concentrations were then used to evaluate effects on the F. candida transcriptome over a 7-day exposure period. RNA-seq analysis found 98 and 132 differentially expressed genes when compared to the control for the EC25 and EC50 treatment groups, respectively. The majority of up-regulated genes were related to xenobiotic biotransformation reactions and oxidative stress response, while down-regulated genes coded for carbohydrate and peptide metabolic processes. Promotion of the pentose phosphate pathway was also found. Results suggest that the decreased reproduction rates of F. candida exposed to PHCs is due to energy constraints caused by inhibition of carbohydrate metabolic processes and allocation of remaining energy to detoxify xenobiotics. These findings provide insights into the molecular effects in F. candida following exposure to crude oil for seven days and highlight their potential to be used as a high-throughput screening test for PHC-contaminated sites. Adverse molecular effects can be measured as early as 24 h following exposure, whereas conventional toxicity tests may require a minimum of four weeks.


Subject(s)
Arthropods , Petroleum , Soil Pollutants , Animals , Petroleum/toxicity , Petroleum/metabolism , Soil Pollutants/metabolism , Gene Expression Profiling , Reproduction , Oxidative Stress , Hydrocarbons/toxicity , Hydrocarbons/metabolism , Soil/chemistry
5.
Environ Res ; 238(Pt 1): 117136, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37717802

ABSTRACT

Canada has extensive petroleum hydrocarbon (PHC) contamination in northern areas and the boreal forest region from historical oil and gas activities. Since the 2013 standardization of boreal forest species for plant toxicity testing in Canada, there has been a need to build the primary literature of the toxicity of weathered PHCs to these species. A series of toxicity experiments were carried out using fine-grained (<0.005-0.425 mm) background (100 total mg/kg total PHCs) and weathered contaminated soil (11,900 mg/kg total PHCs) collected from a contaminated site in northern Ontario, Canada. The PHC mixture in the contaminated site soil was characterized through Canadian Council of Ministers of the Environment Fractions, as indicated by the number equivalent normal straight-chain hydrocarbons (nC). The soil was highly contaminated with Fraction 2 (>nC10 to nC16) at 4790 mg/kg and Fraction 3 (>nC16 to nC34) at 4960 mg/kg. Five plant species (Elymus trachycaulus, Achillea millefolium, Picea mariana, Salix bebbiana, and Alnus viridis) were grown from seed in 0%, 25%, 50%, 75%, and 100% relative contamination mixtures of the PHC-contaminated and background soil from the site over 2-6 weeks. All five species showed significant inhibition in shoot length, shoot weight, root length, and/or root weight (Kruskal-Wallis Tests: p < 0.05, df = 4.0). Measurements of 25% inhibitory concentrations (IC25) following PHC toxicity experiments revealed that S. bebbiana was most significantly impaired by the PHC-contaminated soil (410-990 mg/kg total PHCs), where it showed <35% germination. This study indicates that natural weathering of Fraction 2- and Fraction 3-concentrated soil did not eliminate phytotoxicity to boreal plant species. Furthermore, it builds on the limited existing literature for toxicity of PHCs on boreal plants and supports site remediation to existing Canadian provincial PHC guidelines.


Subject(s)
Petroleum , Soil Pollutants , Soil , Petroleum/toxicity , Hydrocarbons/toxicity , Plants , Ontario , Soil Pollutants/analysis , Biodegradation, Environmental
6.
Environ Res ; 231(Pt 1): 116069, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37149022

ABSTRACT

BACKGROUND: During the 2010 Deepwater Horizon (DWH) disaster, oil spill response and cleanup (OSRC) workers were exposed to toxic volatile components of crude oil. Few studies have examined exposure to individual volatile hydrocarbon chemicals below occupational exposure limits in relation to neurologic function among OSRC workers. OBJECTIVES: To investigate the association of several spill-related chemicals (benzene, toluene, ethylbenzene, xylene, n-hexane, i.e., BTEX-H) and total petroleum hydrocarbons (THC) with neurologic function among DWH spill workers enrolled in the Gulf Long-term Follow-up Study. METHODS: Cumulative exposure to THC and BTEX-H across the oil spill cleanup period were estimated using a job-exposure matrix that linked air measurement data to detailed self-reported DWH OSRC work histories. We ascertained quantitative neurologic function data via a comprehensive test battery at a clinical examination that occurred 4-6 years after the DWH disaster. We used multivariable linear regression and modified Poisson regression to evaluate relationships of exposures (quartiles (Q)) with 4 neurologic function measures. We examined modification of the associations by age at enrollment (<50 vs. ≥50 years). RESULTS: We did not find evidence of adverse neurologic effects from crude oil exposures among the overall study population. However, among workers ≥50 years of age, several individual chemical exposures were associated with poorer vibrotactile acuity of the great toe, with statistically significant effects observed in Q3 or Q4 of exposures (range of log mean difference in Q4 across exposures: 0.13-0.26 µm). We also observed suggestive adverse associations among those ≥ age 50 years for tests of postural stability and single-leg stance, although most effect estimates did not reach thresholds of statistical significance (p < 0.05). CONCLUSIONS: Higher exposures to volatile components of crude oil were associated with modest deficits in neurologic function among OSRC workers who were age 50 years or older at study enrollment.


Subject(s)
Disasters , Petroleum Pollution , Petroleum , Humans , Middle Aged , Petroleum Pollution/adverse effects , Follow-Up Studies , Hydrocarbons/toxicity , Petroleum/toxicity
7.
J Toxicol Environ Health A ; 86(9): 263-282, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36883736

ABSTRACT

Alcohol-to-jet (ATJ) Synthetic Kerosene with Aromatics (SKA) fuels are produced by dehydration and refining of alcohol feed stocks. ATJ SKA fuel known as SB-8 was developed by Swedish Biofuels as a cooperative agreement between Sweden and AFRL/RQTF. SB-8 including standard additives was tested in a 90-day toxicity study with male and female Fischer 344 rats exposed to 0, 200, 700, or 2000 mg/m3 fuel in an aerosol/vapor mixture for 6 hr/day, 5 days/week. Aerosols represented 0.04 and 0.84% average fuel concentration in 700 or 2000 mg/m3 exposure groups. Examination of vaginal cytology and sperm parameters found no marked changes in reproductive health. Neurobehavioral effects were increased rearing activity (motor activity) and significantly decreased grooming (functional observational battery) in 2000 mg/m3 female rats. Hematological changes were limited to elevated platelet counts in 2000 mg/m3 exposed males. Minimal focal alveolar epithelial hyperplasia with increased number of alveolar macrophages was noted in some 2000 mg/m3 males and one female rat. Additional rats tested for genotoxicity by micronucleus (MN) formation did not detect bone marrow cell toxicity or alterations in number of MN; SB-8 was not clastogenic. Inhalation results were similar to effects reported for JP-8. Both JP-8 and SB fuels were moderately irritating under occlusive wrapped conditions but slightly irritating under semi-occlusion. Exposure to SB-8, alone or as 50:50 blend with petroleum-derived JP-8, is not likely to enhance adverse human health risks in the military workplace.


Subject(s)
Kerosene , Semen , Humans , Rats , Male , Female , Animals , Kerosene/toxicity , Sweden , Hydrocarbons/toxicity , Rats, Inbred F344 , Aerosols , Ethanol
8.
Environ Pollut ; 327: 121497, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36967004

