Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 771
1.
Eur J Med Chem ; 268: 116193, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38364714

AKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation. In silico studies suggested proper substituents to increase compound potency and provided with a mechanistic explanation that could clarify their different activity, later confirmed by X-ray crystallography. Both the in-silico studies and the crystallographic data highlight the importance of 90° rotation around the single bond of the biphenyl group, in ensuring that the inhibitor can adopt the optimal binding mode within the active pocket. The p-biphenyls that bear the meta-methoxy, and the ortho- and meta-trifluoromethyl substituents (in compounds 6a, 6e and 6f respectively) proved to be the best contributors to cellular potency as they provided the best IC50 values in series (2.3, 2.0 and 2.4 µM respectively) and showed no toxicity towards human MRC-5 cells. Co-treatment with scalar dilutions of either compound 6 or 6e and the clinically used drug abiraterone led to a significant reduction in cell proliferation, and thus confirmed that treatment with both CYP171A1-and AKR1C3-targeting compounds possess the potential to intervene in key steps in the steroidogenic pathway. Taken together, the novel compounds display desirable biochemical potency and cellular target inhibition as well as good in-vitro ADME properties, which highlight their potential for further preclinical studies.


Prostatic Neoplasms , Male , Humans , Aldo-Keto Reductase Family 1 Member C3 , Prostatic Neoplasms/drug therapy , 3-Hydroxysteroid Dehydrogenases/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
2.
Chem Biol Interact ; 388: 110840, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38122923

Systemic chemotherapy with gemcitabine and cisplatin (GC) has been used for the treatment of bladder cancer in which androgen receptor (AR) signaling is suggested to play a critical role. However, its efficacy is often limited, and the prognosis of patients who develop resistance is extremely poor. Aldo-keto reductase 1C3 (AKR1C3), which is responsible for the production of a potent androgen, 5α-dihydrotestosterone (DHT), by the reduction of 5α-androstane-3α,17ß-dione (5α-Adione), has been attracting attention as a therapeutic target for prostate cancer that shows androgen-dependent growth. By contrast, the role of AKR1C3 in bladder cancer remains unclear. In this study, we examined the effect of an AKR1C3 inhibitor on androgen-dependent proliferation and GC sensitivity in bladder cancer cells. 5α-Adione treatment induced the expression of AR and its downstream factor ETS-domain transcription factor (ELK1) in both T24 cells and newly established GC-resistant T24GC cells, while it did not alter AKR1C3 expression. AKR1C3 inhibitor 2j significantly suppressed 5α-Adione-induced AR and ELK1 upregulation, as did an AR antagonist apalutamide. Moreover, the combination of GC and 2j in T24GC significantly induced apoptotic cell death, suggesting that 2j could enhance GC sensitivity. Immunohistochemical staining in surgical specimens further revealed that strong expression of AKR1C3 was associated with significantly higher risks of tumor progression and cancer-specific mortality in patients with muscle-invasive bladder cancer. These results suggest that AKR1C3 inhibitors as adjunctive agents enhance the efficacy of GC therapy for bladder cancer.


Drug Resistance, Neoplasm , Urinary Bladder Neoplasms , Humans , Male , 3-Hydroxysteroid Dehydrogenases/metabolism , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/metabolism , Androgens/metabolism , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gemcitabine , Hydroxyprostaglandin Dehydrogenases/metabolism , Prostatic Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Drug Resistance, Neoplasm/genetics
3.
Eur J Endocrinol ; 188(7): 578-591, 2023 Jul 10.
Article En | MEDLINE | ID: mdl-37306288

OBJECTIVE: Aldo-keto reductase 1C3 (AKR1C3) has been postulated to be involved in androgen, progesterone, and estrogen metabolism. Aldo-keto reductase 1C3 inhibition has been proposed for treatment of endometriosis and polycystic ovary syndrome. Clinical biomarkers of target engagement, which can greatly facilitate drug development, have not yet been described for AKR1C3 inhibitors. Here, we analyzed pharmacodynamic data from a phase 1 study with a new selective AKR1C3 inhibitor, BAY1128688, to identify response biomarkers and assess effects on ovarian function. DESIGN: In a multiple-ascending-dose placebo-controlled study, 33 postmenopausal women received BAY1128688 (3, 30, or 90 mg once daily or 60 mg twice daily) or placebo for 14 days. Eighteen premenopausal women received 60 mg BAY1128688 once or twice daily for 28 days. METHODS: We measured 17 serum steroids by liquid chromatography-tandem mass spectrometry, alongside analysis of pharmacokinetics, menstrual cyclicity, and safety parameters. RESULTS: In both study populations, we observed substantial, dose-dependent increases in circulating concentrations of the inactive androgen metabolite androsterone and minor increases in circulating etiocholanolone and dihydrotestosterone concentrations. In premenopausal women, androsterone concentrations increased 2.95-fold on average (95% confidence interval: 0.35-3.55) during once- or twice-daily treatment. Note, no concomitant changes in serum 17ß-estradiol and progesterone were observed, and menstrual cyclicity and ovarian function were not altered by the treatment. CONCLUSIONS: Serum androsterone was identified as a robust response biomarker for AKR1C3 inhibitor treatment in women. Aldo-keto reductase 1C3 inhibitor administration for 4 weeks did not affect ovarian function.ClinicalTrials.gov Identifier: NCT02434640; EudraCT Number: 2014-005298-36.


