Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 261
Filter
1.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726999

ABSTRACT

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Subject(s)
Chloride Channels , Dent Disease , Phosphoric Monoester Hydrolases , Humans , Male , Child , Chloride Channels/genetics , Retrospective Studies , Child, Preschool , China/epidemiology , Dent Disease/genetics , Dent Disease/diagnosis , Phosphoric Monoester Hydrolases/genetics , Mutation , Proteinuria/genetics , Adolescent , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Nephrolithiasis/genetics , Infant , Genetic Testing , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Mutation, Missense , Female , Glomerulosclerosis, Focal Segmental/genetics , Kidney/pathology , East Asian People
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732005

ABSTRACT

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Subject(s)
Calcium Oxalate , Hypercalciuria , Kidney Calculi , Mice, Knockout , Animals , Hypercalciuria/metabolism , Hypercalciuria/genetics , Hydrogen-Ion Concentration , Mice , Calcium Oxalate/metabolism , Kidney Calculi/metabolism , Kidney Calculi/etiology , Kidney Calculi/pathology , Calcium Phosphates/metabolism , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Calcium/metabolism , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Disease Models, Animal , Mice, Inbred C57BL , Acetazolamide/pharmacology
3.
Curr Opin Nephrol Hypertens ; 33(4): 433-440, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38690798

ABSTRACT

PURPOSE OF REVIEW: Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS: Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY: These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.


Subject(s)
Kidney , Receptors, Calcium-Sensing , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/genetics , Humans , Animals , Kidney/metabolism , Hypercalciuria/metabolism , Hypercalciuria/genetics , Calcium/metabolism , Hypercalcemia/metabolism , Hypercalcemia/genetics , Claudins/metabolism , Claudins/genetics , Hypocalcemia , Hypoparathyroidism/congenital
4.
Intern Med J ; 54(6): 852-860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38665051

ABSTRACT

Calcium-sensing receptors (CaSRs) are G protein-coupled receptors that help maintain Ca2+ concentrations, modulating calciotropic hormone release (parathyroid hormone (PTH), calcitonin and 1,25-dihydroxyvitamin D) by direct actions in the kidneys, gastrointestinal tract and bone. Variability in population calcium levels has been attributed to single nucleotide polymorphisms in CaSR genes, and several conditions affecting calcium and phosphate homeostasis have been attributed to gain- or loss-of-function mutations. An example is autosomal dominant hypercalciuric hypocalcaemia, because of a missense mutation at codon 128 of chromosome 3, as reported in our specific case and her family. As a consequence of treating symptomatic hypocalcaemia as a child, this female subject slowly developed progressive end-stage kidney failure because of nephrocalcinosis and nephrolithiasis. After kidney transplantation, she remains asymptomatic, with decreased vitamin D and elemental calcium requirements, stable fluid and electrolyte homeostasis during intercurrent illnesses and has normalised urinary calcium and phosphate excretion, reducing the likelihood of hypercalciuria-induced graft impairment. We review the actions of the CaSR, its role in regulating renal Ca2+ homeostasis along with the impact of a proven gain-of-function mutation in the CaSR gene resulting in autosomal dominant hypercalciuric hypocalcaemia before and after kidney transplantation.


Subject(s)
Calcium , Homeostasis , Kidney Transplantation , Receptors, Calcium-Sensing , Humans , Receptors, Calcium-Sensing/genetics , Female , Calcium/metabolism , Hypocalcemia/genetics , Hypocalcemia/etiology , Hypercalciuria/genetics , Hypercalcemia/genetics , Kidney/metabolism , Mutation, Missense , Nephrocalcinosis/genetics , Kidney Failure, Chronic/surgery , Hypoparathyroidism/congenital
5.
Kidney Int ; 105(5): 927-929, 2024 May.
Article in English | MEDLINE | ID: mdl-38642991

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria is an autosomal recessive phosphate-wasting disorder, associated with kidney and skeletal pathologies, which is caused by pathogenic variants of SLC34A3. In this issue, Zhu et al. describe a pooled analysis of 304 individuals carrying SLC34A3 variants. Their study underscores the complexity of hereditary hypophosphatemic rickets with hypercalciuria, as kidney and bone phenotypes generally do not coexist, heterozygous carriers of SLC34A3 variants also can be affected, and the response to oral phosphate supplementation is dependent on the genetic status.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Precision Medicine , Mutation , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Phosphates
6.
Orphanet J Rare Dis ; 19(1): 126, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504242

ABSTRACT

OBJECTIVE: Idiopathic infantile hypercalcemia (IIH) is a rare disorder of PTH-independent hypercalcemia. CYP24A1 and SLC34A1 gene mutations cause two forms of hereditary IIH. In this study, the clinical manifestations and molecular aspects of six new Chinese patients were investigated. METHODS: The clinical manifestations and laboratory study of six patients with idiopathic infantile hypercalcemia were analyzed retrospectively. RESULTS: Five of the patients were diagnosed with hypercalcemia, hypercalciuria, and bilateral medullary nephrocalcinosis. Their clinical symptoms and biochemical abnormalities improved after treatment. One patient presented at age 11 years old with arterial hypertension, hypercalciuria and nephrocalcinosis, but normal serum calcium. Gene analysis showed that two patients had compound heterozygous mutations of CYP24A1, one patient had a monoallelic CYP24A1 variant, and three patients had a monoallelic SLC34A1 variant. Four novel CYP24A1 variants (c.116G > C, c.287T > A, c.476G > A and c.1349T > C) and three novel SLC34A1 variants (c.1322 A > G, c.1697_1698insT and c.1726T > C) were found in these patients. CONCLUSIONS: A monoallelic variant of CYP24A1 or SLC34A1 gene contributes to symptomatic hypercalcemia, hypercalciuria and nephrocalcinosis. Manifestations of IIH vary with onset age. Hypercalcemia may not necessarily present after infancy and IIH should be considered in patients with nephrolithiasis either in older children or adults.


Subject(s)
Hypercalcemia , Infant, Newborn, Diseases , Metabolism, Inborn Errors , Nephrocalcinosis , Child , Humans , Hypercalcemia/genetics , Hypercalciuria/genetics , Mutation/genetics , Nephrocalcinosis/genetics , Retrospective Studies , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism
7.
J Physiol ; 602(13): 3207-3224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38367250

ABSTRACT

High concentrations of urinary calcium counteract vasopressin action via the activation of the Calcium-Sensing Receptor (CaSR) expressed in the luminal membrane of the collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). In line with these findings, we provide evidence that, with respect to wild-type mice, CaSR knock-in (KI) mice mimicking autosomal dominant hypocalcaemia, display a significant decrease in the total content of AQP2 associated with significantly higher levels of AQP2 phosphorylation at Ser261, a phosphorylation site involved in AQP2 degradation. Interestingly, KI mice also had significantly higher levels of phosphorylated p38MAPK, a downstream effector of CaSR and known to phosphorylate AQP2 at Ser261. Moreover, ATF1 phosphorylated at Ser63, a transcription factor downstream of p38MAPK, was significantly higher in KI. In addition, KI mice had significantly higher levels of AQP2-targeting miRNA137 consistent with a post-transcriptional downregulation of AQP2. In vivo treatment of KI mice with the calcilytic JTT-305, a CaSR antagonist, increased AQP2 expression and reduced AQP2-targeting miRNA137 levels in KI mice. Together, these results provide direct evidence for a critical role of CaSR in impairing both short-term vasopressin response by increasing AQP2-pS261, as well as AQP2 abundance, via the p38MAPK-ATF1-miR137 pathway. KEY POINTS: Calcium-Sensing Receptor (CaSR) activating mutations are the main cause of autosomal dominant hypocalcaemia (ADH) characterized by inappropriate renal calcium excretion leading to hypocalcaemia and hypercalciuria. Current treatments of ADH patients with parathyroid hormone, although improving hypocalcaemia, do not improve hypercalciuria or nephrocalcinosis. In vivo treatment with calcilytic JTT-305/MK-5442 ameliorates most of the ADH phenotypes of the CaSR knock-in mice including hypercalciuria or nephrocalcinosis and reverses the downregulation of the vasopressin-sensitive aquaporin-2 (AQP2) expression, providing direct evidence for a critical role of CaSR in impairing vasopressin response. The beneficial effect of calcilytic in reducing the risk of renal calcification may occur in a parathyroid hormone-independent action through vasopressin-dependent inhibition of cAMP synthesis in the thick ascending limb and in the collecting duct. The amelioration of most of the abnormalities in calcium metabolism including hypercalciuria, renal calcification, and AQP2-mediated osmotic water reabsorption makes calcilytic a good candidate as a novel therapeutic agent for ADH.