ABSTRACT

Diluted bitumen (dilbit) is an unconventional oil produced by the oil sands industry in Canada. Despite the knowledge available on hydrocarbon toxicity, the effects of diluted bitumen on benthic organisms are still largely unknown. Moreover, in Quebec there are only provisional threshold values of 164 mg/kg C10-C50 for chronic effects and 832 mg/kg for acute effects. The protectiveness of these values for benthic invertebrates has not been tested for heavy unconventional oils such as dilbit. Two benthic organisms, the larvae of Chironomus riparius and Hyalella azteca, were exposed to these two concentrations and to an intermediate concentration (416 mg/kg) of two dilbits (DB1 and DB2) and a heavy conventional oil (CO). The aim of the study was to assess the sublethal and lethal effects of spiked sediment by dilbit. The oil was rapidly degraded in the sediment, especially in the presence of C. riparius. Amphipods were much more sensitive to oil than chironomids. LC50-14d values for H. azteca were 199 mg/kg C10-C50 for DB1, 299 mg/kg for DB2 and 8.42 mg/kg for CO compared to LC50-7d values for C. riparius of 492 mg/kg for DB1, 563 mg/kg for DB2 and 514 mg/kg for CO. The size of the organisms was reduced compared to controls for both species. The defense enzymes (GST, GPx, SOD and CAT) were not good biomarkers in these two organisms for this type of contamination. The current provisional sediment quality criteria seem too permissive for heavy oils and should be lowered.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Oil and Gas Fields , Invertebrates , Fresh Water , Hydrocarbons/toxicity , Risk Management , Oils , Water Pollutants, Chemical/toxicity , Geologic Sediments
9.
Chemosphere ; 326: 138391, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933841

ABSTRACT

Petroleum product is an essential resource for energy, that has been exploited by wide range of industries and regular life. A carbonaceous contamination of marine and terrestrial environments caused by errant runoffs of consequential petroleum-derived contaminants. Additionally, petroleum hydrocarbons can have adverse effects on human health and global ecosystems and also have negative demographic consequences in petroleum industries. Key contaminants of petroleum products, primarily includes aliphatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), resins, and asphaltenes. On environmental interaction, these pollutants result in ecotoxicity as well as human toxicity. Oxidative stress, mitochondrial damage, DNA mutations, and protein dysfunction are a few key causative mechanisms behind the toxic impacts. Henceforth, it becomes very evident to have certain remedial strategies which could help on eliminating these xenobiotics from the environment. This brings the efficacious application of bioremediation to remove or degrade pollutants from the ecosystems. In the recent scenario, extensive research and experimentation have been implemented towards bio-benign remediation of these petroleum-based pollutants, aiming to reduce the load of these toxic molecules in the environment. This review gives a detailed overview of petroleum pollutants, and their toxicity. Methods used for degrading them in the environment using microbes, periphytes, phyto-microbial interactions, genetically modified organisms, and nano-microbial remediation. All of these methods could have a significant impact on environmental management.


Subject(s)
Environmental Pollutants , Petroleum , Soil Pollutants , Humans , Biodegradation, Environmental , Ecosystem , Petroleum/metabolism , Hydrocarbons/toxicity , Environmental Pollutants/toxicity , Soil Pollutants/analysis
10.
Ecotoxicol Environ Saf ; 250: 114487, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36587413

ABSTRACT

Atlantic salmon is an important species for Canadian culture and economy and its importance extends beyond Canada to Scandinavia and Western Europe. However, it is a vulnerable species facing decline due to habitat contamination and destruction. Existing and new Canadian pipeline projects pose a threat to salmonid habitat. The effects of diluted bitumen (dilbit), the main oil circulating in pipelines, are less studied than those of conventional oils, especially during the critical early embryonic developmental stage occurring in freshwater ecosystems. Therefore, this study aimed to compare the effects of water-accommodated fractions (WAF) of the Clearwater McMurray dilbit and the Lloydminster Heavy conventional oil on Atlantic salmon embryos exposed either from fertilization or from eyed stage. The dilbit contained the highest concentrations of low molecular weight (LMW) compounds (including BTEX and C6-C10), while the conventional oil contained the highest concentrations of PAHs. The Clearwater dilbit caused a higher percentage of mortality and malformations than the conventional oil at similar WAF concentrations. In addition, the embryos exposed from fertilization suffered a higher mortality rate, more developmental delays, and malformations than embryos exposed from the eyed stage, suggesting that early development is the most sensitive developmental stage to oil exposure. Gene expression and enzymatic activity of the detoxification phase I and II enzymes (CYP1A and GST) were measured. Data showed increases in both cyp1a expression and GST activity with increasing WAF concentrations, while gst expression was not affected by the exposures. Also, gene expression of proteins involved in the biotransformation of vitamin A and DNA damage repair were modified by the oil exposures. Overall, this study indicates that Atlantic salmon is mostly affected by oil exposure at the beginning of its development, during which embryos accumulate deformities that may impact their survival at later life stages.


Subject(s)
Petroleum , Salmo salar , Water Pollutants, Chemical , Animals , Canada , Ecosystem , Hydrocarbons/toxicity , Water , Oils , Water Pollutants, Chemical/toxicity , Petroleum/toxicity
11.
Ecotoxicol Environ Saf ; 249: 114345, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508834

ABSTRACT

Fuel spills are a major source of contamination in terrestrial environments in Antarctica. Little is known of the effects of hydrocarbon contaminants in fuels on Antarctic terrestrial biota, and how these change as fuel ages within soil. In this study we investigate the sensitivity of juveniles of the endemic Antarctic nematode Plectus murrayi to diesel-spiked soil. Toxicity tests were conducted on soil elutriates, and changes in concentrations of hydrocarbons, polar compounds and PAHs were assessed as the spiked soil was artificially aged at 3 °C over a 45-week period, representing multiple summer seasons of fuel degradation. Nematodes were most sensitive to elutriates made from freshly spiked soils (LC50 419 µg/L TPH and 156 µg/L TPH-SG), with a subsequent decline in toxicity observed in the first 6 weeks of laboratory ageing (LC50 2945 µg/L TPH and 694 µg/L TPH-SG). Effects were still evident up to 45 weeks (lowest observed effect concentration 2123 µg/L TPH) despite hydrocarbons being depleted from soils with ageing (84 % loss) and elutriates becoming dominated by polar metabolites (95 % polar). Nematode sensitivity throughout the ageing period showed evidence of a relationship between LC50 and the proportions of the lighter carbon range fraction of TPH in elutriates, the F2 fraction (C10-14). This study is the first to estimate the sensitivity of Antarctic terrestrial fauna to diesel and provides novel data on the dynamics of fuel chemistry under Antarctic conditions and how this influences toxicity. Findings contribute to predicting ecological risk at existing diesel fuel spill sites in Antarctica, to the derivation of site-specific remediation targets, and to environmental guidelines to assess ecosystem health.


Subject(s)
Nematoda , Soil Pollutants , Animals , Antarctic Regions , Ecosystem , Soil/chemistry , Hydrocarbons/toxicity , Soil Pollutants/toxicity , Soil Pollutants/chemistry
12.
Article in English | MEDLINE | ID: mdl-36361013

ABSTRACT

Legal restrictions on vehicle engine exhaust gas emission control do not always go hand in hand with an actual reduction in the emissions of toxins into the atmosphere. Moreover, the methods currently used to measure exhaust gas emissions do not give unambiguous results on the impact of the tested gases on living organisms. The method used to assess the actual toxicity of gases, BAT-CELL Bio-Ambient-Tests using in vitro tests, takes into account synergistic interactions of individual components of a mixture of gases without the need to know its qualitative and quantitative composition and allows for determination of the actual toxicity of the gas composition. Using the BAT-CELL method, exhaust gases from passenger vehicles equipped with spark-ignition engines complying with the Euro 3 and Euro 6 emission standards were tested. The results of toxicological tests were correlated with the results of chromatographic analysis. It was shown that diverse qualitative composition of the mixture of hydrocarbons determining the exhaust gases toxicity may decrease the percentage value of cell survival. Additionally, it was proven that the average survival of cells after exposure to exhaust gases from tested vehicles meeting the more restrictive Euro 6 standard was lower than for vehicles meeting the Euro 3 standard thus indicating the higher toxicity of exhaust gases from newer vehicles.


Subject(s)
Air Pollutants , Vehicle Emissions , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Gasoline/analysis , Gases/toxicity , Gases/analysis , Hydrocarbons/toxicity , Hydrocarbons/analysis , In Vitro Techniques , Air Pollutants/toxicity , Air Pollutants/analysis , Motor Vehicles
13.
Microbiol Res ; 265: 127184, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36115172

ABSTRACT

Hydrocarbon contamination is continuing to be a serious environmental problem because of their toxicity. Hydrocarbon components have been known to be carcinogens and neurotoxic organic pollutants. The physical and chemical methods of petroleum removal have become ineffective and also are very costly. Therefore, bioremediation is considered the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization.The current study also concentrates on bioremediation of petroleum products by bacterium isolated from petroleum hydrocarbon contaminated soil. The current work shows that bacterial strains obtained from a petroleum hydrocarbon contaminated environment may degrade petroleum compounds. Two strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were identified as petroleum-degrading bacteria of the isolated bacterial colonies. The best growth conditions for the ARMP2 strain were determined to be pH 9, temperature 29 °C with sodium nitrate as its nitrogen source, whereas for the ARMP8 strain the optimal growth was found at pH 7, temperature 39 °C, and ammonium chloride as the nitrogen source. Both strains were shown to be effective at degrading petroleum chemicals confirmed by GCMS. Overall petroleum product degradation efficiency of the strains ARMP2 and ARMP8 was about 88 % and 73 % respectively in 48 h.The strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were shown to be effective at degrading petroleum compounds in the current study. Even greater results might be obtained if the organisms were utilised in consortia or the degradation time period was extended.


Subject(s)
Petroleum , Soil Pollutants , Ammonium Chloride/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Carcinogens/metabolism , Hydrocarbons/metabolism , Hydrocarbons/toxicity , Nitrogen/metabolism , Petroleum/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
14.
Environ Toxicol Chem ; 41(12): 3070-3083, 2022 12.
Article in English | MEDLINE | ID: mdl-36102847

ABSTRACT

Oil spill exposures are highly dynamic and are not comparable to laboratory exposures used in standard toxicity tests. Toxicokinetic-toxicodynamic (TKTD) models allow translation of effects observed in the laboratory to the field. To improve TKTD model calibration, new and previously published data from 148 tests were analyzed to estimate rates characterizing the time course of toxicity for 10 fish and 42 invertebrate species across 37 hydrocarbons. A key parameter in the TKTD model is the first-order rate that incorporates passive elimination, biotransformation, and damage repair processes. The results indicated that temperature (4-26 °C), organism size (0.0001-10 g), and substance log octanol-water partition coefficient (2-6) had limited influence on this parameter, which exhibited a 5th to 95th percentile range of 0.2-2.5 day-1 (median 0.7 day-1 ). A species sensitivity distribution approach is proposed to quantify the variability of this parameter across taxa, with further studies needed for aliphatic hydrocarbons and plant species. Study findings allow existing oil spill models to be refined to improve effect predictions. Environ Toxicol Chem 2022;41:3070-3083. © 2022 ExxonMobil Biomedical Science Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Water Pollutants, Chemical , Animals , Temperature , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Ecotoxicology , Hydrocarbons/toxicity , Hydrophobic and Hydrophilic Interactions
15.
Ecotoxicology ; 31(8): 1287-1298, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36125662

ABSTRACT

Remedial guidelines for petroleum hydrocarbons (PHCs) in soil aid in the mitigation of risks to human health and the environmental. However, some remediation guidelines may overestimate the potential for adverse effects to native plant species, contributing to unnecessary remedial efforts in attempts to meet the guidelines. At sites where PHC-contaminated soils undergo weathering, some PHCs may persist but with decreased bioavailability to organisms. In this study, the toxicity of both coarse and fine-grained subarctic soils, contaminated with weathered PHCs were assessed using five native plant species (Picea mariana, Achillea millefolium, Alnus viridis, Elymus trachycaulus and Salix bebbiana). Soil toxicity tests were conducted in a growth chamber with parameters set to simulate the site's subarctic climate conditions. Reference toxicant tests using boric acid were conducted to provide confidence in the interpretation of the results for the PHC-contaminated soils, and also provide new information on the sensitivities of the four boreal species to boric acid. All plants exhibited reduced growth and germination rates as boric acid concentrations increased. Despite exceeding the Canada-wide standard guidelines for Fraction 3 PHCs, field-collected contaminated soils had no significant negative impacts on the growth (i.e., length, dry weight and emergence) of any of the plant species tested.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Boric Acids , Canada , Humans , Hydrocarbons/toxicity , Petroleum/toxicity , Plants , Soil , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/toxicity
16.
Mar Pollut Bull ; 180: 113738, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35635877

ABSTRACT

Crassostrea virginica was exposed to different light crude oil levels to assess the effect on transcriptomic response and metabolic rate. The exposure time was 21 days, and levels of 100 and 200 µg/L were used, including a control. The most significant difference among treatments was the overexpression of several genes associated with energy production, reactive oxygen species (ROS) regulation, immune system response, and inflammatory response. Also, a hydrocarbon concentration-related pattern was identified in ROS regulation, with a gene expression ratio near 1.8:1 between 200 and 100 µg/L treatments. Statistical analysis showed no interaction effect for metabolic rate; however, significant differences were found for oil concentration and time factors, with a higher oxygen consumption at 200 µg/L. Our findings provide novel information about the metabolic response of C. virginica during hydrocarbons exposure. In addition, our results point out which biological processes should be investigated as targets for searching bioindicators.


Subject(s)
Crassostrea , Water Pollutants, Chemical , Animals , Crassostrea/metabolism , Hydrocarbons/metabolism , Hydrocarbons/toxicity , Immunity , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/analysis
17.
J Hazard Mater ; 436: 129137, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35594666

ABSTRACT

The effects of asphaltenes on the photolytic and toxic behavior of petroleum oil on seawater was investigated by exposing five original oils and their maltenes to solar irradiation for seven days. Polycyclic aromatic hydrocarbons (PAHs) experienced the fastest photo-oxidation, but negligible photolytic loss was observed for most normal alkanes and all the petroleum biomarkers from tri-cyclic to pentyl-cyclic terpanes in the test total oil and maltenes. The removal of most PAHs from some maltenes was greater than the corresponding total oils. Deasphalting process did not affect the characteristics of naphthenic acid fraction components (NAFCs) in all control samples. In all test oils, solar irradiation formed abundant NAFCs, in particular those only containing oxygen as the heteroatoms (Oo species). The formed Oo species were abundant in congeners having highly saturated congeners, and shifted to a lighter carbon number after exposed. Deasphalting process significantly enhanced the formation of Oo species (o from 2 to 4) for all test oils, in particular for the Cold Lake Blend and Bunker C. The toxicity of exposed maltenes was generally higher than the exposed total oil for most oils, suggesting the aqueous toxicity level was positively related to the formed NAFC intermediates.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Hydrocarbons/toxicity , Oils , Petroleum/analysis , Petroleum/toxicity , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
18.
Ecotoxicol Environ Saf ; 237: 113554, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35487174

ABSTRACT

The oil sands industry in Canada, produces heavy unconventional oils, diluted for transport and called diluted bitumen. However, despite advances in our knowledge of the ecotoxicological risk that these products represent, their effects on benthic organisms following a spill are still largely unknown. In order to fill these gaps, this study aims to determine the lethal and sublethal effects of two diluted bitumens (Bluesky and Cold Lake) and one conventional oil (Lloydminster) for two freshwater benthic invertebrates: Chironomus riparius and Hyalella azteca. The objective of this study is to assess the toxicity of dissolved hydrocarbons, resulting from the physical dispersion of oil, immediately after a spill on the benthic invertebrates. To this end, organisms were exposed for 7 days for chironomids and 14 days for amphipods to a fraction containing soluble hydrocarbons (WAF: water accommodated fraction; 10 g/L, 18 h of agitation, followed by 6 h of sedimentation) with natural or artificial sediment. After exposure, the effects of hydrocarbons were determined using size, mortality, and antioxidant capacities. Dissolved hydrocarbons induced mortality for both species, but these hydrocarbons disappeared very quickly from the water column, regardless of the oil type. The amphipods were sensitive to both types of oil while the chironomids were only sensitive to diluted bitumens. The presence of a natural sediment seems to provide a protective role against dissolved hydrocarbons. The antioxidant enzymes measured (CAT, SOD and GPx) do not appear to be relevant biomarkers for the exposure of these organisms to diluted bitumen.


Subject(s)
Amphipoda , Chironomidae , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Antioxidants , Hydrocarbons/toxicity , Invertebrates , Lakes , Oil and Gas Fields , Petroleum/analysis , Petroleum/toxicity , Petroleum Pollution/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
J Toxicol Environ Health A ; 85(5): 175-183, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34913848

ABSTRACT

Degenerate neural circuits exhibit "different" circuit properties yet produce similar circuit outcomes (many-to-one) which ensures circuit robustness and complexity. However, neuropathies may hijack degeneracy to yield robust and complex pathological circuits. The aim of the current study was to test the hypothesis that physiochemical exposure to combined jet fuel and noise might induce degeneracy in the brainstem. The auditory brainstem of pigmented rats was used as a model system. The animals were randomized into the following experimental groups: Fuel+Noise, fuel-only, noise-only, and control. Ascending volume conductance from various auditory brainstem regions were evaluated simultaneously with peripheral nervous system (PNS) input to brainstem circuitry. Data demonstrated normal PNS inputs for all groups. However, the Fuel+Noise exposure group produced different caudal brainstem circuit properties while rostral brainstem circuitry initiated outputs that were similar to that of control. This degenerative effect was specific to Fuel+Noise exposure, since neither noise-alone or fuel-alone produced the same result. Degeneracy in the auditory brainstem is consistent with perceptual abnormalities, such as poor speech discrimination (hear but not understand), tinnitus (ringing in the ear), hyperacusis (hypersensitivity to even low-level sound), and loudness intolerance. Therefore, a potential consequence of Fuel+Noise exposure among military and civilian populations may be evidenced as increased rates of super-threshold auditory perceptual abnormalities. This is particularly important because to date, the ototoxic profile of Fuel+Noise exposure has remained unresolved.


Subject(s)
Auditory Perception/drug effects , Brain Stem/drug effects , Hydrocarbons/toxicity , Noise/adverse effects , Animals , Male , Peripheral Nervous System/physiopathology , Rats, Long-Evans
20.
Environ Toxicol Chem ; 41(1): 159-174, 2022 01.
Article in English | MEDLINE | ID: mdl-34918379

ABSTRACT

Breeding birds that become oiled may contaminate the shells of their eggs, and studies of conventional crude oil suggest that even small quantities can be absorbed through the eggshell and cause embryotoxicity. Unconventional crude oils remain untested, so we evaluated whether a major Canadian oil sands product, diluted bitumen (dilbit), would be absorbed and cause toxicity when applied to eggshells of two species, domestic chicken (Gallus gallus domesticus) and double-crested cormorant (Nannopterum auritum). We artificially incubated eggs and applied lightly weathered dilbit (Cold Lake blend) to the eggshells (0.015-0.15 mg g-1 egg in chicken; 0.1-0.4 mg g-1 egg in cormorant) at various points during incubation before sampling prehatch embryos. Polycyclic aromatic compound (PAC) residue in cormorant embryos was elevated only at the highest dilbit application (0.4 mg g-1 egg) closest (day 16) to sampling on day 22. In contrast, cormorant liver cytochrome P450 1a4 (Cyp1a4) mRNA expression (quantitative polymerase chain reaction assay) was elevated only in embryos treated with the earliest and lowest dilbit application (0.1 mg g-1 egg on day 4). These results confirm that dilbit can cross through the eggshell and be absorbed by embryos, and they imply rapid biotransformation of PACs and a nonmonotonic Cyp1a4 response. Despite evidence of exposure in cormorant, we found no detectable effects on the frequency of survival, deformity, and gross lesions, nor did we find effects on physiological endpoints indicative of growth and cardiovascular function in either chicken or cormorant. In ovo dilbit exposure may be less toxic than well-studied conventional crude oils. The effects of an oil spill scenario involving dilbit to bird embryos might be subtle, and PACs may be rapidly metabolized. Environ Toxicol Chem 2022;41:159-174. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Birds , Canada , Egg Shell/chemistry , Hydrocarbons/toxicity , Oil and Gas Fields , Petroleum/analysis , Petroleum/toxicity , Petroleum Pollution/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...