Aldo-Keto Reductase Family 1 Member C3 , Androgens , Progesterone , Female , Humans , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/metabolism , Androgens/metabolism , Androsterone , Dihydrotestosterone , Hydroxyprostaglandin Dehydrogenases/metabolism , Steroids
4.
Biotechnol Appl Biochem ; 70(6): 1794-1805, 2023 Dec.
Article En | MEDLINE | ID: mdl-37279111

Increased androgen receptor (AR) signaling brought on by higher intratumoral androgen production and AR amplification is associated with castrate-resistant prostate cancer (CRPC). Cell proliferation in this case continues even during low expression of testosterone in the body. Aldo-keto reductase family 1 member C3 (AKR1C3) is one of the most elevated genes in CRPC and catalyzes the formation of powerful AR ligands from inactive forms. The current work aimed to use the x-ray method to investigate the ligand's crystal structure while also conducting molecular docking and molecular dynamics tests on the synthesized molecules against AKR1C3. As per the results obtained, the MM-PBSA binding energies of inhibitors 2,2'-((4-methoxyphenyl)methylene)bis(3,4-hydroxy-5,5-dimethylcyclohex-2-en-1-one is -132.456 kJ mol-1 and 2,2'-(phenylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one is -81.017 kJ mol-1 . These results create a promising approach to drug design based on its fit to the structures of the receptor site rather than basing it on analogies to other active structures.


Prostatic Neoplasms, Castration-Resistant , Male , Humans , Molecular Docking Simulation , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Molecular Dynamics Simulation , Cell Line, Tumor
5.
Chem Biol Interact ; 381: 110572, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37247810

A porcine gene, LOC100622246, encodes carbonyl reductase [NADPH] 1 (pCBR-N1), whose function remains unknown. Previously, three porcine carbonyl reductases, carbonyl reductase 1 (pCBR1), 3α/ß-hydroxysteroid dehydrogenase (p3α/ß-HSD) and prostaglandine-9-keto reductase (pPG-9-KR), were purified from neonatal testis, adult testis and adult kidney, respectively. However, the relationship of pCBR-N1 with the three enzymes is still unknown. Here, we compare the properties of the recombinant pCBR-N1 and pCBR1. The two enzymes reduced various carbonyl compounds including 5α-dihydrotestosterone, which was converted to its 3α- and 3ß-hydroxy-metabolites. Compared to pCBR1, pCBR-N1 exhibited higher Km and kcat values for most substrates, but more efficiently reduced prostaglandin E2. pCBR-N1 was inhibited by known inhibitors of p3α/ß-HSD (hexestrol and indomethacin), but not by pCBR1 inhibitors. pCBR-N1 was highly expressed than pCBR1 in the several tissues of adult domestic and microminiature pigs. The results, together with partial amino acid sequence match between pCBR-N1 and pPG-9-KR, reveal that pCBR-N1 is identical to p3α/ß-HSD and pPG-9-KR. Notably, pCBR-N1, but not pCBR1, reduced S-nitrosoglutathione and glutathione-adducts of alkenals including 4-oxo-2-nonenal with Km of 8.3-32 µM, and its activity toward non-glutathionylated substrates was activated 2- to 9-fold by 1 mM glutathione. Similar activation by glutathione was also observed for human CBR1. Site-directed mutagenesis revealed that the differences in kinetic constants and glutathione-mediated activation between pCBR-N1 and pCBR1 are due to differences in residue 236 and two glutathione-binding residues (at positions 97 and 193), respectively. Thus, pCBR-N1 is a glutathione-activated carbonyl reductase that functions in the metabolism of endogenous and xenobiotic carbonyl compounds.


Alcohol Oxidoreductases , Carbonyl Reductase (NADPH) , Animals , Humans , Male , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Hydroxysteroid Dehydrogenases/metabolism , Swine
6.
Comput Biol Med ; 158: 106740, 2023 05.
Article En | MEDLINE | ID: mdl-36996663

Ferroptosis is a newly discovered type of cell death and has recently been shown to be associated with asthma. However, the relationship between them at the genetic level has not been elucidated via informatics analysis. In this study, bioinformatics analyses are conducted using asthma and ferroptosis datasets to identify candidate ferroptosis-related genes using the R software. Weighted gene co-expression network analysis is performed to identify co-expressed genes. Protein-protein interaction networks, the Kyoto encyclopedia of genes and genomes, and gene ontology enrichment analysis are used to identify the potential functions of the candidate genes. We experimentally validate the results of our analysis using small interfering RNAs and plasmids to silence and upregulate the expression of the candidate gene in human bronchial epithelial cells (BEAS-2B). The ferroptosis signature levels are examined. Bioinformatics analysis of the asthma dataset GDS4896 shows that the level of the aldo-keto reductase family 1 member C3 (AKR1C3) gene in the peripheral blood of patients with severe therapy-resistant asthma and controlled persistent mild asthma (MA) is significantly upregulated. The AUC values for asthma diagnosis and MA are 0.823 and 0.915, respectively. The diagnostic value of AKR1C3 is verified using the GSE64913 dataset. The gene module of AKR1C3 is evident in MA and functions through redox reactions and metabolic processes. Ferroptosis indicators are downregulated by the overexpression of AKR1C3 and upregulated by silencing AKR1C3. The ferroptosis-related gene AKR1C3 can be used as a diagnostic biomarker for asthma, particularly for MA, and regulates ferroptosis in BEAS-2B cells.


Asthma , Ferroptosis , Humans , Aldo-Keto Reductase Family 1 Member C3/metabolism , Hydroxyprostaglandin Dehydrogenases/analysis , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Ferroptosis/genetics , Biomarkers , Asthma/genetics , Computational Biology
7.
Eur J Med Chem ; 247: 115013, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36566714

Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in multiple hormone related cancers, such as breast and prostate cancer, and is correlated with tumor development and aggressiveness. As a phase I biotransformation enzyme, AKR1C3 catalyzes the metabolic processes that lead to resistance to anthracyclines, the "gold standard" for breast cancer treatment. Novel approaches to restore the chemotherapy sensitivity of breast cancer are urgently required. Herein, we developed a new class of AKR1C3 inhibitors that demonstrated potent inhibitory activity and exquisite selectivity for closely related isoforms. The best derivative 27 (S19-1035) exhibits an IC50 value of 3.04 nM for AKR1C3 and >3289-fold selectivity over other isoforms. We determined the co-crystal structures of AKR1C3 with three of the inhibitors, providing a solid foundation for further structure-based drug optimization. Co-administration of these AKR1C3 inhibitors significantly reversed the doxorubicin (DOX) resistance in a resistant breast cancer cell line. Therefore, the novel AKR1C3 specific inhibitors developed in this work may serve as effective adjuvants to overcome DOX resistance in breast cancer treatment.


Breast Neoplasms , Male , Humans , Breast Neoplasms/drug therapy , Pharmaceutical Preparations , Hydroxyprostaglandin Dehydrogenases/chemistry , Hydroxyprostaglandin Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Aldo-Keto Reductase Family 1 Member C3 , Antibiotics, Antineoplastic , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
8.
Protein Sci ; 31(12): e4499, 2022 12.
Article En | MEDLINE | ID: mdl-36335585

As a key regulator for hormone activity, human aldo-keto reductase family 1 member C3 (AKR1C3) plays crucial roles in the occurrence of various hormone-dependent or independent malignancies. It is a promising target for treating castration-resistant prostate cancer (CRPC). However, the development of AKR1C3 specific inhibitors remains challenging due to the high sequence similarity to its isoform AKR1C2. Here, we performed a combined in silico study to illuminate the inhibitory preference of 3-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic acids for AKR1C3 over AKR1C2, of which compound 38 can achieve up to 5000-fold anti-AKR1C3 selectivity. Our umbrella sampling (US) simulations together with end-point binding free energy calculation MM/GBSA uncover that the high inhibition selectivity originates from the different binding modes, namely "Inward" and "Outward," of this compound series in AKR1C3 and AKR1C2, respectively. In AKR1C3/38, the tetrahydroquinoline moiety of 38 is accommodated inside the SP1 pocket and interacts favorably with surrounding residues, while, in AKR1C2/38, the SP1 pocket is too small to hold the bulky tetrahydroquinoline group that instead moves out of the pocket with 38 transitioning from an "Inward" to an "Outward" state. Further 3D-QSAR and energy decomposition analyses suggest that SP1 in AKR1C3 prefers to bind with a rigid bicyclic moiety and the modification of the R3 group has important implication for the compound's activity. This work is the first attempt to elucidate the selectivity mechanism of inhibitors toward AKR1C3 at the atomic level, which is anticipated to propel the development of next-generation AKR1C3 inhibitors with enhanced efficacy and reduced "off-target" effect for CRPC therapy.


Hydroxyprostaglandin Dehydrogenases , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Aldo-Keto Reductase Family 1 Member C3/metabolism , Hydroxyprostaglandin Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Benzoates/chemistry , Computer Simulation , Protein Isoforms , Hormones
9.
Anticancer Res ; 42(11): 5385-5396, 2022 Nov.
Article En | MEDLINE | ID: mdl-36288851

BACKGROUND/AIM: Most deaths from colon cancer are due to metastasis. Recently, PGE2 was found to influence colon cancer invasion and metastasis. 15-PGDH, an enzyme that metabolizes PGE2, is known as a tumor suppressor in colonic carcinogenesis. This study investigated the effect of 15-PGDH on colon cancer metastasis. MATERIALS AND METHODS: 15-PGDH expression by immunohistochemical staining, clinicopathologic features, and 5-year cancer-specific survival were investigated in colon cancer patients. Liver metastasis was examined by assaying 15-PGDH activity in an animal model. Changes in PGE2, proliferation, migration, and invasion of the colorectal cancer cell line HCT116, were examined using a 15-PGDH inhibitor (SW033291) or enhancer (CDDO-ME). The expression of genes involved in the epithelial-to-mesenchymal transition (EMT) was also studied. RESULTS: The absence of 15-PGDH expression significantly correlated with advanced-stage, lymph node metastasis, and decreased cancer-specific survival in colon cancer patients. Inhibition of 15-PGDH increased colon cancer liver metastasis in the animal model. The 15-PGDH inhibitor, SW033291, increased PGE2 and decreased 15-PGDH expression on HCT116. However, treatment with CDDO-ME, a substance that enhances 15-PGDH, showed the opposite results. Inhibition of 15-PGDH increased cell proliferation, migration, and invasion, but activation of 15-PGDH showed the opposite effect. Inhibition of 15-PGDH also affected the EMT markers, N-cadherin, Snail, and Twist2. CONCLUSION: 15-PGDH inhibition increased colon cancer metastasis by inducing changes in EMT-related genes via an increase in PGE2 expression and could be a promising biomarker for anticancer treatment.


Colonic Neoplasms , Liver Neoplasms , Animals , Up-Regulation , Dinoprostone/metabolism , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Cadherins/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
10.
Front Immunol ; 13: 932412, 2022.
Article En | MEDLINE | ID: mdl-36045676

Immune cells and the cytokines they produce are important mediators of the transition from colitis to colon cancer, but the mechanisms mediating this disease progression are poorly understood. Interferon gamma (IFN-γ) is known to contribute to the pathogenesis of colitis through immune modulatory mechanisms, and through direct effects on endothelial and epithelial homeostasis. Here we explore whether IFN-γ influences tumor progression by expanding the effector memory T cells (TEM) population and restricting the expression of tumor suppressors in a preclinical model of spontaneous colitis-associated colorectal cancer (CAC). We show that IFN-γ expression is significantly increased both in the T cells and the colonic mucosal epithelia of mice with a T cell-restricted deletion of the TGF-ß intermediate, SMAD4 (Smad4TKO). The increase of IFN-γ expression correlates with the onset of spontaneous CAC in Smad4TKO mice by 6 months of age. This phenotype is greatly ameliorated by the introduction of a germline deletion of IFN-γ in Smad4TKO mice (Smad4TKO/IFN-γKO, DKO). DKO mice had a significantly reduced incidence and progression of CAC, and a decrease in the number of mucosal CD4+ TEM cells, when compared to those of Smad4TKO mice. Similarly, the colon epithelia of DKO mice exhibited a non-oncogenic signature with a decrease in the expression of iNOS and p-STAT1, and a restoration of the tumor suppressor gene, 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In vitro, treatment of human colon cancer cells with IFN-γ decreased the expression of 15-PGDH. Our data suggest that Smad4-deficient T cells promote CAC through mechanisms that include an IFN-γ-dependent suppression of the tumor suppressor 15-PGDH.


Colitis-Associated Neoplasms , Colonic Neoplasms , Hydroxyprostaglandin Dehydrogenases/metabolism , Interferon-gamma/metabolism , Smad4 Protein/metabolism , Animals , Colitis , Colitis-Associated Neoplasms/metabolism , Colitis-Associated Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Interferon-gamma/genetics , Mice , Smad4 Protein/genetics , T-Lymphocytes/metabolism
11.
Cancer Sci ; 113(10): 3579-3592, 2022 Oct.
Article En | MEDLINE | ID: mdl-35848891

The arachidonic acid cascade is a major inflammatory pathway that produces prostaglandin E2 (PGE2). Although inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is reported to lead to PGE2 accumulation, the role of 15-PGDH expression in the tumor microenvironment remains unclear. We utilized Panc02 murine pancreatic cancer cells for orthotopic transplantation into wild-type and 15-pgdh+/- mice and found that 15-pgdh depletion in the tumor microenvironment leads to enhanced tumorigenesis accompanied by an increase in cancer-associated fibroblasts (CAFs) and the promotion of fibrosis. The fibrotic tumor microenvironment is widely considered to be hypovascular; however, we found that the angiogenesis level is maintained in 15-pgdh+/- mice, and these changes were also observed in a genetically engineered PDAC mouse model. Further confirmation revealed that fibroblast growth factor 1 (FGF1) is secreted by pancreatic cancer cells after PGE2 stimulation, consequently promoting CAF proliferation and vascular endothelial growth factor A (VEGFA) expression in the tumor microenvironment. Finally, in 15-pgdh+/- Acta2-TK mice, depletion of fibroblasts inhibited angiogenesis and cancer cell viability in orthotopically transplanted tumors. These findings highlighted the role of 15-pgdh downregulation in enhancing PGE2 accumulation in the pancreatic tumor microenvironment and in subsequently maintaining the angiogenesis level in fibrotic tumors along with CAF expansion.


Pancreatic Neoplasms , Vascular Endothelial Growth Factor A , Animals , Arachidonic Acid , Cell Line, Tumor , Dinoprostone/metabolism , Dinoprostone/pharmacology , Fibroblast Growth Factor 1 , Fibrosis , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Mice , Pancreatic Neoplasms/genetics , Tumor Microenvironment , Vascular Endothelial Growth Factor A/genetics , Pancreatic Neoplasms
12.
BMC Cancer ; 22(1): 308, 2022 Mar 22.
Article En | MEDLINE | ID: mdl-35317779

BACKGROUND: Several studies have documented the key role of microRNAs (miRNAs) in esophageal squamous cell carcinoma (ESCC). Although the expression of the 15-hydroxyprostaglandin dehydrogenase (HPGD) gene and miR-106b-5p are reportedly linked to cancer progression, their underlying mechanisms in ESCC remain unclear. METHODS: mRNA and miRNA expression in ESCC tissues and cells were analyzed using RT-qPCR. Luciferase and RNA pull-down assays were used to identify the interaction between miR-106b-5p and HPGD. Xenograft and pulmonary metastasis models were used to assess tumor growth and metastasis. CCK-8, BrdU, colony formation, adhesion, cell wound healing, Transwell, and caspase-3/7 activity assays, and flow cytometry and western blot analyses were used to examine the function of miR-106-5p and HPGD in ESCC cell lines. RESULTS: The findings revealed that miR-106b-5p expression was upregulated in ESCC tissues and cell lines. miR-106b-5p augmented cellular proliferation, colony formation, adhesion, migration, invasion, and proportion of cells in the S-phase, but reduced apoptosis and the proportion of cells in G1-phase. Silencing of miR-106-5p inhibited tumor growth in vivo and pulmonary metastasis. Although HPGD overexpression suppressed proliferation, colony formation, adhesion, migration, and invasion of ESCC cells, it promoted apoptosis and caused cell cycle arrest of the ESCC cells. The results also indicated a direct interaction of HPGD with miR-106b-5p in ESCC cells. Furthermore, miR-106b-5p inhibited HPGD expression, thereby suppressing ESCC tumorigenesis. CONCLUSION: Our data suggest that miR-106b-5p enhances proliferation, colony formation, adhesion, migration, and invasion, and induces the cycle progression, but represses apoptosis of ESCC cells by targeting HPGD. This suggests that the miR-106b-5p/HPGD axis may serve as a promising target for the diagnosis and treatment of ESCC.


Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Apoptosis/genetics , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/secondary , Male , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Real-Time Polymerase Chain Reaction , Up-Regulation
13.
Int Immunopharmacol ; 101(Pt B): 108176, 2021 Dec.
Article En | MEDLINE | ID: mdl-34655851

15-hydroxyprostaglandin dehydrogenase (15-PGDH; encoded by HPGD) is ubiquitously expressed in mammalian tissues and catalyzes the degradation of prostaglandins (PGs; mainly PGE2, PGD2, and PGF2α) in a process mediated by solute carrier organic anion transport protein family member 2A1 (SLCO2A1; also known as PGT, OATP2A1, PHOAR2, or SLC21A2). As a key enzyme, 15-PGDH catalyzes the rapid oxidation of 15-hydroxy-PGs into 15-keto-PGs with lower biological activity. Increasing evidence suggests that 15-PGDH plays a key role in many physiological and pathological processes in mammals and is considered a potential pharmacological target for preventing organ damage, promoting bone marrow graft recovery, and enhancing tissue regeneration. Additionally, results of whole-exome analyses suggest that recessive inheritance of an HPGD mutation is associated with idiopathic hypertrophic osteoarthropathy. Interestingly, as a tumor suppressor, 15-PGDH inhibits proliferation and induces the differentiation of cancer cells (including those associated with colorectal, lung, and breast cancers). Furthermore, a recent study identified 15-PGDH as a marker of aging tissue and a potential novel therapeutic target for resisting the complex pathology of aging-associated diseases. Here, we review and summarise recent information on the molecular functions of 15-PGDH and discuss its pathophysiological implications.


Aging/physiology , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Hydroxyprostaglandin Dehydrogenases/metabolism , Prostaglandins/metabolism , Animals , Biomarkers/metabolism , Hydroxyprostaglandin Dehydrogenases/genetics
15.
Article En | MEDLINE | ID: mdl-33418484

Prostamide/prostaglandin F synthase (PM/PGFS) is an enzyme with very narrow substrate specificity and is dedicated to the biosynthesis of prostamide F2α and prostaglandin F2α (PGF2α.). The importance of this enzyme, relative to the aldo-keto reductase (AKR) series, in providing functional tissue prostamide F2α levels was determined by creating a line of PM/PGFS gene deleted mice. Deletion of the gene encoding PM/PGFS (Fam213b / Prxl2b) was accomplished by a two exon disruption. Prostamide F2α levels in wild type (WT) and PM/PGFS knock-out (KO) mice were determined by LC/MS/MS. Deletion of Fam213b (Prxl2b) had no observed effect on behavior, appetite, or fertility. In contrast, tonometrically measured intraocular pressure was significantly elevated by approximately 4 mmHg in PM/PGFS KO mice compared to littermate WT mice. Outflow facility was measured in enucleated mouse eyes using the iPerfusion system. No effect on pressure dependent outflow facility occurred, which is consistent with the effects of prostamide F2α and PGF2α increasing outflow through the unconventional pathway. The elevation of intraocular pressure caused by deletion of the gene encoding the PM/PGFS enzyme likely results from a diversion of the endoperoxide precursor pathway to provide increased levels of those prostanoids known to raise intraocular pressure, namely prostaglandin D2 (PGD2) and thromboxane A2 (TxA2). It follows that PM/PGFS may serve an important regulatory role in the eye by providing PGF2α and prostamide F2α to constrain the influence of those prostanoids that raise intraocular pressure.


Dinoprost/metabolism , Dinoprostone/analogs & derivatives , Gene Deletion , Hydroxyprostaglandin Dehydrogenases/metabolism , Animals , Chromatography, Liquid , Dinoprostone/metabolism , Disease Models, Animal , Gene Knockout Techniques , Hydroxyprostaglandin Dehydrogenases/genetics , Intraocular Pressure , Male , Mice , Tandem Mass Spectrometry , Tonometry, Ocular
16.
Basic Clin Pharmacol Toxicol ; 128(1): 91-102, 2021 Jan.
Article En | MEDLINE | ID: mdl-32780565

Solidagenone (SOL) is a labdane-type diterpenoid found in Solidago chilensis, a plant traditionally used to treat skin diseases, kidney pain and ovarian inflammation. In this study, the topical anti-inflammatory activity of SOL was evaluated using in vivo and in silico assays. Croton oil-, arachidonic acid (AA)- and phenol-induced ear oedema mouse models were applied in the in vivo studies. Myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activities and tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and nitric oxide (NO) levels were determined, as well as histopathological analyses were conducted. Interaction profiles between SOL and cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), glucocorticoid receptor, estradiol-17-ß-dehydrogenase and prostaglandin-E(2)-9-reductase were established using molecular docking. SOL significantly inhibited croton oil-, AA- and phenol-induced ear oedema (P < .001) at doses of 0.1, 0.5 and 1.0 mg/ear. The MPO and NAG activities and TNF-α, IL-6 and NO levels were decreased (P < .001). The histopathological data revealed that inflammatory parameters (oedema thickness, leucocyte infiltration and vasodilatation) were reduced by treatment with SOL at doses of 0.1, 0.5 and 1.0 mg/ear. The docking study showed that SOL interacts with COX-1 and prostaglandin-E(2)-9-reductase through hydrogen bonding, inhibiting these enzymes. These results indicate that SOL may be a promising compound for the treatment of cutaneous inflammatory disorders and has potential as a topical anti-inflammatory agent.


Cyclooxygenase Inhibitors/pharmacology , Dermatitis/prevention & control , Edema/prevention & control , Furans/pharmacology , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Naphthalenes/pharmacology , Plant Extracts/pharmacology , Skin/drug effects , Solidago , Acetylglucosaminidase/metabolism , Animals , Cyclooxygenase 1/metabolism , Cyclooxygenase Inhibitors/isolation & purification , Cyclooxygenase Inhibitors/metabolism , Dermatitis/metabolism , Dermatitis/pathology , Disease Models, Animal , Edema/chemically induced , Edema/metabolism , Edema/pathology , Furans/isolation & purification , Furans/metabolism , Hydrogen Bonding , Hydroxyprostaglandin Dehydrogenases/metabolism , Interleukin-6/metabolism , Male , Membrane Proteins/metabolism , Mice , Molecular Docking Simulation , Naphthalenes/isolation & purification , Naphthalenes/metabolism , Nitric Oxide/metabolism , Peroxidase/metabolism , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Protein Binding , Signal Transduction , Skin/metabolism , Skin/pathology , Solidago/chemistry , Tumor Necrosis Factor-alpha/metabolism
17.
Cancer Prev Res (Phila) ; 14(1): 65-76, 2021 01.
Article En | MEDLINE | ID: mdl-32917645

Increased COX-2 and decreased 15-hydroxyprostaglandin dehydrogenase (15-HPGD) expression promote prostaglandin-mediated inflammation and colorectal carcinogenesis. Experimental studies suggest that vitamin D and calcium may inhibit these pathways, but their effects on colorectal tissue COX-2 and 15-HPGD expression in humans are unknown. We tested the effects of supplemental vitamin D (1,000 IU/day) and/or calcium (1,200 mg/day) on COX-2 and 15-HPGD expression in the morphologically normal rectal mucosa from 62 paients with colorectal adenoma in a placebo-controlled chemoprevention trial. We measured biomarker expression using automated IHC and quantitative image analysis at baseline and 1-year follow-up, and assessed treatment effects using mixed linear models. The primary outcome was the COX-2/15-HPGD expression ratio, because these enzymes function as physiologic antagonists. After 1 year of treatment, the mean COX-2/15-HPGD expression ratio in full-length crypts proportionately decreased 47% in the vitamin D group (P = 0.001), 46% in the calcium group (P = 0.002), and 34% in the calcium + vitamin D group (P = 0.03), relative to the placebo group. Among individuals with the functional vitamin D-binding protein isoform DBP2 (GC rs4588*A), the COX-2/15-HPDG ratio decreased 70% (P = 0.0006), 75% (P = 0.0002), and 60% (P = 0.006) in the vitamin D, calcium, and combined supplementation groups, respectively, relative to placebo. These results show that vitamin D and calcium favorably modulate the balance of expression of COX-2 and 15-HPGD-biomarkers of inflammation that are strongly linked to colorectal carcinogenesis-in the normal-appearing colorectal mucosa of patients with colorectal adenoma (perhaps especially those with the DBP2 isoform). PREVENTION RELEVANCE: Supplemental calcium and vitamin D reduce indicators of cancer-promoting inflammation in normal colorectal tissue in humans, thus furthering our understanding of how they may help prevent colorectal cancer.


Adenoma/prevention & control , Calcium Carbonate/administration & dosage , Colorectal Neoplasms/prevention & control , Intestinal Mucosa/immunology , Vitamin D/administration & dosage , Adenoma/immunology , Adenoma/pathology , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Colon/drug effects , Colon/enzymology , Colon/immunology , Colon/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Cyclooxygenase 2/analysis , Cyclooxygenase 2/metabolism , Dietary Supplements , Female , Follow-Up Studies , Humans , Hydroxyprostaglandin Dehydrogenases/analysis , Hydroxyprostaglandin Dehydrogenases/metabolism , Inflammation/diagnosis , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Male , Middle Aged , Rectum/drug effects , Rectum/enzymology , Rectum/immunology , Rectum/pathology , Treatment Outcome
18.
Am J Physiol Renal Physiol ; 319(6): F1054-F1066, 2020 12 01.
Article En | MEDLINE | ID: mdl-33135478

In the present study, we demonstrated the marked activity of SW033291, an inhibitor of 15-hydoxyprostaglandin dehydrogenase (15-PGDH), in preventing acute kidney injury (AKI) in a murine model of ischemia-reperfusion injury. AKI due to ischemic injury represents a significant clinical problem. PGE2 is vasodilatory in the kidney, but it is rapidly degraded in vivo due to catabolism by 15-PGDH. We investigated the potential of SW033291, a potent and specific 15-PGDH inhibitor, as prophylactic treatment for ischemic AKI. Prophylactic administration of SW033291 significantly increased renal tissue PGE2 levels and increased post-AKI renal blood flow and renal arteriole area. In parallel, prophylactic SW033291 decreased post-AKI renal morphology injury scores and tubular apoptosis and markedly reduced biomarkers of renal injury that included blood urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Prophylactic SW033291 also reduced post-AKI induction of proinflammatory cytokines, high-mobility group box 1, and malondialdehyde. Protective effects of SW033291 were mediated by PGE2 signaling, as they could be blocked by pharmacological inhibition of PGE2 synthesis. Consistent with activation of PGE2 signaling, SW033291 induced renal levels of both EP4 receptors and cAMP, along with other vasodilatory effectors, including AMP, adenosine, and the adenosine A2A receptor. The protective effects of SW0333291 could largely be achieved with a single prophylactic dose of the drug. Inhibition of 15-PGDH may thus represent a novel strategy for prophylaxis of ischemic AKI in multiple clinical settings, including renal transplantation and cardiovascular surgery.


Acute Kidney Injury/prevention & control , Adenosine/metabolism , Dinoprostone/metabolism , Enzyme Inhibitors/pharmacology , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Kidney/blood supply , Kidney/drug effects , Pyridines/pharmacology , Receptor, Adenosine A2A/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Renal Circulation/drug effects , Reperfusion Injury/prevention & control , Thiophenes/pharmacology , Vasodilation/drug effects , Acute Kidney Injury/enzymology , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Blood Flow Velocity , Disease Models, Animal , Hydroxyprostaglandin Dehydrogenases/metabolism , Kidney/enzymology , Kidney/pathology , Male , Mice, Inbred C57BL , Reperfusion Injury/enzymology , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Signal Transduction
19.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article En | MEDLINE | ID: mdl-33081378

Gastric cancer (GC) represents the third leading cause of cancer-related deaths worldwide. The levels of prostaglandin E2, a key player in the hallmarks of cancer, are mainly regulated by prostaglandin-endoperoxide synthase 2 (PTGS2) and ATP-binding cassette subfamily C member 4 (ABCC4), involved in its synthesis and exportation, respectively, and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and solute carrier organic anion transporter family member 2A1 (SLCO2A1), responsible for its inactivation. Even though there are distinct molecular signatures across ethnic populations, most published studies focus on Asian populations. Our main aim was to explore the genetic expression of the aforementioned molecules in a Caucasian population. 94 "Normal" and 89 tumoral formalin-fixed paraffin-embedded (FFPE) samples from GC patients were used to assess the mRNA expression of PTGS2, ABCC4, hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD), SLCO2A1 by Real-Time PCR. We found an upregulation for the PTGS2 gene mean factor of 2.51 and a downregulation for the HPGD and SLCO2A1 genes (mean factor of 0.10 and 0.37, respectively) in tumorous mucosa in a gender-independent manner. In females, we observed an ABCC4 downregulation and a PTGS2 mRNA upregulation compared to males in tumoral mucosa (mean factor of 0.61 and 1.64, respectively). We reported dysregulation of the inflammation triggered PGE2 pathway in a Caucasian population with an intermediate risk for GC, which might highlight the applicability of aspirin in the treatment of GC patients.


Adenocarcinoma/metabolism , Dinoprostone/metabolism , Gene Expression Regulation, Neoplastic , Stomach Neoplasms/metabolism , Adenocarcinoma/genetics , Aged , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/genetics , Female , Gastric Mucosa/metabolism , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Male , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Stomach Neoplasms/genetics
20.
Sci Rep ; 10(1): 11657, 2020 07 15.
Article En | MEDLINE | ID: mdl-32669620

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by interstitial remodeling and pulmonary dysfunction. The etiology of IPF is not completely understood but involves pathologic inflammation and subsequent failure to resolve fibrosis in response to epithelial injury. Treatments for IPF are limited to anti-inflammatory and immunomodulatory agents, which are only partially effective. Prostaglandin E2 (PGE2) disrupts TGFß signaling and suppresses myofibroblast differentiation, however practical strategies to raise tissue PGE2 during IPF have been limited. We previously described the discovery of a small molecule, (+)SW033291, that binds with high affinity to the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and increases PGE2 levels. Here we evaluated pulmonary 15-PGDH expression and activity and tested whether pharmacologic 15-PGDH inhibition (PGDHi) is protective in a mouse model of bleomycin-induced pulmonary fibrosis (PF). Long-term PGDHi was well-tolerated, reduced the severity of pulmonary fibrotic lesions and extracellular matrix remodeling, and improved pulmonary function in bleomycin-treated mice. Moreover, PGDHi attenuated both acute inflammation and weight loss, and decreased mortality. Endothelial cells and macrophages are likely targets as these cell types highly expressed 15-PGDH. In conclusion, PGDHi ameliorates inflammatory pathology and fibrosis in murine PF, and may have clinical utility to treat human disease.


Anti-Inflammatory Agents/pharmacology , Dinoprostone/metabolism , Enzyme Inhibitors/pharmacology , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Idiopathic Pulmonary Fibrosis/drug therapy , Pyridines/pharmacology , Thiophenes/pharmacology , Animals , Bleomycin/administration & dosage , Body Weight/drug effects , Dinoprostone/agonists , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Endothelial Cells/pathology , Extracellular Matrix/drug effects , Extracellular Matrix/enzymology , Female , Gene Expression , Humans , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/mortality , Inflammation , Lung/drug effects , Lung/enzymology , Lung/pathology , Macrophages/drug effects , Macrophages/enzymology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Respiratory Function Tests , Survival Analysis
...