Subject(s)
Aquaporin 2 , Down-Regulation , Receptors, Calcium-Sensing , Vasopressins , Animals , Aquaporin 2/metabolism , Aquaporin 2/genetics , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/genetics , Mice , Vasopressins/metabolism , Gene Knock-In Techniques , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL , Male , Signal Transduction , Phenotype , Hypercalciuria/genetics , Hypercalciuria/metabolism , Hypercalciuria/drug therapy , Calcium/metabolism , Phosphorylation , Hypocalcemia , Hypoparathyroidism/congenital
8.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Article in English | MEDLINE | ID: mdl-38364990

ABSTRACT

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/drug therapy , Hypercalciuria/diagnosis , Hypercalciuria/drug therapy , Hypercalciuria/genetics , Kidney/metabolism , Phosphates , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
9.
BMC Pediatr ; 24(1): 121, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355430

ABSTRACT

BACKGROUND: Hereditary hypophosphatemia rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder characterised by reduced renal phosphate reabsorption leading to hypophosphataemia, rickets and bone pain. Here, we present a case of HHRH in a Chinese boy. CASE PRESENTATION: We report a 11-year-old female proband, who was admitted to our hospital with bilateral genuvarum deformity and short stature. Computed Tomography (CT) showed kidney stones, blood tests showed hypophosphatemia, For a clear diagnosis, we employed high-throughput sequencing technology to screen for variants. Our gene sequencing approach encompassed whole exome sequencing, detection of exon and intron junction regions, and examination of a 20 bp region of adjacent introns. Flanking sequences are defined as ±50 bp upstream and downstream of the 5' and 3' ends of the coding region.The raw sequence data were compared to the known gene sequence data in publicly available sequence data bases using Burrows-Wheeler Aligner software (BWA, 0.7.12-r1039), and the pathogenic variant sites were annotated using Annovar. Subsequently, the suspected pathogenic variants were classified according to ACMG's gene variation classification system. Simultaneously, unreported or clinically ambiguous pathogenic variants were predicted and annotated based on population databases. Any suspected pathogenic variants identified through this analysis were then validated using Sanger sequencing technology. At last, the proband and her affected sister carried pathogenic homozygous variant in the geneSLC34A3(exon 13, c.1402C > T; p.R468W). Their parents were both heterozygous carriers of the variant. Genetic testing revealed that the patient has anLRP5(exon 18, c.3917C > T; p.A1306V) variant of Uncertain significance, which is a rare homozygous variant. CONCLUSION: This case report aims to raise awareness of the presenting characteristics of HHRH. The paper describes a unique case involving variants in both theSLC34A3andLRP5genes, which are inherited in an autosomal recessive manner. This combination of gene variants has not been previously reported in the literature. It is uncertain whether the presence of these two mutated genes in the same individual will result in more severe clinical symptoms. This report shows that an accurate diagnosis is critical, and with early diagnosis and correct treatment, patients will have a better prognosis.


Subject(s)
Familial Hypophosphatemic Rickets , Hypophosphatemia , Phosphorus Metabolism Disorders , Child , Female , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Heterozygote , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Hypophosphatemia/genetics , Introns , Mutation , Phosphorus Metabolism Disorders/genetics
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339056

ABSTRACT

Patients with mutations in Cldn16 suffer from familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) which can lead to renal insufficiency. Mice lacking claudin-16 show hypomagnesemia and hypercalciuria, but no nephrocalcinosis. Calcium oxalate and calcium phosphate are the most common insoluble calcium salts that accumulate in the kidney in the case of nephrocalcinosis, however, the formation of these salts is less favored in acidic conditions. Therefore, urine acidification has been suggested to limit the formation of calcium deposits in the kidney. Assuming that urine acidification is causative for the absence of nephrocalcinosis in the claudin-16-deficient mouse model, we aimed to alkalinize the urine of these mice by the ablation of the subunit B1 of the vesicular ATPase in addition to claudin-16. In spite of an increased urinary pH in mice lacking claudin-16 and the B1 subunit, nephrocalcinosis did not develop. Thus, urinary acidification is not the only factor preventing nephrocalcinosis in claudin-16 deficient mice.


