Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Braz J Microbiol ; 54(3): 2413-2425, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37344657

ABSTRACT

Escherichia coli is a part of both animal and human commensal microbiota. Avian pathogenic E. coli (APEC) is responsible for colibacillosis in poultry, an economically important disease. However, the close similarities among APEC isolates make it difficult to differentiate between pathogenic and commensal bacteria. The aim of this study was to determine phenotypic and molecular characteristics of APEC isolates and to compare them with their in vivo pathogenicity indices. A total of 198 APEC isolates were evaluated for their biofilm-producing ability and extended-spectrum ß-lactamase (ESBL) production phenotypes. In addition, 36 virulence-associated genes were detected, and the isolates were classified into seven phylogenetic groups using polymerase chain reaction. The sources of the isolates were not associated with biofilms, ESBL, genes, or phylogroups. Biofilm and ESBL production were not associated with pathogenicity. Group B2 had the highest pathogenicity index. Groups B2 and E were positively associated with high-pathogenicity isolates and negatively associated with low-pathogenicity isolates. In contrast, groups A and C were positively associated with apathogenic isolates, and group B1 was positively associated with low-pathogenicity isolates. Some virulence-associated genes showed positive or negative associations with specific phylogenetic groups. None of the individual techniques produced results that correlated with the in vivo pathogenicity index. However, the combination of two techniques, namely, detection of virulence-associated genes and the phylogenetic groups, could help the classification of the isolates as pathogenic or commensal.


Subject(s)
Escherichia coli Infections , Poultry Diseases , Animals , Humans , Escherichia coli , Virulence/genetics , Phylogeny , Poultry Diseases/microbiology , Birds/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Virulence Factors/genetics , Hydrolases/genetics , Biofilms , Chickens/microbiology
2.
Nutrients ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049393

ABSTRACT

Changes in gut microbiota composition and in epigenetic mechanisms have been proposed to play important roles in energy homeostasis, and the onset and development of obesity. However, the crosstalk between epigenetic markers and the gut microbiome in obesity remains unclear. The main objective of this study was to establish a link between the gut microbiota and DNA methylation patterns in subjects with obesity by identifying differentially methylated DNA regions (DMRs) that could be potentially regulated by the gut microbiota. DNA methylation and bacterial DNA sequencing analysis were performed on 342 subjects with a BMI between 18 and 40 kg/m2. DNA methylation analyses identified a total of 2648 DMRs associated with BMI, while ten bacterial genera were associated with BMI. Interestingly, only the abundance of Ruminococcus was associated with one BMI-related DMR, which is located between the MACROD2/SEL1L2 genes. The Ruminococcus abundance negatively correlated with BMI, while the hypermethylated DMR was associated with reduced MACROD2 protein levels in serum. Additionally, the mediation test showed that 19% of the effect of Ruminococcus abundance on BMI is mediated by the methylation of the MACROD2/SEL1L2 DMR. These findings support the hypothesis that a crosstalk between gut microbiota and epigenetic markers may be contributing to obesity development.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Ruminococcus/genetics , Body Mass Index , DNA Methylation , Epigenesis, Genetic , Obesity/genetics , Obesity/microbiology , DNA , Hydrolases/genetics , DNA Repair Enzymes/genetics
3.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36763794

ABSTRACT

Some extraintestinal pathogenic Escherichia coli isolates (ExPEC), obtained from humans and chickens avian pathogenic E. coli (APEC), share similar virulence genes. Thus, products of avian origin can be a source of human infection. Moreover, these APEC isolates are resistant to antimicrobials and can spread in the environment through the chicken feces. Although the development of multidrug-resistant (MDR) microorganisms in poultry is on the rise, healthcare entities have raised concerns since MDRs can horizontally transfer resistance genes to other microorganisms and complicate the management of human infections by MDR APEC. The results of our study showed that of 80 investigated spiced chicken meat samples, 55% were contaminated with E. coli, of which 34% (15/44) contaminate with APEC. No diarrheagenic E. coli (DEC) pathotypes were found. Twenty-six isolates were MDR E. coli. Among the APEC isolates, 87% (13/15) produced extended-spectrum beta-lactamase (ESBL). The emergence of MDR/ESBL-producing APEC with zoonotic potential for humans is extremely worrying. Therefore, further studies are required to identify the prevalence of MDR/ESBL-producing APEC in the entire chicken production chain from creation, slaughter, processing, and butchery.


Subject(s)
Escherichia coli Infections , Poultry Diseases , Animals , Humans , Escherichia coli , Chickens , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Brazil/epidemiology , Poultry , Hydrolases/genetics , Poultry Diseases/epidemiology , Anti-Bacterial Agents/pharmacology , Phylogeny , Meat
4.
Cell Biochem Funct ; 41(1): 128-137, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36515301

ABSTRACT

Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-ß hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Adipose Tissue , Aging , Exercise , Lipolysis , Adult , Aged , Animals , Humans , Mice , Middle Aged , Young Adult , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipose Tissue/enzymology , Aging/metabolism , Hydrolases/genetics , Hydrolases/metabolism
5.
BMC Biol ; 20(1): 204, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36127679

ABSTRACT

BACKGROUND: B chromosomes are extra elements found in several eukaryote species. Usually, they do not express a phenotype in the host. However, advances in bioinformatics over the last decades have allowed us to describe several genes and molecular functions related to B chromosomes. These advances enable investigations of the relationship between the B chromosome and the host to understand how this element has been preserved in genomes. However, considering that transposable elements (TEs) are highly abundant in this supernumerary chromosome, there is a lack of knowledge concerning the dynamics of TE control in B-carrying cells. Thus, the present study characterized PIWI-interacting RNA (piRNA) clusters and pathways responsible for silencing the mobilization of TEs in gonads of the cichlid fish Astatotilapia latifasciata carrying the B chromosome. RESULTS: Through small RNA-seq and genome assembly, we predicted and annotated piRNA clusters in the A. latifasciata genome for the first time. We observed that these clusters had biased expression related to sex and the presence of the B chromosome. Furthermore, three piRNA clusters, named curupira, were identified in the B chromosome. Two of them were expressed exclusively in gonads of samples with the B chromosome. The composition of these curupira sequences was derived from LTR, LINE, and DNA elements, representing old and recent transposition events in the A. latifasciata genome and the B chromosome. The presence of the B chromosome also affected the expression of piRNA pathway genes. The mitochondrial cardiolipin hydrolase-like (pld6) gene is present in the B chromosome, as previously reported, and an increase in its expression was detected in gonads with the B chromosome. CONCLUSIONS: Due to the high abundance of TEs in the B chromosome, it was possible to investigate the origin of piRNA from these jumping genes. We hypothesize that the B chromosome has evolved its own genomic guardians to prevent uncontrolled TE mobilization. Furthermore, we also detected an expression bias in the presence of the B chromosome over A. latifasciata piRNA clusters and pathway genes.


Subject(s)
Cichlids , DNA Transposable Elements , Animals , Cardiolipins , Chromosomes/metabolism , Cichlids/genetics , DNA Transposable Elements/genetics , Hydrolases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
6.
Appl Environ Microbiol ; 88(1): e0184221, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34705547

ABSTRACT

Polyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60°C and 70°C for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase IsPETase from the mesophilic bacterium Ideonella sakaiensis has also been reported. We show that polyester hydrolases from the Antarctic bacteria Moraxella sp. strain TA144 (Mors1) and Oleispira antarctica RB-8 (OaCut) were able to hydrolyze the aliphatic polyester polycaprolactone as well as the aromatic polyester PET at a reaction temperature of 25°C. Mors1 caused a weight loss of amorphous PET films and thus constitutes a PET-degrading psychrophilic enzyme. Comparative modeling of Mors1 showed that the amino acid composition of its active site resembled both thermophilic and mesophilic PET hydrolases. Lastly, bioinformatic analysis of Antarctic metagenomic samples demonstrated that members of the Moraxellaceae family carry candidate genes coding for further potential psychrophilic PET hydrolases. IMPORTANCE A myriad of consumer products contains polyethylene terephthalate (PET), a plastic that has accumulated as waste in the environment due to its long-term stability and poor waste management. One promising solution is the enzymatic biodegradation of PET, with most known enzymes only catalyzing this process at high temperatures. Here, we bioinformatically identified and biochemically characterized an enzyme from an Antarctic organism that degrades PET at 25°C with similar efficiency to the few PET-degrading enzymes active at moderate temperatures. Reasoning that Antarctica harbors other PET-degrading enzymes, we analyzed available data from Antarctic metagenomic samples and successfully identified other potential enzymes. Our findings contribute to increasing the repertoire of known PET-degrading enzymes that are currently being considered as biocatalysts for the biological recycling of plastic waste.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Antarctic Regions , Hydrolases/genetics , Hydrolysis , Polyesters , Temperature
7.
Int J Mol Sci ; 21(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403246

ABSTRACT

Xyloglucan endotransglycosylase/hydrolases (XTHs) are cell wall enzymes with hydrolase (XEH) and/or endotransglycosylase (XET) activities. As they are involved in the modification of the xyloglucans, a type of hemicellulose present in the cell wall, they are believed to be very important in different processes, including growth, development, and fruit ripening. Previous studies suggest that XTHs might play a key role in development and ripening of Fragaria chiloensis fruit, and its characterization is pending. Therefore, in order to provide a biochemical characterization of the FcXTH2 enzyme to explain its possible role in strawberry development, the molecular cloning and the heterologous expression of FcXTH2 were performed. The recombinant FcXTH2 was active and displayed mainly XEH activity. The optimal pH and temperature are 5.5 and 37 °C, respectively. A KM value of 0.029 mg mL-1 was determined. Additionally, its protein structural model was built through comparative modeling methodology. The model showed a typically ß-jelly-roll type folding in which the catalytic motif was oriented towards the FcXTH2 central cavity. Using molecular docking, protein-ligand interactions were explored, finding better interaction with xyloglucan than with cellulose. The data provided groundwork for understanding, at a molecular level, the enzymatic mechanism of FcXTH2, an important enzyme acting during the development of the Chilean strawberry.


Subject(s)
Fragaria/enzymology , Fruit/enzymology , Glycosyltransferases/metabolism , Hydrolases/metabolism , Plant Proteins/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Chile , Cloning, Molecular , Fragaria/genetics , Fragaria/growth & development , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glucans/chemistry , Glucans/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Hydrogen-Ion Concentration , Hydrolases/chemistry , Hydrolases/genetics , Kinetics , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Binding , Protein Domains , Temperature , Xylans/chemistry , Xylans/metabolism
8.
Arch Microbiol ; 202(7): 1701-1708, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32296869

ABSTRACT

Responses to sunlight exposure of the oil-degrading Dietzia cinnamea P4 strain were evaluated by transcriptional levels of SOS genes, photoreactivation and genes involved in tolerance to high levels of reactive oxygen species. The P4 strain was exposed for 1 and 2 h and the magnitude of level changes in the mRNA was evaluated by qPCR. The results described the activation of the SOS system, with the decline of the repressor lexA gene levels and the concomitant increase of recA and uvrAD genes levels. The genes that participate in the photoreactivation process were also responsive to sunlight. The phrB gene encoding deoxyribodipyrimidine photo-lyase had its expression increased after 1-h exposure, while the phytAB genes showed a progressive increase over the studied period. The protective genes against reactive oxygen species, catalases, superoxides, peroxidases, and thioredoxins, had their expression rates detected under the conditions validated in this study. These results show a fast and coordinated response of genes from different DNA repair and tolerance mechanisms employed by strain P4, suggesting a complex concerted protective action against environmental stressors.


Subject(s)
Actinobacteria/genetics , Actinobacteria/radiation effects , Gene Expression Regulation, Bacterial/radiation effects , Sunlight , Adaptation, Physiological , Bacterial Proteins/genetics , DNA Repair/genetics , Hydrolases/genetics , Oxidoreductases/genetics , Real-Time Polymerase Chain Reaction
9.
Biomolecules ; 9(11)2019 10 31.
Article in English | MEDLINE | ID: mdl-31683580

ABSTRACT

(1) Background: Lipases and esterases are important enzymes that share the α/ß hydrolase fold. The activity and cellular localization are important characteristics to understand the role of such enzymes in an organism. (2) Methods: Bioinformatic and biochemical tools were used to describe a new α/ß hydrolase from a Litopenaeus vannamei transcriptome (LvFHS for Family Serine Hydrolase). (3) Results: The enzyme was obtained by heterologous overexpression in Escherichia coli and showed hydrolytic activity towards short-chain lipid substrates and high affinity to long-chain lipid substrates. Anti-LvFHS antibodies were produced in rabbit that immunodetected the LvFSH enzyme in several shrimp tissues. (4) Conclusions: The protein obtained and analyzed was an α/ß hydrolase with esterase and lipase-type activity towards long-chain substrates up to 12 carbons; its immunodetection in shrimp tissues suggests that it has an intracellular localization, and predicted roles in energy mobilization and signal transduction.


Subject(s)
Hydrolases/metabolism , Penaeidae/enzymology , Amino Acid Sequence , Animals , Hydrolases/chemistry , Hydrolases/genetics , Intracellular Space/metabolism , Models, Molecular , Penaeidae/cytology , Protein Structure, Secondary , Serine/metabolism , Signal Transduction
10.
Mol Genet Genomic Med ; 7(12): e937, 2019 12.
Article in English | MEDLINE | ID: mdl-31568711

ABSTRACT

BACKGROUND: Tyrosinemia type 1 (HT1, MIM#276700) is caused by a deficiency in fumarylacetoacetate hydrolase (FAH) and it is associated with severe liver and renal disfunction. At present, the mutational FAH (15q25.1, MIM*613871) spectrum underlying HT1 in the Mexican population is unknown. The objective of this study was to determine the FAH genotypes in eight nonrelated Mexican patients with HT1, who were diagnosed clinically. METHODS: Sequencing of FAH and their exon-intron boundaries and in silico protein modeling based on the crystallographic structure of mouse FAH. RESULTS: We identified pathogenic variants in 15/16 studied alleles (93.8%). Nine different variants were found. The most commonly detected HT1-causing allele was NM_000137.2(FAH):c.3G > A or p.(?) [rs766882348] (25%, n = 4/16). We also identified a novel missense variant NM_000137.2(FAH):c.36C > A or p.(Phe12Leu) in a homozygous patient with an early and fatal acute form. The latter was classified as a likely pathogenic variant and in silico protein modeling showed that Phe-12 residue substitution for Leu, produces a repulsion in all possible Leu rotamers, which in turn would lead to a destabilization of the protein structure and possible loss-of-function. CONCLUSION: HT1 patients had a heterogeneous mutational and clinical spectrum and no genotype-phenotype correlation could be established.


Subject(s)
Hydrolases/genetics , Mutation, Missense , Tyrosinemias/enzymology , Tyrosinemias/genetics , Alleles , Child, Preschool , Exons , Female , Genotype , Humans , Hydrolases/metabolism , Infant , Introns , Liver/pathology , Male , Mexico/epidemiology , Tyrosinemias/pathology
11.
Appl Microbiol Biotechnol ; 103(13): 5401-5410, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31065754

ABSTRACT

Cyanide is toxic to most living organisms. The toxicity of cyanide derives from its ability to inhibit the enzyme cytochrome C oxidase of the electronic transport chain. Despite its high toxicity, several industrial processes rely on the use of cyanide, and considerable amounts of industrial waste must be adequately treated before discharge. Biological treatments for the decontamination of cyanide waste include the use of microorganisms and enzymes. Regarding the use of enzymes, cyanide dihydratase (CynD), which catalyzes the conversion of cyanide into ammonia and formate, is an attractive candidate. Nevertheless, the main impediment to the effective use of this enzyme for the biodegradation of cyanide is the marked intolerance to the alkaline pH at which cyanide waste is kept. In this work, we explore the operational capabilities of whole E. coli cells overexpressing Bacillus pumilus CynD immobilized in three organic polymer matrices: chitosan, polyacrylamide, and agar. Remarkably, the immobilized cells on agar and polyacrylamide retained more than 80% activity even at pH 10 and displayed high reusability. Conversely, the cells immobilized on chitosan were not active. Finally, the suitability of the active complexes for the degradation of free cyanide from a solution derived from the gold processing industry was demonstrated.


Subject(s)
Bacillus pumilus/enzymology , Biodegradation, Environmental , Cells, Immobilized , Hydrolases/genetics , Polymers , Acrylic Resins , Agar , Bacillus pumilus/genetics , Bacterial Proteins/metabolism , Chitosan , Cyanides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gold , Hydrogen-Ion Concentration , Hydrolases/metabolism , Mining
12.
Braz J Microbiol ; 50(1): 85-97, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30623303

ABSTRACT

Microbes from hypersaline environments are useful in biotechnology as sources of novel enzymes and proteins. The current study aimed to characterize halophilic bacteria from the rhizosphere of halophytes (Salsola stocksii and Atriplex amnicola), non-rhizospheric, and brine lake-bank soils collected from Khewra Salt Mine and screening of these bacterial strains for industrially important enzymes. A total of 45 bacterial isolates from the rhizosphere of Salsola, 38 isolates from Atriplex, 24 isolates from non-rhizospheric, and 25 isolates from lake-bank soils were identified by using 16S rRNA gene analysis. Phylogenetic analysis showed that bacterial strains belonging to Bacillus, Halobacillus, and Kocuria were dominant in the rhizosphere of halophytes (Salsola and Atriplex), and Halobacillus and Halomonas were dominating genera from non-rhizospheric and lake-bank soils. Mostly identified strains were moderately halophilic bacteria with optimum growth at 1.5-3.0 M salt concentrations. Most of the bacterial exhibited lipase, protease, cellulase, amylase, gelatinase, and catalase activities. Halophilic and halotolerant Bacilli (AT2RP4, HL1RS13, NRS4HaP9, and LK3HaP7) identified in this study showed optimum lipase, protease, cellulase, and amylase activities at 1.0-1.5 M NaCl concentration, pH 7-8, and temperature 37 °C. These results indicated that halophilic and halotolerant bacteria can be used for bioconversion of organic compounds to useful products under extreme conditions.


Subject(s)
Atriplex/microbiology , Bacteria/enzymology , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Sodium Chloride/metabolism , Soil Microbiology , Bacteria/classification , Bacteria/metabolism , Bacterial Proteins/genetics , Biodiversity , Cellulases/genetics , Cellulases/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Lakes/microbiology , Lipase/genetics , Lipase/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Phylogeny , Rhizosphere
13.
Braz. j. microbiol ; Braz. j. microbiol;49(4): 723-730, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-974310

ABSTRACT

ABSTRACT The soil represents the main source of novel biocatalysts and biomolecules of industrial relevance. We searched for hydrolases in silico in four shotgun metagenomes (4,079,223 sequences) obtained in a 13-year field trial carried out in southern Brazil, under the no-tillage (NT), or conventional tillage (CT) managements, with crop succession (CS, soybean/wheat), or crop rotation (CR, soybean/maize/wheat/lupine/oat). We identified 42,631 hydrolases belonging to five classes by comparing with the KEGG database, and 44,928 sequences by comparing with the NCBI-NR database. The abundance followed the order: lipases > laccases > cellulases > proteases > amylases > pectinases. Statistically significant differences were attributed to the tillage system, with the NT showing about five times more hydrolases than the CT system. The outstanding differences can be attributed to the management of crop residues, left on the soil surface in the NT, and mechanically broken and incorporated into the soil in the CT. Differences between the CS and the CR were slighter, 10% higher for the CS, but not statistically different. Most of the sequences belonged to fungi (Verticillium, and Colletotrichum for lipases and laccases, and Aspergillus for proteases), and to the archaea Sulfolobus acidocaldarius for amylases. Our results indicate that agricultural soils under conservative managements may represent a hotspot for bioprospection of hydrolases.


Subject(s)
Soil/chemistry , Fungal Proteins/genetics , Archaea/enzymology , Archaeal Proteins/genetics , Fungi/enzymology , Hydrolases/genetics , Soil Microbiology , Glycine max/growth & development , Triticum/growth & development , Brazil , Archaea/isolation & purification , Archaea/classification , Archaea/genetics , Zea mays/growth & development , Agriculture , Metagenome , Metagenomics , Fungi/isolation & purification , Fungi/classification , Fungi/genetics
14.
Plant Mol Biol ; 97(4-5): 385-406, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29948658

ABSTRACT

KEY MESSAGE: The recent release of the maize genome (AGPv4) contains annotation errors of invertase genes and therefore the enzymes are bestly curated manually at the protein level in a comprehensible fashion The synthesis, transport and degradation of sucrose are determining factors for biomass allocation and yield of crop plants. Invertase (INV) is a key enzyme of carbon metabolism in both source and sink tissues. Current releases of the maize genome correctly annotates only two vacuolar invertases (ivr1 and ivr2) and four cell wall invertases (incw1, incw2 (mn1), incw3, and incw4). Our comprehensive survey identified 21 INV isogenes for which we propose a standard nomenclature grouped phylogenetically by amino acid similarity: three vacuolar (INVVR), eight cell wall (INVCW), and ten alkaline/neutral (INVAN) isogenes which form separate dendogram branches due to distinct molecular features. The acidic enzymes were curated for the presence of the DPN tripeptide which is coded by one of the smallest exons reported in plants. Particular attention was placed on the molecular role of INV in vascular tissues such as the nodes, internodes, leaf sheath, husk leaves and roots. We report the expression profile of most members of the maize INV family in nine tissues in two developmental stages, R1 and R3. INVCW7, INVVR2, INVAN8, INVAN9, INVAN10, and INVAN3 displayed the highest absolute expressions in most tissues. INVVR3, INVCW5, INVCW8, and INVAN1 showed low mRNA levels. Expressions of most INVs were repressed from stage R1 to R3, except for INVCW7 which increased significantly in all tissues after flowering. The mRNA levels of INVCW7 in the vegetative stem correlated with a higher transport rate of assimilates from leaves to the cob which led to starch accumulation and growth of the female reproductive organs.


Subject(s)
Computational Biology , Genome, Plant/genetics , Zea mays/enzymology , beta-Fructofuranosidase/genetics , Amino Acid Sequence , Hydrolases/genetics , Hydrolases/metabolism , Isoenzymes , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Alignment , Zea mays/genetics , beta-Fructofuranosidase/metabolism
15.
Braz J Microbiol ; 49(4): 723-730, 2018.
Article in English | MEDLINE | ID: mdl-29636299

ABSTRACT

The soil represents the main source of novel biocatalysts and biomolecules of industrial relevance. We searched for hydrolases in silico in four shotgun metagenomes (4,079,223 sequences) obtained in a 13-year field trial carried out in southern Brazil, under the no-tillage (NT), or conventional tillage (CT) managements, with crop succession (CS, soybean/wheat), or crop rotation (CR, soybean/maize/wheat/lupine/oat). We identified 42,631 hydrolases belonging to five classes by comparing with the KEGG database, and 44,928 sequences by comparing with the NCBI-NR database. The abundance followed the order: lipases>laccases>cellulases>proteases>amylases>pectinases. Statistically significant differences were attributed to the tillage system, with the NT showing about five times more hydrolases than the CT system. The outstanding differences can be attributed to the management of crop residues, left on the soil surface in the NT, and mechanically broken and incorporated into the soil in the CT. Differences between the CS and the CR were slighter, 10% higher for the CS, but not statistically different. Most of the sequences belonged to fungi (Verticillium, and Colletotrichum for lipases and laccases, and Aspergillus for proteases), and to the archaea Sulfolobus acidocaldarius for amylases. Our results indicate that agricultural soils under conservative managements may represent a hotspot for bioprospection of hydrolases.


Subject(s)
Archaea/enzymology , Archaeal Proteins/genetics , Fungal Proteins/genetics , Fungi/enzymology , Hydrolases/genetics , Soil/chemistry , Agriculture , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Brazil , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Metagenome , Metagenomics , Soil Microbiology , Glycine max/growth & development , Triticum/growth & development , Zea mays/growth & development
16.
Microb Ecol ; 76(3): 825-838, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29546438

ABSTRACT

Marine sponge holobionts harbor complex microbial communities whose members may be the true producers of secondary metabolites accumulated by sponges. Bromopyrrole alkaloids constitute a typical class of secondary metabolites isolated from sponges that very often display biological activities. Bromine incorporation into secondary metabolites can be catalyzed by either halogenases or haloperoxidases. The diversity of the metagenomes of sponge holobiont species containing bromopyrrole alkaloids (Agelas spp. and Tedania brasiliensis) as well as holobionts devoid of bromopyrrole alkaloids spanning in a vast biogeographic region (approx. Seven thousand km) was studied. The origin and specificity of the detected halogenases was also investigated. The holobionts Agelas spp. and T. brasiliensis did not share microbial halogenases, suggesting a species-specific pattern. Bacteria of diverse phylogenetic origins encoding halogenase genes were found to be more abundant in bromopyrrole-containing sponges. The sponge holobionts (e.g., Agelas spp.) with the greatest number of sequences related to clustered, interspaced, short, palindromic repeats (CRISPRs) exhibited the fewest phage halogenases, suggesting a possible mechanism of protection from phage infection by the sponge host. This study highlights the potential of phages to transport halogenases horizontally across host sponges, particularly in more permissive holobiont hosts, such as Tedania spp.


Subject(s)
Alkaloids/metabolism , Bacteria/enzymology , Bacterial Proteins/genetics , Biodiversity , Hydrolases/genetics , Porifera/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/metabolism , Bromine/metabolism , Gene Transfer, Horizontal , Hydrolases/metabolism , Phylogeny , Porifera/chemistry , Secondary Metabolism
17.
World J Microbiol Biotechnol ; 33(7): 141, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28593475

ABSTRACT

Mangroves are located in coastal wetlands and are susceptible to the consequences of oil spills, what may threaten the diversity of microorganisms responsible for the nutrient cycling and the consequent ecosystem functioning. Previous reports show that high concentration of oil favors the incidence of epoxide hydrolases and haloalkane dehalogenases in mangroves. This finding has guided the goals of this study in an attempt to broaden the analysis to other hydrolases and thereby verify whether oil contamination interferes with the prevalence of particular hydrolases and their assigned microorganisms. For this, an in-depth survey of the taxonomic and functional microbial diversity recovered in a fosmid library (Library_Oil Mgv) constructed from oil-impacted Brazilian mangrove sediment was carried out. Fosmid DNA of the whole library was extracted and submitted to Illumina HiSeq sequencing. The resulting Library Oil_Mgv dataset was further compared with those obtained by direct sequencing of environmental DNA from Brazilian mangroves (from distinct regions and affected by distinct sources of contamination), focusing on hydrolases with potential use in biotechnological processes. The most abundant hydrolases found were proteases, esterases and amylases, with similar occurrence profile in all datasets. The main microbial groups harboring such hydrolase-encoding genes were distinct in each mangrove, and in the fosmid library these enzymes were mainly assigned to Chloroflexaceae (for amylases), Planctomycetaceae (for esterases) and Bradyrhizobiaceae (for proteases). Assembly and analysis of Library_Oil Mgv reads revealed three potentially novel enzymes, one epoxide hydrolase, one xylanase and one amylase, to be further investigated via heterologous expression assays.


Subject(s)
Bacteria/classification , Geologic Sediments/microbiology , Hydrolases/genetics , Metagenomics/methods , Bacteria/enzymology , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Biodiversity , Brazil , Genomic Library , High-Throughput Nucleotide Sequencing , Petroleum Pollution/adverse effects , Phylogeny , Sequence Analysis, DNA , Soil Microbiology , Wetlands
18.
Mycopathologia ; 182(3-4): 285-295, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27830437

ABSTRACT

The characterization of Candida albicans strains with different degrees of virulence became very useful to understand the mechanisms of fungal virulence. Then, the objective of this study was to assess and compare the temporal profiles of biofilms formation, gene expression of ALS1, ALS3, HWP1, BCR1, EFG1, TEC1, SAP5, PLB2 and LIP9 and virulence in Galleria mellonella of C. albicans ATCC18804 and a clinical sample isolated from an HIV-positive patient (CA60). Although the CFU/mL counting was higher in biofilms formed in vitro by ATCC strain, the temporal profile of the analysis of the transcripts of the C. albicans strains was elevated to Ca60 compared to strain ATCC, especially in the genes HWP1, ALS3, SAP5, PLB2 and LIP9 (up regulation). Ca60 was more pathogenic for G. mellonella in the survival assay (p = 0.0394) and hemocytes density (p = 0.0349), agreeing with upregulated genes that encode the expression of hyphae and hydrolase genes of Ca60. In conclusion, the C. albicans strains used in this study differ in the amount of biofilm formation, virulence in vivo and transcriptional profiles of genes analyzed that can change factors associated with colonization, proliferation and survival of C. albicans at different niches. SAP5 and HWP1 were the genes more expressed in the formation of biofilm in vitro.


Subject(s)
Biofilms/growth & development , Candida albicans/genetics , Candida albicans/physiology , Gene Expression Regulation, Fungal , Animals , Candida albicans/isolation & purification , Candida albicans/pathogenicity , Candidiasis/microbiology , Colony Count, Microbial , Gene Expression Profiling , Humans , Hydrolases/genetics , Lepidoptera/microbiology , Survival Analysis , Time Factors , Virulence , Virulence Factors/genetics
19.
J Immunol Res ; 2017: 8959687, 2017.
Article in English | MEDLINE | ID: mdl-29318161

ABSTRACT

The goal of the present study was to determine whether peptidylarginine deiminase PAD2 and PAD4 enzymes are present in Balb/c mouse salivary glands and whether they are able to citrullinate Ro and La ribonucleoproteins. Salivary glands from Balb/c mice were cultured in DMEM and supplemented with one of the following stimulants: ATP, LPS, TNF, IFNγ, or IL-6. A control group without stimulant was also evaluated. PAD2, PAD4, citrullinated peptides, Ro60, and La were detected by immunohistochemistry and double immunofluorescence. PAD2 and PAD4 mRNAs and protein expression were detected by qPCR and Western blot analysis. PAD activity was assessed using an antigen capture enzyme-linked immunosorbent assay. LPS, ATP, and TNF triggered PAD2 and PAD4 expression; in contrast, no expression was detected in the control group (p < 0.001). PAD transcription slightly increased in response to stimulation. Additionally, PAD2/4 activity modified the arginine residues of a reporter protein (fibrinogen) in vitro. PADs citrullinated Ro60 and La ribonucleoproteins in vivo. Molecular stimulants induced apoptosis in ductal cells and the externalization of Ro60 and La ribonucleoproteins onto apoptotic membranes. PAD enzymes citrullinate Ro and La ribonucleoproteins, and this experimental approach may facilitate our understanding of the role of posttranslational modifications in the pathophysiology of Sjögren's syndrome.


Subject(s)
Autoantigens/metabolism , Hydrolases/metabolism , Protein-Arginine Deiminases/metabolism , Ribonucleoproteins/metabolism , Salivary Glands/physiology , Sjogren's Syndrome/metabolism , Adenosine Triphosphate/immunology , Animals , Apoptosis , Cells, Cultured , Citrullination , Cytokines/metabolism , Enzyme Activation , Fibrinogen/metabolism , Gene Expression Regulation , Humans , Hydrolases/genetics , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Mice , Mice, Inbred BALB C , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases/genetics , SS-B Antigen
20.
Genet Mol Res ; 15(3)2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27706751

ABSTRACT

The correlation between the -104C/T polymorphism in the peptidyl arginine deiminase 4 (PADI4) gene and rheumatoid arthritis (RA) risk has been analyzed in several studies. However, the results are inconclusive and remain to be confirmed in several ethnic groups. The effect of the PADI4-104C/T polymorphism on RA risk in the Chinese population was evaluated in a meta-analysis. Studies with dates of publication up to July 2015 conforming to the inclusion criteria were retrieved from PubMed and Chinese databases. The associations were assessed with pooled odds ratios (ORs) and 95% confidence intervals (CIs). Ten studies, including 2119 RA cases and 1962 controls, that conformed to the study criteria were included in this analysis. The overall analysis indicated a significant association between the PADI4-104C/T polymorphism and RA risk in the Chinese population (T vs C: OR = 1.45, 95%CI = 1.18-1.78; TT vs CC: OR = 1.49, 95%CI = 1.24-1.80; TT vs CC+CT: OR = 1.28, 95%CI = 1.08-1.51; TT+CT vs CC: OR = 1.75, 95%CI = 1.30-2.37). Analysis of data stratified by the geographic area and source of controls revealed that the PADI4-104C/T polymorphism was significantly associated with RA risk in a North Chinese population. In conclusion, the results of this meta-analysis indicated that the PADI4-104C/T variants could influence the risk of RA in the Chinese population; further studies in other ethnic groups are required to draw definite conclusions.


Subject(s)
Arthritis, Rheumatoid/enzymology , Arthritis, Rheumatoid/genetics , Hydrolases/genetics , Asian People/genetics , China , Genetic Predisposition to Disease , Humans , Hydrolases/metabolism , Odds Ratio , Polymorphism, Single Nucleotide , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL