Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.555
1.
Drug Des Devel Ther ; 18: 1399-1414, 2024.
Article En | MEDLINE | ID: mdl-38707612

Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.


Hydrogen , Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Hydrogen/pharmacology , Hydrogen/chemistry , Humans , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
2.
Nature ; 629(8011): 295-306, 2024 May.
Article En | MEDLINE | ID: mdl-38720037

Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.


Carbon Dioxide , Fossil Fuels , Oil and Gas Industry , Renewable Energy , Carbon Cycle , Carbon Dioxide/adverse effects , Carbon Dioxide/isolation & purification , Coal/adverse effects , Coal/supply & distribution , Fossil Fuels/adverse effects , Fossil Fuels/supply & distribution , Hydrogen/chemistry , Natural Gas/adverse effects , Natural Gas/supply & distribution , Petroleum/adverse effects , Petroleum/supply & distribution , Renewable Energy/statistics & numerical data , Oil and Gas Industry/methods , Oil and Gas Industry/trends
3.
Nat Commun ; 15(1): 3708, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714662

Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.


Amino Acids , Aniline Compounds , Boranes , Peptides , Aniline Compounds/chemistry , Catalysis , Amino Acids/chemistry , Peptides/chemistry , Boranes/chemistry , Hydrogen/chemistry , Computer Simulation , Oxidation-Reduction , Alkylation , Machine Learning
4.
Nat Commun ; 15(1): 4539, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806457

Featuring high caloric value, clean-burning, and renewability, hydrogen is a fuel believed to be able to change energy structure worldwide. Biohydrogen production technologies effectively utilize waste biomass resources and produce high-purity hydrogen. Improvements have been made in the biohydrogen production process in recent years. However, there is a lack of operational data and sustainability analysis from pilot plants to provide a reference for commercial operations. In this report, based on spectrum coupling, thermal effect, and multiphase flow properties of hydrogen production, continuous pilot-scale biohydrogen production systems (dark and photo-fermentation) are established as a research subject. Then, pilot-scale hydrogen production systems are assessed in terms of sustainability. The system being evaluated, consumes 171,530 MJ of energy and emits 9.37 t of CO2 eq when producing 1 t H2, and has a payback period of 6.86 years. Our analysis also suggests future pathways towards effective biohydrogen production technology development and real-world implementation.


Biofuels , Fermentation , Hydrogen , Hydrogen/metabolism , Pilot Projects , Biomass , Bioreactors
5.
Sci Prog ; 107(2): 368504241257060, 2024.
Article En | MEDLINE | ID: mdl-38807538

INTRODUCTION: Ischemia-reperfusion (IR) injury is a major concern that frequently occurs during vascular surgeries. Hydrogen-rich saline (HRS) solution exhibits antioxidant and anti-inflammatory properties. This study aimed to examine the effects of HRS applied before ischemia in the lungs of rats using a lower extremity IR model. MATERIAL AND METHODS: After approval was obtained from the ethics committee, 18 male Wistar albino rats weighing 250-280 g were randomly divided into three groups: control (C), IR and IR-HRS. In the IR and IR-HRS groups, an atraumatic microvascular clamp was used to clamp the infrarenal abdominal aorta, and skeletal muscle ischemia was induced. After 120 min, the clamp was removed, and reperfusion was achieved for 120 min. In the IR-HRS group, HRS was administered intraperitoneally 30 min before the procedure. Lung tissue samples were examined under a light microscope and stained with hematoxylin-eosin (H&E). Malondialdehyde (MDA) levels, total sulfhydryl (SH) levels, and histopathological parameters were evaluated in the tissue samples. RESULTS: MDA and total SH levels were significantly higher in the IR group than in the control group (p < 0.0001 and p = 0.001, respectively). MDA and total SH levels were significantly lower in the IR-HRS group than in the IR group (p < 0.0001 and p = 0.013, respectively). A histopathological examination revealed that neutrophil infiltration/aggregation, alveolar wall thickness, and total lung injury score were significantly higher in the IR group than in the control group (p < 0.0001, p = 0.001, and p < 0.0001, respectively). Similarly, alveolar wall thickness and total lung injury scores were significantly higher in the IR-HRS group than in the control group (p = 0.009 and p = 0.004, respectively). A statistically significant decrease was observed in neutrophil infiltration/aggregation and total lung injury scores in the IR-HRS group compared to those in the IR group (p = 0.023 and p = 0.022, respectively). CONCLUSION: HRS at a dose of 20 mg/kg, administered intraperitoneally 30 min before ischemia in rats, reduced lipid peroxidation and oxidative stress, while also reducing IR damage in lung histopathology. We believe that HRS administered to rats prior to IR exerts a lung-protective effect.


Hydrogen , Lung , Malondialdehyde , Muscle, Skeletal , Rats, Wistar , Reperfusion Injury , Saline Solution , Animals , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Rats , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/blood supply , Saline Solution/pharmacology , Saline Solution/chemistry , Saline Solution/administration & dosage , Hydrogen/pharmacology , Hydrogen/administration & dosage , Malondialdehyde/metabolism , Lung Injury/pathology , Lung Injury/drug therapy
6.
Behav Brain Res ; 468: 115040, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38723675

Neurotoxins have been extensively investigated, particularly in the field of neuroscience. They induce toxic damage, oxidative stress, and inflammation on neurons, triggering neuronal dysfunction and neurodegenerative diseases. Here we demonstrate the neuroprotective effect of a silicon (Si)-based hydrogen-producing agent (Si-based agent) in a juvenile neurotoxic mouse model induced by 6-hydroxydopamine (6-OHDA). The Si-based agent produces hydrogen in bowels and functions as an antioxidant and anti-inflammatory agent. However, the effects of the Si-based agent on neural degeneration in areas other than the lesion and behavioral alterations caused by it are largely unknown. Moreover, the neuroprotective effects of Si-based agent in the context of lactation and use during infancy have not been explored in prior studies. In this study, we show the neuroprotective effect of the Si-based agent on 6-OHDA during lactation period and infancy using the mouse model. The Si-based agent safeguards against the degradation and neuronal cell death of dopaminergic neurons and loss of dopaminergic fibers in the striatum (STR) and ventral tegmental area (VTA) caused by 6-OHDA. Furthermore, the Si-based agent exhibits a neuroprotective effect on the length of axon initial segment (AIS) in the layer 2/3 (L2/3) neurons of the medial prefrontal cortex (mPFC). As a result, the Si-based agent mitigates hyperactive behavior in a juvenile neurotoxic mouse model induced by 6-OHDA. These results suggest that the Si-based agent serves as an effective neuroprotectant and antioxidant against neurotoxic effects in the brain, offering the possibility of the Si-based agent as a neuroprotectant for nervous system diseases.


Disease Models, Animal , Dopaminergic Neurons , Hydrogen , Neuroprotective Agents , Oxidopamine , Silicon , Animals , Neuroprotective Agents/pharmacology , Oxidopamine/pharmacology , Mice , Silicon/pharmacology , Dopaminergic Neurons/drug effects , Female , Hydrogen/pharmacology , Hydrogen/administration & dosage , Male , Neurotoxicity Syndromes/drug therapy , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Ventral Tegmental Area/drug effects , Mice, Inbred C57BL
7.
ACS Sens ; 9(5): 2653-2661, 2024 May 24.
Article En | MEDLINE | ID: mdl-38710540

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.


Hydrogen , Tin Compounds , Tin Compounds/chemistry , Hydrogen/chemistry , Hydrogen/analysis , Surface Properties , Gases/analysis , Gases/chemistry , Nanostructures/chemistry , Semiconductors
8.
Bioelectrochemistry ; 158: 108724, 2024 Aug.
Article En | MEDLINE | ID: mdl-38714063

Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.


Hydrogen , Hydrogen/chemistry , Hydrogen/metabolism , Catalysis , Metals/chemistry , Acetates/chemistry , Acetates/metabolism , Clostridium/metabolism , Electrodes , Biocompatible Materials/chemistry , Bioelectric Energy Sources/microbiology
9.
ACS Sens ; 9(5): 2395-2401, 2024 May 24.
Article En | MEDLINE | ID: mdl-38722860

PdNi alloy thin films demonstrate exceptional hydrogen sensing performance and exhibit significant potential for application in surface acoustic wave (SAW) hydrogen sensors. However, the long-term stability of SAW H2 sensors utilizing PdNi films as catalysts experiences a substantial decrease during operation. In this paper, X-ray photoelectron spectroscopy (XPS) is employed to investigate the failure mechanisms of PdNi thin films under operational conditions. The XPS analysis reveals that the formation of PdO species on PdNi thin films plays a crucial role in the failure of hydrogen sensing. Additionally, density functional theory (DFT) calculations indicate that hydrogen atoms encounter a diffusion energy barrier during the penetration process from the PdNiOx surface to the subsurface region. The identification of PdNi film failure mechanisms through XPS and DFT offers valuable insights into the development of gas sensors with enhanced long-term stability. Guided by these mechanisms, we propose a method to restore the hydrogen sensing response time and magnitude to a certain extent by reducing the partially oxidized surface of the PdNi alloy under a hydrogen atmosphere at 70 °C, thereby restoring Pd to its metallic state with zero valence.


Hydrogen , Nickel , Oxidation-Reduction , Palladium , Sound , Hydrogen/chemistry , Palladium/chemistry , Nickel/chemistry , Surface Properties , Density Functional Theory , Photoelectron Spectroscopy , Alloys/chemistry
10.
ACS Sens ; 9(5): 2529-2539, 2024 May 24.
Article En | MEDLINE | ID: mdl-38723609

Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.


Aluminum Silicates , Hydrogen , Metal Nanoparticles , Palladium , Palladium/chemistry , Hydrogen/chemistry , Catalysis , Metal Nanoparticles/chemistry , Aluminum Silicates/chemistry , Temperature , Surface Properties
11.
ACS Sens ; 9(5): 2205-2227, 2024 May 24.
Article En | MEDLINE | ID: mdl-38738834

Decarbonization of the energy system is a key aspect of the energy transition. Energy storage in the form of chemical bonds has long been viewed as an optimal scheme for energy conversion. With advances in systems engineering, hydrogen has the potential to become a low cost, low emission, energy carrier. However, hydrogen is difficult to contain, it exhibits a low flammability limit (>40000 ppm or 4%), low ignition energy (0.02 mJ), and it is a short-lived climate forcer. Beyond commercially available sensors to ensure safety through spot checks in enclosed environments, new sensors are necessary to support the development of low emission infrastructure for production, transmission, storage, and end use. Efficient scalable broad area hydrogen monitoring motivates lowering the detection limit below that (10 ppm) of best in class commercial technologies. In this perspective, we evaluate recent advances in hydrogen gas sensing to highlight technologies that may find broad utility in the hydrogen sector. It is clear in the near term that a sensor technology suite is required to meet the variable constraints (e.g., power, size/weight, connectivity, cost) that characterize the breadth of the application space, ranging from industrial complexes to remote pipelines. This perspective is not intended to be another standard hydrogen sensor review, but rather provide a critical evaluation of technologies with detection limits preferably below 1 ppm and low power requirements. Given projections for rapid market growth, promising techniques will also be amenable to rapid development in technical readiness for commercial deployment. As such, methods that do not meet these requirements will not be considered in depth.


Hydrogen , Hydrogen/chemistry
12.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745325

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Bronchopulmonary Dysplasia , Hydrogen , Inflammation , Lipopolysaccharides , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Signal Transduction , Toll-Like Receptor 4 , Female , Pregnancy , Lipopolysaccharides/toxicity , Hydrogen/pharmacology , Hydrogen/therapeutic use , Animals , Placenta/metabolism , Placenta/drug effects , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Signal Transduction/drug effects , Rats , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Administration, Inhalation , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/prevention & control , Interleukin-6/metabolism , Interleukin-6/genetics , Rats, Sprague-Dawley , Disease Models, Animal
13.
J Am Chem Soc ; 146(19): 13488-13498, 2024 May 15.
Article En | MEDLINE | ID: mdl-38709095

Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.


Hydrogen , Peptides , Hydrogen/chemistry , Catalysis , Peptides/chemistry , Models, Molecular , Hydrolysis
14.
Anal Methods ; 16(19): 3020-3029, 2024 May 16.
Article En | MEDLINE | ID: mdl-38690766

A concise and rapid detection method for Mycoplasma pneumoniae is urgently required due to its severe impact on human health. To meet such a need, this study proposed and constructed an innovative point-of-care testing (POCT) platform that consists of a hydrogen ion-selective loop-mediated isothermal amplification (H+-LAMP) sensor and an electrochemical detection device. The H+-LAMP sensor successfully integrated the working and reference electrodes and converted the H+ generated during the LAMP process into an electrochemical signal. High sensitivity and stability for pathogen detection were also achieved by treating the working electrode with an electrodeposited polyaniline solid contact layer and by using an ion-selective membrane. As a result, the sensor shows a sensitivity of 68.26 mV per pH, a response time of less than 2 s, and a potential drift of less than 5 mV within one hour, which well meets the urgent need. The results also demonstrated that the detection limit for Mycoplasma pneumoniae was lowered to 1 copy per µL, the nucleic acid extraction and detection process could be completed in 30 minutes, and the impact of interfering ions on the sensor was negligible. Validation with 20 clinical samples yielded satisfactory results. More importantly, the storage lifespan of such an electrochemical sensor is over seven days, which is a great advantage for on-site pathogen detection. Therefore, the hydrogen ion-selective sensor constructed in this investigation is particularly suitable as a core component for instant pathogen detection platforms.


Electrochemical Techniques , Limit of Detection , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Mycoplasma pneumoniae/isolation & purification , Mycoplasma pneumoniae/genetics , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Humans , Hydrogen/chemistry , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Biosensing Techniques/methods , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/instrumentation , Electrodes
15.
J Chem Phys ; 160(18)2024 May 14.
Article En | MEDLINE | ID: mdl-38716851

We studied the origin of the vibrational signatures in the sum-frequency generation (SFG) spectrum of fibrillar collagen type I in the carbon-hydrogen stretching regime. For this purpose, we developed an all-reflective, laser-scanning SFG microscope with minimum chromatic aberrations and excellent retention of the polarization state of the incident beams. We performed detailed SFG measurements of aligned collagen fibers obtained from rat tail tendon, enabling the characterization of the magnitude and polarization-orientation dependence of individual tensor elements Xijk2 of collagen's nonlinear susceptibility. Using the three-dimensional atomic positions derived from published crystallographic data of collagen type I, we simulated its Xijk2 elements for the methylene stretching vibration and compared the predicted response with the experimental results. Our analysis revealed that the carbon-hydrogen stretching range of the SFG spectrum is dominated by symmetric stretching modes of methylene bridge groups on the pyrrolidine rings of the proline and hydroxyproline residues, giving rise to a dominant peak near 2942 cm-1 and a shoulder at 2917 cm-1. Weak asymmetric stretches of the methylene bridge group of glycine are observed in the region near 2870 cm-1, whereas asymmetric CH2-stretching modes on the pyrrolidine rings are found in the 2980 to 3030 cm-1 range. These findings help predict the protein's nonlinear optical properties from its crystal structure, thus establishing a connection between the protein structure and SFG spectroscopic measurements.


Carbon , Collagen Type I , Hydrogen , Hydrogen/chemistry , Carbon/chemistry , Collagen Type I/chemistry , Rats , Animals , Spectrum Analysis/methods
16.
PLoS One ; 19(5): e0302972, 2024.
Article En | MEDLINE | ID: mdl-38722925

Electroless nickel plating is a suitable technology for the hydrogen industry because electroless nickel can be mass-produced at a low cost. Investigating in a complex environment where hydrogen permeation and friction/wear work simultaneously is necessary to apply it to hydrogen valves for hydrogen fuel cell vehicles. In this research, the effects of hydrogen permeation on the mechanical characteristics of electroless nickel-plated free-cutting steel (SUM 24L) were investigated. Due to the inherent characteristics of electroless nickel plating, the damage (cracks and delamination of grain) and micro-particles by hydrogen permeation were clearly observed at the grain boundaries and triple junctions. In particular, the cracks grew from grain boundary toward the intergranualr. This is because the grain boundaries and triple junctions are hydrogen permeation pathways and increasing area of the hydrogen partial pressure. As a result, its surface roughness increased by a maximum of two times, and its hardness and adhesion strength decreased by hydrogen permeation. In particular, hydrogen permeation increased the friction coefficient of the electroless nickel-plated layer, and the damage caused by adhesive wear was significantly greater, increasing the wear depth by up to 5.7 times. This is believed to be due to the decreasing in wear resistance of the electroless nickel plating layer damaged by hydrogen permeation. Nevertheless, the Vickers hardness and the friction coefficient of the electroless nickel plating layer were improved by about 3 and 5.6 times, respectively, compared with those of the free-cutting steel. In particular, the electroless nickel-plated specimens with hydrogen embrittlement exhibited significantly better mechanical characteristics and wear resistance than the free-cutting steel.


Hydrogen , Nickel , Steel , Hydrogen/chemistry , Nickel/chemistry , Steel/chemistry , Electric Power Supplies , Surface Properties , Materials Testing
17.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38744185

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Hydrocarbons , Mineral Oil , Chromatography, High Pressure Liquid/methods , Chromatography, Gas/methods , Mineral Oil/chemistry , Mineral Oil/analysis , Hydrocarbons/analysis , Nitrogen/analysis , Helium/chemistry , Hydrogen/chemistry , Flame Ionization/methods , Gases/chemistry
18.
J Phys Chem Lett ; 15(20): 5382-5389, 2024 May 23.
Article En | MEDLINE | ID: mdl-38738984

Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 µM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.


Metronidazole , Water , Humans , Metronidazole/chemistry , Metronidazole/pharmacology , HEK293 Cells , Water/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogen/chemistry , Nitrogen Isotopes/chemistry , Magnetic Resonance Imaging/methods , Contrast Media/chemistry
19.
J Environ Manage ; 359: 120961, 2024 May.
Article En | MEDLINE | ID: mdl-38696851

Plastic pollution poses a significant environmental threat, particularly to marine ecosystems, as conventional plastics persist without degradation, accumulating plastic waste in landfills and natural environments. A promising alternative to address this issue involves the use of hydrogen donor solvents in plastic liquefaction, offering a dual benefit of waste reduction and the generation of valuable liquid products with diverse industrial applications. This review delves into plastic recycling methods with a specific focus on liquefaction using hydrogen donating solvents as an innovative approach to waste management. Liquefaction, conducted at moderate to high temperatures (280-450 °C) and pressures (7-30 MPa), yields high oil conversion using various solvents. This study examined the performance of hydrogen-donating solvents, including water, alcohols, decalin, and cyclohexane, in enhancing the oil yield while minimising the oxygen content. Supercritical water, recognised for its effective plastic degradation and chemical production capabilities, and alcohols, with their alkylating and hydrogen-donating properties, have emerged as key solvents in plastic liquefaction. The use of hydrogen donor solvents stabilizes the free radicals, enhancing the conversion of plastic waste into valuable products. In addition, this review addresses the economic efficiency of the liquefaction process.


Hydrogen , Plastics , Recycling , Solvents , Waste Management , Solvents/chemistry , Waste Management/methods , Plastics/chemistry , Hydrogen/chemistry
20.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38697543

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Fatty Acids, Volatile , Fermentation , Sewage , Sulfites , Waste Disposal, Fluid , Sewage/microbiology , Sulfites/metabolism , Fatty Acids, Volatile/metabolism , Waste Disposal, Fluid/methods , Sulfates/metabolism , Hydrogen/metabolism , Bacteria/metabolism , Iron/metabolism
...