Subject(s)
Hypercalciuria , Nephrocalcinosis , Humans , Animals , Mice , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Calcium , Salts , Magnesium , Hydrogen-Ion Concentration , Claudins/genetics
11.
Pediatr Nephrol ; 39(4): 1301-1313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38165475

ABSTRACT

A 3-year-old female patient with no significant medical history presented to her pediatrician with foamy urine. Initial testing revealed moderate proteinuria on qualitative testing, although she was incidentally noted to have severe hypertension (240/200 mmHg). Physical examination of the carotid and femoral areas revealed significant systolic vascular murmurs. Labs showed elevated serum creatinine, hypokalemia, metabolic alkalosis, elevated renin and aldosterone and hypercalciuria. Echocardiography identified ventricular hypertrophy. Computed tomography (CT) of the abdomen and magnetic resonance angiography of the head showed multiple tortuous or interrupted arteries and multiple calcifications in the renal sinus area. B-mode ultrasonography suggested thickening of the carotid and femoral artery walls, with numerous spotted calcifications. Genetic testing revealed that ABCC6 had a complex heterozygous mutation (exon 24: c.3340C > T and intron 30: c.4404-1G > A). Our panel of experts reviewed the evaluation of this patient with hypertension, proteinuria, hypercalciuria, and vascular abnormalities as well as the diagnosis and appropriate management of a rare disease.


Subject(s)
Hypertension , Hypokalemia , Female , Humans , Child, Preschool , Hypercalciuria/complications , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Hypertension/complications , Hypertension/diagnosis , Hypokalemia/genetics , Genetic Testing , Proteinuria/etiology , Proteinuria/genetics
12.
J Genet ; 1032024.
Article in English | MEDLINE | ID: mdl-38258300

ABSTRACT

Absorptive hypercalciuria (AH) is a prevalent cause of kidney stones, and the adenylate cyclase 10 (ADCY10) gene is a rare causative gene of AH. This study aims to investigate the genotypic and phenotypic characteristics of patients with AH caused by ADCY10 gene mutations. Whole-exome sequencing and Sanger sequencing were performed on the probands and their family members, respectively. Clinical and genetic data of patients with AH caused by ADCY10 gene mutations were collected and analysed retrospectively from the present study and published literature. Two female patients (6 years old and 1 year old) with multiple bilateral kidney stones were found to have a heterozygous c.3304T>C mutation and a heterozygous c.1726C>T mutation in the ADCY10 gene. Urinary metabolite analysis revealed that urine calcium / creatinine ratios were 0.95 mmol/mmol and 1.61 mmol/mmol, respectively. Both patients underwent thiazide intake postoperatively, and upon reexamination, urine calcium decreased to within the normal range. A total of 61 patients with AH were reported from previous and present studies. The sex ratio was 7:5 for males to females, and the mean age of onset was 23.61±20.08 years. A total of 16 ADCY10 gene mutations were identified, including seven missense (43.75%), five splicing (31.25%), two frameshift (12.50%) and two nonsense mutations (12.50%). Only two cases were identified as homozygous mutations (c.1205_1206del), and the others were heterozygous mutations. In summary, we identified two novel ADCY10 gene candidate pathogenic variants in Chinese pediatric patients, which expands the mutational spectrum of the ADCY10 gene and provides a potential diagnostic and therapeutic target.


Subject(s)
Adenylyl Cyclases , Hypercalciuria , Kidney Calculi , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Adenylyl Cyclases/genetics , Calcium , China , Hypercalciuria/genetics , Kidney Calculi/genetics , Retrospective Studies
13.
Calcif Tissue Int ; 114(2): 110-118, 2024 02.
Article in English | MEDLINE | ID: mdl-38078932

ABSTRACT

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHNNC) is a rare autosomal recessive renal tubulopathy disorder characterized by excessive urinary loss of calcium and magnesium, polyuria, polydipsia, bilateral nephrocalcinosis, progressive chronic kidney disease, and renal failure. Also, sometimes amelogenesis imperfecta and severe ocular abnormalities are involved. The CLDN-16 and CLDN-19 genes encode the tight junction proteins claudin-16 and claudin-19, respectively, in the thick ascending loop of Henle in the kidney, epithelial cells of the retina, dental enamel, etc. Loss of function of the CLDN-16 and/or CLDN-19 genes leads to FHHNC. We present a case of FHHNC type 1, which was first confused with autosomal dominant hypocalcaemia (ADH) due to the presence of a very low serum parathyroid hormone (PTH) concentration and other similar clinical features before the genetic investigations. After the exome sequencing, FHHNC type 1 was confirmed by uncovering a novel homozygous missense mutation in the CLDN-16 gene (Exon 2, c.374 T > C) which causes, altered protein structure with F55S. Associated clinical, biochemical, and imaging findings also corroborate final diagnosis. Our findings expand the spectrum of the CLDN-16 mutation, which will further help in the genetic diagnosis and management of FHNNC.


Subject(s)
Hypocalcemia , Hypoparathyroidism/congenital , Nephrocalcinosis , Humans , Magnesium , Mutation, Missense , Nephrocalcinosis/complications , Nephrocalcinosis/diagnosis , Nephrocalcinosis/genetics , Hypercalciuria/complications , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Hypocalcemia/complications , Hypocalcemia/diagnosis , Hypocalcemia/genetics , Mutation , Claudins/genetics
14.
Calcif Tissue Int ; 114(2): 137-146, 2024 02.
Article in English | MEDLINE | ID: mdl-37981601

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of phosphate homeostasis. We describe a single-center experience of genetically proven HHRH families and perform systematic review phenotype-genotype correlation in reported biallelic probands and their monoallelic relatives. Detailed clinical, biochemical, radiological, and genetic data were retrieved from our center and a systematic review of Pub-Med and Embase databases for patients and relatives who were genetically proven. Total of nine subjects (probands:5) carrying biallelic SLC34A3 mutations (novel:2) from our center had a spectrum from rickets/osteomalacia to normal BMD, with hypophosphatemia and hypercalciuria in all. We describe the first case of genetically proven HHRH with enthesopathy. Elevated FGF23 in another patient with hypophosphatemia, iron deficiency anemia, and noncirrhotic periportal fibrosis led to initial misdiagnosis as tumoral osteomalacia. On systematic review of 58 probands (with biallelic SLC34A3 mutations; 35 males), early-onset HHRH and renal calcification were present in ~ 70% and late-onset HHRH in 10%. c.575C > T p.(Ser192Leu) variant occurred in 53% of probands without skeletal involvement. Among 110 relatives harboring monoallelic SLC34A3 mutation at median age 38 years, renal calcification, hypophosphatemia, high 1,25(OH)2D, and hypercalciuria were observed in ~30%, 22.3%, 40%, and 38.8%, respectively. Renal calcifications correlated with age but were similar across truncating and non-truncating variants. Although most relatives were asymptomatic for bone involvement, 6/12(50%) had low bone mineral density. We describe the first monocentric HHRH case series from India with varied phenotypes. In a systematic review, frequent renal calcifications and low BMD in relatives with monoallelic variants (HHRH trait) merit identification.


Subject(s)
Enthesopathy , Familial Hypophosphatemic Rickets , Hypophosphatemia , Kidney Diseases, Cystic , Nephrocalcinosis , Osteomalacia , Male , Humans , Adult , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Hypercalciuria/complications , Hypercalciuria/genetics , Osteomalacia/complications , Osteomalacia/genetics
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 169-177, 2023 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-37283101

ABSTRACT

Renal calculus is a common disease with complex etiology and high recurrence rate. Recent studies have revealed that gene mutations may lead to metabolic defects which are associated with the formation of renal calculus, and single gene mutation is involved in relative high proportion of renal calculus. Gene mutations cause changes in enzyme function, metabolic pathway, ion transport, and receptor sensitivity, causing defects in oxalic acid metabolism, cystine metabolism, calcium ion metabolism, or purine metabolism, which may lead to the formation of renal calculus. The hereditary conditions associated with renal calculus include primary hyperoxaluria, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Bartter syndrome, primary distal renal tubular acidosis, infant hypercalcemia, hereditary hypophosphatemic rickets with hypercalciuria, adenine phosphoribosyltransferase deficiency, hypoxanthine-guanine phosphoribosyltransferase deficiency, and hereditary xanthinuria. This article reviews the research progress on renal calculus associated with inborn error of metabolism, to provide reference for early screening, diagnosis, treatment, prevention and recurrence of renal calculus.


Subject(s)
Kidney Calculi , Metabolism, Inborn Errors , Nephrocalcinosis , Urolithiasis , Infant , Humans , Hypercalciuria/genetics , Kidney Calculi/diagnosis , Kidney Calculi/genetics , Urolithiasis/genetics , Nephrocalcinosis/genetics , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/genetics
17.
Curr Opin Nephrol Hypertens ; 32(4): 359-365, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37074688

ABSTRACT

PURPOSE OF REVIEW: Most kidney stones are composed of calcium, and the greatest risk factor for kidney stone formation is hypercalciuria. Patients who form kidney stones often have reduced calcium reabsorption from the proximal tubule, and increasing this reabsorption is a goal of some dietary and pharmacological treatment strategies to prevent kidney stone recurrence. However, until recently, little was known about the molecular mechanism that mediates calcium reabsorption from the proximal tubule. This review summarizes newly uncovered key insights and discusses how they may inform the treatment of kidney stone formers. RECENT FINDINGS: Studies examining claudin-2 and claudin-12 single and double knockout mice, combined with cell culture models, support complementary independent roles for these tight junction proteins in contributing paracellular calcium permeability to the proximal tubule. Moreover, a family with a coding variation in claudin-2 causing hypercalciuria and kidney stones have been reported, and reanalysis of Genome Wide Association Study (GWAS) data demonstrates an association between noncoding variations in CLDN2 and kidney stone formation. SUMMARY: The current work begins to delineate the molecular mechanisms whereby calcium is reabsorbed from the proximal tubule and suggests a role for altered claudin-2 mediated calcium reabsorption in the pathogenesis of hypercalciuria and kidney stone formation.


Subject(s)
Calcium , Hypercalciuria , Kidney Calculi , Kidney Calculi/genetics , Kidney Calculi/physiopathology , Kidney Calculi/prevention & control , Kidney Calculi/therapy , Hypercalciuria/genetics , Hypercalciuria/physiopathology , Hypercalciuria/prevention & control , Hypercalciuria/therapy , Calcium/metabolism , Humans , Animals , Claudin-2/genetics , Claudin-2/metabolism , Claudins/genetics , Claudins/metabolism , Genome-Wide Association Study , Kidney Tubules, Proximal/physiopathology
18.
J Pediatr Endocrinol Metab ; 36(5): 500-504, 2023 May 25.
Article in English | MEDLINE | ID: mdl-36935580

ABSTRACT

OBJECTIVES: Autosomal dominant hypocalcaemia 1 (ADH1) is a rare autosomal dominant genetic disease, due to the activating mutations of the calcium-sensing receptor (CASR) gene. The current paper presents a severe case of ADH1 with intellectual backwardness, and systematically reviews the reported 17 ADH1 patients in China. CASE PRESENTATION: A 7 years old boy with recurrent seizures over 1 year was admitted at Yuying children' hospital, the clinical centre of south province of Zhejiang. Auxiliary examinations demonstrated hypocalcaemia, hyperphosphatemia, hypomagnesemia, hypercalciuria, low parathyroid hormone (PTH), basal ganglia calcifications, normal range of serum creatinine, and 25-hydroxyvitamin D. Wechsler's intelligence test result indicated intellectually backward. The patient's genotype found a heterozygous variant in CASR gene, c.T416C p. (Ile139Thr). This article also systematically reviews the literatures on ADH1 in China and summarises the clinical characteristics and treatment. CONCLUSIONS: ADH1 can be a cause of idiopathic hypoparathyroidism. Recognition and rational treatment is important for symptom improvement and reducing high potential adverse effects.


Subject(s)
Hypocalcemia , Hypoparathyroidism , Male , Child , Humans , Hypocalcemia/genetics , Receptors, Calcium-Sensing/genetics , Hypercalciuria/drug therapy , Hypercalciuria/genetics , China , Mutation , Calcium
19.
Horm Res Paediatr ; 96(5): 473-482, 2023.
Article in English | MEDLINE | ID: mdl-36812896

ABSTRACT

INTRODUCTION: Activating mutation of the calcium-sensing receptor gene (CASR) reduces parathyroid hormone secretion and renal tubular reabsorption of calcium, defined as autosomal dominant hypocalcemia type 1 (ADH1). Patients with ADH1 may present with hypocalcemia-induced seizures. Calcitriol and calcium supplementation in symptomatic patients may exacerbate hypercalciuria, leading to nephrocalcinosis, nephrolithiasis, and compromised renal function. METHODS: We report on a family with seven members over three generations with ADH1 due to a novel heterozygous mutation in exon 4 of CASR: c.416T>C. RESULTS: This mutation leads to substitution of isoleucine with threonine in the ligand-binding domain of CASR. HEK293T cells transfected with wild type or mutant cDNAs demonstrated that p.Ile139Thr substitution led to increased sensitivity of the CASR to activation by extracellular calcium relative to the wild-type CASR (EC50 of 0.88 ± 0.02 mM vs. 1.1 ± 0.23 mM, respectively, p < 0.005). Clinical characteristics included seizures (2 patients), nephrocalcinosis and nephrolithiasis (3 patients), and early lens opacity (2 patients). In 3 of the patients, serum calcium and urinary calcium-to-creatinine ratio levels obtained simultaneously over 49 patient-years were highly correlated. Using the age-specific maximal-normal levels of calcium-to-creatinine ratio in the correlation equation, we obtained age-adjusted serum calcium levels that are high enough to reduce hypocalcemia-induced seizures and low enough to reduce hypercalciuria. CONCLUSION: We report on a novel CASR mutation in a three-generation kindred. Comprehensive clinical data enabled us to suggest age-specific upper limit of serum calcium levels, considering the association between serum calcium and renal calcium excretion.


Subject(s)
Hypocalcemia , Nephrocalcinosis , Nephrolithiasis , Humans , Hypocalcemia/genetics , Receptors, Calcium-Sensing/genetics , Calcium , Hypercalciuria/genetics , Creatinine , HEK293 Cells , Mutation , Seizures
20.
J Bone Miner Res ; 38(3): 414-426, 2023 03.
Article in English | MEDLINE | ID: mdl-36625425

ABSTRACT

Loss-of-function mutations in the CYP24A1 protein-coding region causing reduced 25 hydroxyvitamin D (25OHD) and 1,25 dihydroxyvitamin D (1,25(OH)2 D) catabolism have been observed in some cases of infantile hypercalcemia type 1 (HCINF1), which can manifest as nephrocalcinosis, hypercalcemia and adult-onset hypercalciuria, and renal stone formation. Some cases present with apparent CYP24A1 phenotypes but do not exhibit pathogenic mutations. Here, we assessed the molecular mechanisms driving apparent HCINF1 where there was a lack of CYP24A1 mutation. We obtained blood samples from 47 patients with either a single abnormality of no obvious cause or a combination of hypercalcemia, hypercalciuria, and nephrolithiasis as part of our metabolic and stone clinics. We used liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine serum vitamin D metabolites and direct sequencing to confirm CYP24A1 genotype. Six patients presented with profiles characteristic of altered CYP24A1 function but lacked protein-coding mutations in CYP24A1. Analysis upstream and downstream of the coding sequence showed single nucleotide variants (SNVs) in the CYP24A1 3' untranslated region (UTR). Bioinformatics approaches revealed that these 3' UTR abnormalities did not result in microRNA silencing but altered the CYP24A1 messenger RNA (mRNA) secondary structure, which negatively impacted translation. Our experiments showed that mRNA misfolding driven by these 3' UTR sequence-dependent structural elements was associated with normal 25OHD but abnormal 1,25(OH)2 D catabolism. Using CRISPR-Cas9 gene editing, we developed an in vitro mutant model for future CYP24A1 studies. Our results form a basis for future studies investigating structure-function relationships and novel CYP24A1 mutations producing a semifunctional protein. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
3' Untranslated Regions , Hypercalcemia , Vitamin D3 24-Hydroxylase , Humans , 3' Untranslated Regions/genetics , Chromatography, Liquid , Hypercalcemia/genetics , Hypercalciuria/genetics , Mutation/genetics , Tandem Mass Spectrometry , Vitamin D , Vitamin D3 24-Hydroxylase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL